KR102094204B1 - Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials - Google Patents

Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials Download PDF

Info

Publication number
KR102094204B1
KR102094204B1 KR1020180111687A KR20180111687A KR102094204B1 KR 102094204 B1 KR102094204 B1 KR 102094204B1 KR 1020180111687 A KR1020180111687 A KR 1020180111687A KR 20180111687 A KR20180111687 A KR 20180111687A KR 102094204 B1 KR102094204 B1 KR 102094204B1
Authority
KR
South Korea
Prior art keywords
polymer
carbon fiber
pvdf
porous carbon
carbonization
Prior art date
Application number
KR1020180111687A
Other languages
Korean (ko)
Other versions
KR20200032538A (en
Inventor
박수진
이지원
허영정
이효인
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180111687A priority Critical patent/KR102094204B1/en
Publication of KR20200032538A publication Critical patent/KR20200032538A/en
Application granted granted Critical
Publication of KR102094204B1 publication Critical patent/KR102094204B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Fibers (AREA)

Abstract

본 발명은 수퍼커패시터 전극소재로 사용가능한 고전기용량을 갖는 탄소섬유의 제조방법에 관한 것으로서, (a) PAN과 PVDF 고분자를 용해하여 원료 용액을 제조하는 단계; (b) 상기 용해된 고분자 용액을 방사하여 고분자 섬유를 제조하는 단계; (c) 상기 고분자 섬유를 탄화하는 단계를 포함한다.
상기와 같은 본 발명에 따르면, 기존의 전극소재 제조방법보다 간단한 단계만으로도 높은 전기 용량을 갖는 질소가 포함된 다공성 탄소섬유를 제조할 수 있다.
The present invention relates to a method for producing a carbon fiber having a high capacitance that can be used as a supercapacitor electrode material, comprising: (a) preparing a raw material solution by dissolving PAN and PVDF polymers; (b) spinning the dissolved polymer solution to produce polymer fibers; (c) carbonizing the polymer fiber.
According to the present invention as described above, it is possible to manufacture a porous carbon fiber containing nitrogen having a high electric capacity with only a simple step than a conventional electrode material manufacturing method.

Description

수퍼커패시터 전극소재를 위한 질소가 포함된 다공성 탄소섬유의 제조방법.{PREPARATION METHOD OF NITROGEN CONTAINED POROUS CARBON FIBER FOR SUPERCAPACITOR ELECTRODE MATERIALS}Manufacturing method of nitrogenous porous carbon fiber for supercapacitor electrode material. {PREPARATION METHOD OF NITROGEN CONTAINED POROUS CARBON FIBER FOR SUPERCAPACITOR ELECTRODE MATERIALS}

본 발명은 수퍼커패시터의 전극소재로 사용될 수 있는 질소가 포함된 다공성 탄소섬유의 제조에 관한 것으로서, 더욱 상세하게는 폴리아크릴로니트릴(Polyacrylonitrile,PAN)과 폴리비닐리덴플루오라이드(Polyvinylidene fluoride, PVDF)고분자를 일정 비율로 혼합하여 고분자 섬유를 제조하고 이어서 탄화과정을 통해 질소가 포함된 다공성 탄소섬유를 제조함으로써 수퍼커패시터용 전극소재로 활용하기 위한 것이다. The present invention relates to the production of a porous carbon fiber containing nitrogen that can be used as an electrode material of a supercapacitor, and more specifically, polyacrylonitrile (PAN) and polyvinylidene fluoride (Polyvinylidene fluoride, PVDF) It is intended to be used as an electrode material for a supercapacitor by mixing a polymer at a certain ratio to produce a polymer fiber and then producing a porous carbon fiber containing nitrogen through a carbonization process.

