KR101045001B1 - Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode - Google Patents

Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode Download PDF

Info

Publication number
KR101045001B1
KR101045001B1 KR1020080096148A KR20080096148A KR101045001B1 KR 101045001 B1 KR101045001 B1 KR 101045001B1 KR 1020080096148 A KR1020080096148 A KR 1020080096148A KR 20080096148 A KR20080096148 A KR 20080096148A KR 101045001 B1 KR101045001 B1 KR 101045001B1
Authority
KR
South Korea
Prior art keywords
starch
carbon fiber
delete delete
porous carbon
electrode material
Prior art date
Application number
KR1020080096148A
Other languages
Korean (ko)
Other versions
KR20100036768A (en
Inventor
홍순형
정용진
이경호
모찬빈
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020080096148A priority Critical patent/KR101045001B1/en
Priority to US12/385,763 priority patent/US20100081351A1/en
Publication of KR20100036768A publication Critical patent/KR20100036768A/en
Application granted granted Critical
Publication of KR101045001B1 publication Critical patent/KR101045001B1/en
Priority to US13/571,509 priority patent/US20130034804A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43916Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres microcellular fibres, e.g. porous or foamed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 녹말을 이용한 탄소나노튜브가 강화된 다공성 탄소섬유의 제조방법 및 이를 이용한 전기화학용 전극소재에 관한 것이다. 보다 상세하게는 환경 친화적이고 저비용의 천연의 난섬유성형성 고분자인 녹말 용액에 탄소나노튜브 및 섬유성형성 고분자를 분산시킨 후 고전압(∼60kV)의 전기장을 가하여 직경 200nm 미만의 초극세사 섬유를 함유하는 펠트를 제조한다. 이 탄소섬유 펠트를 산화 안정화 시킨 후 탄화공정의 제어를 통해 10nm 크기의 메조포어를 다량으로 함유하고 있는 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 제조하는 방법 및 이를 이용한 전기화학용 전극소재의 용도에 관한 것이다. The present invention relates to a method for producing porous carbon fiber reinforced with carbon nanotubes using starch and an electrode material for electrochemistry using the same. More specifically, carbon nanotubes and fibrous forming polymers are dispersed in a starch solution, which is an environmentally friendly, low-cost, natural fibrillar forming polymer, and is then subjected to a high voltage (˜60 kV) electric field to contain ultra-fine fibers having a diameter of less than 200 nm. Prepare the felt. Oxidative stabilization of the carbon fiber felt and control of the carbonization process to produce carbon nanotube-reinforced porous carbon fiber felt containing a large amount of mesopores of 10 nm size and use of electrode material for electrochemical using the same It is about.

본 발명과 같이 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트는 고비표면적 및 고축전용량의 특성을 나타내어 초고용량 슈퍼캐패시터용 전극 재료, 연료전지 전극재료 등으로 이용할 수 있다.The carbon nanotube-reinforced porous carbon fiber felt manufactured as described above may exhibit high specific surface area and high capacitance, and thus may be used as an electrode material for ultracapacitors, fuel cell electrodes, and the like.

탄소나노튜브, 다공성 탄소섬유 펠트, 녹말, 초고용량 슈퍼캐패시터용 전극재료, 연료전지용 전극재료 Carbon nanotube, porous carbon fiber felt, starch, electrode material for ultra high capacity supercapacitor, electrode material for fuel cell

Description

녹말을 이용한 탄소나노튜브가 강화된 다공성 탄소섬유의 제조방법 및 전기화학용 전극소재 용도{Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode}Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode

본 발명은 환경 친화적이고 저비용의 천연고분자인 녹말을 전기방사하여 초극세사 섬유 펠트를 제조하고 이를 산화 안정화 시키고 탄화공정의 조건제어에 의해 메조포어 영역의 기공을 가지는 탄소나노튜브가 강화된 다공성 탄소섬유를 제조하는 것이다. 종래의 PAN계 및 Pitch계 고분자를 이용하여 전기방사하고 이를 안정화, 탄소화, 활성화시킨 활성탄소섬유는 비표면적이 상당히 크기는 하지만 전해질이 침투하기 어려운 마이크로포어(<1nm)를 대량으로 포함하고 있다. 따라서, 축전용량이 큰 전극 재료로 사용하기 위해서는 탄소섬유에 전해질의 침투가 용이한 포어구조인 메조포어를 다량으로 함유하는 것이 중요하다. 이에 본 발명에서 제조된 메조포어 영역의 기공을 가지는 탄소나노튜브가 강화된 다공성 탄소섬유를 전기화학용 전극재료로 이용하는 데 그 목적이 있다. The present invention manufactures microfiber fiber felt by electrospinning starch which is environmentally friendly and low-cost natural polymer, oxidizes and stabilizes it, and improves carbon nanotube-reinforced porous carbon fiber having pores in mesopore region by condition control of carbonization process. To manufacture. Activated carbon fibers electrospun and stabilized, carbonized, and activated using conventional PAN- and Pitch-based polymers contain large amounts of micropores (<1nm) that have a large specific surface area but are difficult to penetrate the electrolyte. . Therefore, in order to use it as an electrode material with a large capacitance, it is important to contain a large amount of mesopores, which are pore structures in which electrolyte is easily penetrated into carbon fibers. Accordingly, an object of the present invention is to use a porous carbon fiber reinforced with carbon nanotubes having pores in the mesoporous region prepared in the present invention as an electrochemical electrode material.

본 발명은 환경 친화적이고 저비용의 천연고분자인 녹말을 전기방사하여 초극세사 섬유 펠트(fiber felt)를 제조하고 이를 산화 안정화 시켜 탄화공정의 조건제어에 의해 메조포어 영역의 기공을 가지는 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 제조한 후 이를 전기화학용 전극재료로 활용하는 것이다.The present invention is to produce a microfiber fiber felt (electrober felt) by electrospinning starch which is an environmentally friendly and low-cost natural polymer and oxidatively stabilizes it to strengthen carbon nanotubes having pores in the mesopore region by condition control of the carbonization process. After preparing a porous carbon fiber felt it is used as an electrode material for electrochemistry.

초고용량 슈퍼캐패시터 전극재료에 관한 연구는 1980년대 초부터 일본에서 활성탄소를 이용한 초고용량 커패시터가 상용화되어 현 단계에서는 실질적인 기술적 한계에 접근하고 있으며, 금속 산화물 전극은 미국과 일본을 중심으로 연구개발이 진행되고 있다. 초고용량 커패시터 전극재료용 탄소나노튜브 복합재료에 관한 연구는 현재 미국, 일본 등 선진국을 중심으로 활발히 진행되고 있으며 탄소나노튜브 자체를 전극재료로 사용하거나, 탄소나노튜브 복합재료를 제조하는 방법 두 가지로 연구되고 있다. 탄소나노튜브 복합재료는 탄소나노튜브를 기존의 초고용량 커패시터 전극재료로 널리 쓰이고 있는 활성탄소와 혼합하거나 RuO2나 IrO2와 같은 금속 산화물 또는 폴리아닐린과 같은 전도성 고분자를 탄소나노튜브에 