최근 원유의 한계성 및 친환경 에너지 시책에 따라 화석 원료 절감을 위한 에너지 정책을 발표 및 시행하고 있다. 우리나라는 국가 총 에너지의 97% 이상을 수입에 의존하고 있어 연평균 에너지소비 증가율이 1.1%에 달하고 있으며, 전체 에너지원의 83%가 화석연료로서 많은 이산화탄소를 배출함에 따라 기후변화협약에 의한 온실가스 배출 규제, 국제환경 규제 강화 등으로 인하여 산업경쟁력이 약화되고 있다. 이러한 상황을 타개하기 위해 최근 전기자동차와 스마트그리드(Smart Grid)가 주목 받으면서 고성능의 에너지 저장장치의 개발 필요성이 대두되고 있다. Recently, according to the limitations of crude oil and eco-friendly energy policies, energy policies for reducing fossil raw materials have been announced and implemented. In Korea, more than 97% of the country's total energy depends on imports, the annual average energy consumption growth rate is 1.1%, and 83% of the total energy source emits a lot of carbon dioxide as fossil fuels, resulting in greenhouse gas emissions under the Convention on Climate Change. Industrial competitiveness is weakening due to regulations and strengthening of international environmental regulations. In order to overcome this situation, the need for the development of high-performance energy storage devices has emerged as electric vehicles and smart grids have recently attracted attention.

이러한 에너지 저장장치 중 수퍼커패시터(Supercapacitor)는 축전 용량이 매우 큰 커패시터로서 울트라 커패시터(Ultra capacitor) 또는 초고용량 커패시터라고 한다. 수퍼커패시터는 개발 역사는 짧지만 다양한 재료를 전극재료로 활용함에 있어 현재도 연구개발이 활발하게 이루어지고 있다. 특히 활성탄은 전통적으로 사용되어지는 수퍼커패시터의 전극소재로, 금속 물질에 비해 가격이 저렴하고, 원료가 다양하며, 특성 변형이 용이하다는 점에서 여전히 전극소재로서의 잠재력을 보유하고 있다. Among these energy storage devices, a supercapacitor is a capacitor having a very large storage capacity and is called an ultracapacitor or an ultracapacitor capacitor. Supercapacitors have a short history of development, but research and development are still actively conducted in using various materials as electrode materials. In particular, activated carbon is an electrode material of a supercapacitor that has been traditionally used, and has a potential as an electrode material in that it is cheaper than metal materials, has various raw materials, and is easy to modify properties.

한국등록특허 제 10-1418877 호Korean Registered Patent No. 10-1418877

본 발명의 목적은, 전기 방사 및 탄화라는 단순한 공정을 통해 고전기용량을 갖는 질소가 포함된 다공성 탄소섬유 제조함으로써 새로운 수퍼커패시터용 전극소재를 제공함에 있다.An object of the present invention is to provide a new supercapacitor electrode material by manufacturing porous carbon fibers containing nitrogen having a high electric capacity through a simple process of electrospinning and carbonization.

상기 목적을 달성하기 위하여, 본 방법발명은 (a) PAN과 PVDF 고분자를 용해하여 원료 용액을 제조하는 단계, (b) 상기 용해된 고분자 용액을 방사하여 고분자 섬유를 제조하는 단계 및 (c) 상기 고분자 섬유를 탄화하는 단계를 제공한다.In order to achieve the above object, the present invention comprises (a) dissolving PAN and PVDF polymer to prepare a raw material solution, (b) spinning the dissolved polymer solution to produce polymer fibers and (c) the It provides a step of carbonizing the polymer fibers.

상기 (a)단계는 PAN과 PVDF 고분자를 1 내지 9 : 1 내지 3 의 질량비로 혼합 및 용해하여 원료용액을 제조하는 것일 수 있다.The step (a) may be to prepare a raw material solution by mixing and dissolving PAN and PVDF polymer in a mass ratio of 1 to 9: 1 to 3.

상기 (b)단계는 용해된 고분자 용액을 전기 방사하여 고분자 섬유를 제조하는 것일 수 있다.The step (b) may be to produce a polymer fiber by electrospinning the dissolved polymer solution.

상기 (c)단계는 고분자 섬유를 900 부터 1200℃ 온도에서 탄화하는 것일 수 있다.Step (c) may be to carbonize the polymer fiber at a temperature of 900 to 1200 ℃.

상기와 같은 본 발명에 따르면, PAN과 PVDF를 일정비율로 혼합 및 탄화라는 단순한 과정을 통해 탄소섬유를 제조함으로써 기존의 탄소섬유에 비해 고전기용량을 갖는 탄소섬유를 제조할 수 있다.According to the present invention as described above, by mixing the PAN and PVDF at a constant rate and manufacturing the carbon fiber through a simple process of carbonization, it is possible to manufacture a carbon fiber having a higher electric capacity than the conventional carbon fiber.

도 1은 본 발명의 질소가 포함된 다공성 탄소섬유의 SEM 사진이다.
도 2는 본 발명의 질소가 포함된 다공성 탄소섬유 중에서 가장 높은 전기 용량을 갖는 섬유의 CV (Cyclic voltammetry) 및 GCD (galvanostativ charge/discharge) 그래프이다.
1 is an SEM photograph of a porous carbon fiber containing nitrogen of the present invention.
FIG. 2 is a graph of cyclic voltammetry (CV) and galvanostativ charge / discharge (GCD) of fibers having the highest electrical capacity among porous carbon fibers containing nitrogen of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명인 고전기용량을 갖는 탄소섬유의 제조방법은 (a) PAN과 PVDF 고분자를 용해하여 원료 용액을 제조하는 단계, (b) 상기 용해된 고분자 용액을 방사하여 고분자 섬유를 제조하는 단계 및 (c) 상기 고분자 섬유를 탄화하는 단계를 제공한다. The method for producing carbon fiber having a high electric capacity of the present invention includes (a) dissolving PAN and PVDF polymers to prepare a raw material solution, (b) spinning the dissolved polymer solution to produce polymer fibers, and (c) It provides a step of carbonizing the polymer fibers.

상기 (a)단계는 PAN 및 PVDF를 1 내지 9 : 1 내지 3의 질량비로 혼합 및 용해하여 원료용액을 제조하는 것일 수 있다. 이때 PVDF의 질량비가 너무 높으면 탄화 시 탄소섬유의 수득률이 급격히 감소하게 되므로 PVDF의 질량비는 3 이하로 하는 것이 바람직하다. PAN과 PVDF는 상기의 질량비율로 혼합하여 총 5g을 만들고, 이를 10부터 50 mL 부피의 DMF 용액에 6부터 24h 동안 교반하여 완전히 용해시킨다. Step (a) may be to prepare a raw material solution by mixing and dissolving PAN and PVDF in a mass ratio of 1 to 9: 1 to 3. At this time, if the mass ratio of PVDF is too high, the yield of carbon fiber is rapidly reduced during carbonization, so the mass ratio of PVDF is preferably 3 or less. PAN and PVDF are mixed at the above mass ratio to make a total of 5 g, which is completely dissolved by stirring in a 10 to 50 mL volume of DMF solution for 6 to 24 h.

상기 (b)단계는 용해된 고분자 용액을 전기 방사(Electro spinning)하여 고분자 섬유를 제조하는 것일 수 있다. 이때 용해된 고분자 용액 12 mL를 주사기에 충진하고 전기 방사 장치의 공급 전압을 5부터 40 kV, 바람직하게는 15 내지 40 kV 로 한다. 그리고 고분자 용액의 주사 속도를 0.2부터 5 mL/h, 바람직하게는 0.2 내지 2 mL/h로 하고 섬유 콜렉터의 회전 속도를 100부터 1000 rpm, 바람직하게는 300부터 1000 rpm으로 하여 매트 타입의 고분자 섬유를 제조한다. 이 때 온도는 25±2℃, 상대 습도는 50±5%로 유지한다.The step (b) may be to prepare polymer fibers by electrospinning the dissolved polymer solution. At this time, 12 mL of the dissolved polymer solution is filled in a syringe, and the supply voltage of the electrospinning device is 5 to 40 kV, preferably 15 to 40 kV. Then, the injection rate of the polymer solution is 0.2 to 5 mL / h, preferably 0.2 to 2 mL / h, and the rotation speed of the fiber collector is 100 to 1000 rpm, preferably 300 to 1000 rpm, to form a mat type polymer fiber. To prepare. At this time, the temperature is maintained at 25 ± 2 ℃ and the relative humidity at 50 ± 5%.

상기 (c)단계는 고분자 섬유를 900부터 1200℃ 온도에서 탄화하는 것일 수 있다. 상기 (b)단계에서 얻어진 매트 타입의 고분자 섬유를 600부터 1200℃ 온도에서 1부터 5h 동안 탄화, 바람직하게는 900부터 1000℃ 온도에서 2부터 4h 동안 탄화과정을 거친다. 600℃ 미만의 온도에서는 탄화의 목적인 탄소 격자가 생성되지 않아 탄화가 진행되지 않으므로 600℃이상에서 탄화과정을 거쳐야 한다. 이 때 고분자 섬유를 안정적으로 탄화시키기 위해 탄화 과정 중 280℃에서 10분 동안 안정화 과정을 거친다. Step (c) may be to carbonize the polymer fibers at a temperature of 900 to 1200 ℃. The mat-type polymer fiber obtained in step (b) is carbonized at a temperature of 600 to 1200 ° C for 1 to 5h, preferably carbonized at 900 to 1000 ° C for 2 to 4h. At a temperature below 600 ° C, carbonization, which is the purpose of carbonization, is not generated, so carbonization does not proceed. At this time, in order to stably carbonize the polymer fiber, a stabilization process is performed at 280 ° C for 10 minutes during the carbonization process.

본 방법발명의 경우 질소를 포함하는 PAN 고분자와 탄화를 통해 다공성을 나타내는 PVDF 고분자, 이 두 가지를 전구체로 하여 탄소섬유를 제조한다. 이경우 PAN과 PVDF의 혼합 비율 및 탄화 온도를 조절함으로써 질소의 함량 및 다공성의 조절이 가능하다. 결국 도입된 질소 원자로 인해 산화·환원 반응이 유도되고 PVDF의 탄화에 의해 생성된 기공 구조로 인하여 전극 표면에서의 전해질 이동도가 높아짐에 따라 보다 높은 전기용량을 갖게 된다. In the case of the present invention, carbon fibers are prepared by using the PAN polymer containing nitrogen and the PVDF polymer exhibiting porosity through carbonization as precursors. In this case, it is possible to control the nitrogen content and porosity by controlling the mixing ratio of PAN and PVDF and the carbonization temperature. Eventually, the oxidation / reduction reaction is induced due to the introduced nitrogen atom, and the electrolytic mobility at the electrode surface increases due to the pore structure generated by carbonization of PVDF, resulting in higher electric capacity.

이하, 실시예 및 측정예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예 및 측정예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예 및 측정예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples and measurement examples. These examples and measurement examples are only for illustrating the present invention, it is apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples and measurement examples. will be.

실시예 1.Example 1.

PAN과 PVDF 고분자를 95:5의 질량비로 혼합하여 총 5g을 10mL의 DMF 용액에 넣어 6h 동안 교반시킨다. 용해된 고분자 용액 12mL를 주사기에 충진한 뒤 전기 방사 장치의 공급 전압을 5kV, 고분자 용액의 주사 속도를 5mL/h, 콜렉터 회전 속도를 100rpm으로 하여 매트 타입의 고분자 섬유를 제조한다. 이 때 온도는 25±2℃, 상대 습도는 50±5%로 유지한다. 얻어진 매트 타입의 고분자 섬유를 600℃에서 1h 동안 탄화시켜 질소가 포함된 다공성 탄소섬유를 제조하며, 이 때 탄화 과정 중 280℃에서 10분 동안 안정화 과정을 거친다. 제조된 질소가 포함된 다공성 탄소섬유를 수퍼커패시터의 전극소재로서의 성능을 측정하기 위해 니켈 지지체를 사용하여 KOH용액을 전해질로 하여 3 전극 하에서 전기화학적 특성을 측정한다. 이 때, 기준전극은 백금전극, 상대전극은 Ag/AgCl 전극을 사용한다. PAN and PVDF polymer were mixed at a mass ratio of 95: 5, and a total of 5 g was added to a 10 mL DMF solution and stirred for 6 h. After filling the syringe with 12 mL of the dissolved polymer solution, a mat-type polymer fiber was prepared by supplying the electrospinning device with a supply voltage of 5 kV, a polymer solution with a scanning speed of 5 mL / h, and a collector rotation speed of 100 rpm. At this time, the temperature is maintained at 25 ± 2 ℃ and the relative humidity at 50 ± 5%. The obtained mat-type polymer fiber is carbonized at 600 ° C. for 1 h to prepare a porous carbon fiber containing nitrogen, which is stabilized at 280 ° C. for 10 minutes during the carbonization process. In order to measure the performance of the prepared nitrogenous porous carbon fiber as an electrode material of a supercapacitor, an electrochemical property is measured under a 3 electrode using a KOH solution as an electrolyte using a nickel support. At this time, a platinum electrode is used as a reference electrode, and an Ag / AgCl electrode is used as a counter electrode.

실시예 2.Example 2.

상기 실시예 1과 동일하게 과정을 실시하되, 9h 동안 교반하였고, 전기 방사 시 고분자 용액의 주사 속도를 3mL/h로 하였으며, 800℃에서 탄화하였다.The same procedure as in Example 1 was carried out, but the mixture was stirred for 9 h, and the injection rate of the polymer solution was 3 mL / h during electrospinning, and carbonization was performed at 800 ° C.

실시예 3.Example 3.

상기 실시예 2와 동일하게 과정을 실시하되, PAN과 PVDF의 질량비를 9:1로 하였으며, DMF 20mL를 사용하여 용해하였다. 전기 방사 시 10kV의 전압을 공급하였으며, 콜렉터의 회전 속도를 300rpm으로 하였고 2h 동안 탄화하여 탄소 섬유를 제조하였다.The same procedure as in Example 2 was carried out, but the mass ratio of PAN and PVDF was 9: 1, and 20 mL of DMF was used to dissolve. When electrospinning, a voltage of 10 kV was supplied, the rotational speed of the collector was set to 300 rpm, and carbonization was performed by carbonizing for 2 h.

실시예 4.Example 4.

상기 실시예 3과 동일하게 과정을 실시하되, 12h 동안 교반하였고 전기 방사 시 공급 전압을 15kV, 주사 속도를 2mL/h로 하였으며, 900℃에서 탄화하여 탄소 섬유를 제조하였다.The same procedure as in Example 3 was carried out, but the mixture was stirred for 12 h, the supply voltage was 15 kV during electrospinning, and the scanning speed was 2 mL / h, and carbon fibers were prepared by carbonization at 900 ° C.

실시예 5.Example 5.

상기 실시예 4와 동일하게 과정을 실시하되, 25mL의 DMF 용액을 사용하였고 전기 방사 시 주사 속도를 0.8mL/h로 하였으며, 1000℃에서 3h 동안 탄화하였다. The procedure was performed in the same manner as in Example 4, but a 25 mL DMF solution was used, the injection rate was 0.8 mL / h during electrospinning, and carbonization was performed at 1000 ° C. for 3 h.

실시예 6.Example 6.

상기 실시예 5와 동일하게 과정을 실시하되, PAN과 PVDF의 질량비를 8:2로 하였으며, 전기 방사 시 공급 전압을 25kV, 주사 속도를 0.5mL/h, 콜렉터의 회전 속도를 500rpm으로 하였다. The same procedure as in Example 5 was carried out, but the mass ratio of PAN and PVDF was 8: 2, the supply voltage was 25 kV during electrospinning, the scanning speed was 0.5 mL / h, and the rotation speed of the collector was 500 rpm.

실시예 7.Example 7.

상기 실시예 6과 동일하게 과정을 실시하되, PAN과 PVDF의 질량비를 7:3으로 하였으며, DMF 40mL를 사용하여 18h 동안 용해하였다. 전기 방사 시 콜렉터의 회전 속도를 700 rpm으로 하였으며, 4h 동안 탄화를 진행하였다. The same procedure as in Example 6 was carried out, but the mass ratio of PAN and PVDF was 7: 3, and the mixture was dissolved for 18 h using 40 mL of DMF. During the electrospinning, the rotational speed of the collector was 700 rpm, and carbonization was performed for 4 h.

실시예 8.Example 8.

상기 실시예 7과 동일하게 과정을 실시하되, PAN과 PVDF의 질량비를 5:5로 하였으며, 50mL의 DMF를 사용하여 용해하였다. 전기 방사 시 공급 전압을 35kV로 하였으며, 1100℃에서 5h 동안 탄화하였다. The same procedure as in Example 7 was carried out, but the mass ratio of PAN and PVDF was 5: 5, and dissolved using 50 mL of DMF. When electrospinning, the supply voltage was 35 kV and carbonized at 1100 ° C. for 5 h.

실시예 9.Example 9.

상기 실시예 8과 동일하게 과정을 실시하되, 고분자 용액을 24h 동안 교반하였으며, 전기 방사 시 공급 전압을 40kV, 주사 속도를 0.2mL/h, 콜렉터의 회전 속도를 1000rpm으로 하여 고분자 섬유를 제조하였다. 탄화는 1200℃에서 진행하였다.The same procedure as in Example 8 was carried out, but the polymer solution was stirred for 24 h, and when electrospinning, polymer fibers were prepared with a supply voltage of 40 kV, a scanning speed of 0.2 mL / h, and a collector rotation speed of 1000 rpm. Carbonization proceeded at 1200 ° C.

비교예 1.Comparative Example 1.

상기 실시예 5와 동일하게 과정을 실시하되, PAN과 PVDF의 질량비를 10:0으로 하여 질소가 포함된 탄소 섬유를 제조하였다.The same procedure as in Example 5 was carried out, but the carbon fiber containing nitrogen was prepared by setting the mass ratio of PAN and PVDF to 10: 0.

비교예 2.Comparative Example 2.

상기 실시예 5와 동일하게 과정을 실시하되, 탄화를 진행하지 않은 매트 타입의 고분자 섬유를 제조하였다.The same procedure as in Example 5 was performed, but a mat-type polymer fiber without carbonization was prepared.

측정예 1. 본 발명의 질소가 포함된 다공성 탄소섬유의 형상 Measurement Example 1. The shape of the porous carbon fiber containing nitrogen of the present invention

Scanning electron microscopy (SEM, Hitachi, SU 8010)을 통해 본 발명에서 제조한 질소가 포함된 다공성 탄소섬유의 형상을 관찰하였다.(도 1)The shape of the porous carbon fiber containing nitrogen prepared in the present invention was observed through scanning electron microscopy (SEM, Hitachi, SU 8010) (FIG. 1).

측정예 2. 본 발명의 질소가 포함된 다공성 탄소섬유의 전기화학적 특성 Measurement Example 2. Electrochemical properties of the porous carbon fiber containing nitrogen of the present invention

Cyclic voltammetry (CV)와 galvanostativ charge/discharge (GCD) test (Ivium Technologies)를 통해 본 발명에서 제조한 질소가 포함된 다공성 탄소섬유의 전기화학적 특성을 측정하였다.(도 2)Cyclic voltammetry (CV) and galvanostativ charge / discharge (GCD) test (Ivium Technologies) were used to measure the electrochemical properties of the porous carbon fiber containing nitrogen prepared in the present invention (FIG. 2).

하기의 표 1은 실시예 1 내지 9 및 비교예 1 및 2의 실시조건 및 측정 조건을 나타낸다.Table 1 below shows the operating conditions and measurement conditions of Examples 1 to 9 and Comparative Examples 1 and 2.

샘플명Sample name PAN:PVDF 비율PAN: PVDF ratio DMF 부피
(mL)
DMF volume
(mL)
교반 시간
(h)
Stirring time
(h)
전기 방사 공급 전압
(kV)
Electric radiation supply voltage
(kV)
전기 방사 주사 속도
(mL/h)
Electrospinning speed
(mL / h)
콜렉터 회전 속도
(rpm)
Collector rotation speed
(rpm)
탄화 온도
(℃)
Carbonization temperature
(℃)
탄화 시간
(h)
Carbonization time
(h)
실시예 1Example 1 95:595: 5 1010 66 55 55 100100 600600 1One 실시예 2Example 2 95:595: 5 1010 99 55 33 100100 800800 1One 실시예 3Example 3 9:19: 1 2020 99 1010 33 300300 800800 22 실시예 4Example 4 9:19: 1 2020 1212 1515 22 300300 900900 22 실시예 5Example 5 9:19: 1 2525 1212 1515 0.80.8 300300 10001000 33 실시예 6Example 6 8:28: 2 2525 1212 2525 0.50.5 500500 10001000 33 실시예 7Example 7 7:37: 3 4040 1818 2525 0.50.5 700700 10001000 44 실시예 8Example 8 5:55: 5 5050 1818 3535 0.50.5 700700 11001100 55 실시예 9Example 9 5:55: 5 5050 2424 4040 0.20.2 10001000 12001200 55 비교예 1Comparative Example 1 10:010: 0 2525 1212 1515 0.80.8 300300 10001000 33 비교예 2Comparative Example 2 9:19: 1 2525 1212 1515 0.80.8 300300 -- --

하기의 표 2는 실시예 1 내지 9 및 비교예 1 및 2에 의해 제조된 탄소섬유의 전기화학적 특성 측정 결과를 나타낸다.Table 2 below shows the results of measuring the electrochemical properties of the carbon fibers prepared by Examples 1 to 9 and Comparative Examples 1 and 2.

질소 함량
(wt.%)
Nitrogen content
(wt.%)
비표면적
(m2/g)
Specific surface area
(m 2 / g)
전기 용량
(F/g)
Electric capacity
(F / g)
실시예 1Example 1 8.468.46 77 12.712.7 실시예 2Example 2 7.227.22 88 50.050.0 실시예 3Example 3 7.227.22 3737 53.353.3 실시예 4Example 4 7.197.19 4545 110.7110.7 실시예 5Example 5 7.017.01 104104 187.5187.5 실시예 6Example 6 5.015.01 118118 45.845.8 실시예 7Example 7 4.524.52 152152 81.281.2 실시예 8Example 8 3.733.73 201201 42.142.1 실시예 9Example 9 3.273.27 228228 78.178.1 비교예 1Comparative Example 1 7.807.80 44 32.532.5 비교예 2Comparative Example 2 10.3010.30 -- 23.523.5

이하에서는 제조된 실시예 1 내지 9 와 비교예 1 및 2에 의해 제조된 탄소섬유의 전기화학적 특성을 비교한 결과를 설명한다.Hereinafter, the results of comparing the electrochemical properties of the carbon fibers produced by Examples 1 to 9 and Comparative Examples 1 and 2 will be described.

상기 표 2에 의하면 질소함량이 거의 비슷한 실시예 2 내지 5의 경우 비표면적이 증가함에 따라 전기용량도 증가함을 알 수 있고 실시예 5에 의해 제조된 탄소섬유의 경우 가장 높은 전기용량을 나타내고 있다. 이는 탄화온도의 증가로 인해 PVDF 고분자로 인한 다공성구조가 더 잘 형성되었기 때문이다. 그러나 질소함량이 비슷한 비교예 1의 경우 탄소섬유에 다공성 구조를 제공하는 PVDF 고분자를 사용하지 않았기 때문에 비표면적이 매우 낮고 이로 인해 현저히 낮은 전기용량을 나타내고 있다. 그리고 비교예 2의 경우 질소 함량이 가장 높음에도 전기용량이 매우 낮은데 이는 다공성 구조를 제공하는 PVDF 고분자를 매우 적은 비율로 사용 및 다공성 구조를 만들기 위한 탄화 과정을 거치지 않았기 때문으로 판단된다. According to Table 2 above, it can be seen that in Examples 2 to 5, where the nitrogen content is almost similar, the electric capacity also increases as the specific surface area increases, and the carbon fiber produced by Example 5 shows the highest electric capacity. . This is because the porous structure due to the PVDF polymer was better formed due to the increase in the carbonization temperature. However, in the case of Comparative Example 1 having a similar nitrogen content, the specific surface area is very low because the PVDF polymer that provides the porous structure to the carbon fiber is not used, and thus, the electrical capacity is remarkably low. In addition, in the case of Comparative Example 2, although the nitrogen content was the highest, the electric capacity was very low, because it was judged that the PVDF polymer providing the porous structure was used in a very small proportion and the carbonization process to make the porous structure was not performed.

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As described above, specific parts of the present invention have been described in detail. For those skilled in the art, this specific technique is only a preferred embodiment, and it is obvious that the scope of the present invention is not limited thereby. something to do. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (4)

(a) PAN(Polyacrylonitrile) 과 PVDF(Polyvinylidene fluoride) 고분자를 용해하여 원료 용액을 제조하는 단계;
(b) 상기 용해된 고분자 용액을 방사하여 고분자 섬유를 제조하는 단계; 및
(c) 상기 고분자 섬유를 탄화하는 단계를 포함하고,
상기 (a)단계는 PAN과 PVDF 고분자를 9 : 1 의 질량비로 혼합 및 용해하여 원료용액을 제조하고,
상기 (c)단계는 고분자 섬유를 1000℃ 온도에서 탄화하는 것을 특징으로 하는 고전기용량을 갖는 탄소섬유의 제조방법.
(a) preparing a raw material solution by dissolving polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) polymer;
(b) spinning the dissolved polymer solution to produce polymer fibers; And
(c) carbonizing the polymer fiber,
In step (a), a PAN and PVDF polymer are mixed and dissolved in a mass ratio of 9: 1 to prepare a raw material solution,
The step (c) is a method of manufacturing a carbon fiber having a high electric capacity, characterized in that the polymer fiber is carbonized at a temperature of 1000 ℃.
삭제delete 제 1항에 있어서,
상기 (b)단계는 용해된 고분자 용액을 전기 방사(Electro spinning)하여 고분자 섬유를 제조하는 것을 특징으로 하는 고전기용량을 갖는 탄소섬유의 제조방법.
According to claim 1,
The step (b) is a method for producing a carbon fiber having a high electric capacity, characterized in that the polymer fiber is produced by electrospinning the dissolved polymer solution.
삭제delete
KR1020180111687A 2018-09-18 2018-09-18 Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials KR102094204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180111687A KR102094204B1 (en) 2018-09-18 2018-09-18 Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180111687A KR102094204B1 (en) 2018-09-18 2018-09-18 Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials

Publications (2)

Publication Number Publication Date
KR20200032538A KR20200032538A (en) 2020-03-26
KR102094204B1 true KR102094204B1 (en) 2020-03-27

Family

ID=69958638

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180111687A KR102094204B1 (en) 2018-09-18 2018-09-18 Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials

Country Status (1)

Country Link
KR (1) KR102094204B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871440B1 (en) * 2007-07-16 2008-12-03 주식회사 에이엠오 Blended nanofibers of pan/pvdf and preparation method of the same
KR100894481B1 (en) 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
JP2016060991A (en) 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118186B1 (en) * 2008-08-13 2012-03-16 주식회사 아모그린텍 Electrode Material for Supercapacitor, Electrode for Supercapacitor using the Electrode Material and Method for Manufacturing the Same
KR101418877B1 (en) 2012-12-20 2014-07-17 인하대학교 산학협력단 Manufacturing method of anodized carbon fibers using acidic liquid electrolytes mixed sulfuric acid and nitric acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100894481B1 (en) 2007-04-16 2009-04-22 한국과학기술연구원 Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
KR100871440B1 (en) * 2007-07-16 2008-12-03 주식회사 에이엠오 Blended nanofibers of pan/pvdf and preparation method of the same
JP2016060991A (en) 2014-09-19 2016-04-25 東レ株式会社 Polyacrylonitrile-based flame resistant fiber, sheet like article using the same and manufacturing method of polyacrylonitrile-based flame resistant fiber

Also Published As

Publication number Publication date
KR20200032538A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
Berenguer et al. Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage
KR100995154B1 (en) Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
García-Mateos et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Liu et al. Hierarchical porous carbon based on the self-templating structure of rice husk for high-performance supercapacitors
KR101045001B1 (en) Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode
KR101811764B1 (en) Non-Pt catalyst for oxygen reduction electrode and manufacturing method thereof
US9281135B2 (en) Nitrogen-containing porous carbon material and method of producing the same, and electric double-layer capacitor using the nitrogen-containing porous carbon material
KR101348202B1 (en) Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
Liu et al. Preparation and electrochemical studies of electrospun phosphorus doped porous carbon nanofibers
KR20110137388A (en) Carbon material for electric double layer capacitor electrode and method for producing same
KR20110033733A (en) Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
KR101950783B1 (en) MnO2 deposited on lignin based carbon nanofiber mats for symmetric pseudocapacitors
KR101439896B1 (en) Method for preparing controlled porous carbon nano sheet and porous carbon nano sheet made by the same
CN108597912A (en) Multistage nitrogen-doped carbon nano-fiber material and preparation method thereof inside and outside one kind
KR101598902B1 (en) Preparation method for nitrogen-doped carbon nanostructure using electospinning, and the nitrogen-doped carbon nanostructure thereby
Lv et al. Three-dimensional self-doped hierarchical porous mussel nacre-derived carbons for high performance supercapacitors
KR20090055299A (en) Carbonaceous material and method of preparing same
CN113929083A (en) Nitrogen/sulfur doped porous carbon material and preparation method thereof
KR102094204B1 (en) Preparation method of nitrogen contained porous carbon fiber for supercapacitor electrode materials
Tang et al. Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors
KR101647960B1 (en) Carbon electrode and method for manufacturing thereof
KR101147923B1 (en) Method of preparing porous carbon nanofibers containing metaloxide, porous carbon nanofibers thereby and their applications including the same
KR102264667B1 (en) Method for Preparing Metal Oxide/Carbon Nanofiber Composite, Metal Oxide/Carbon Nanofiber Composite Produced by the Method, and Use of the Composite
EP2241658B1 (en) Fabrication method for porous carbon fibers

Legal Events

Date Code Title Description
GRNT Written decision to grant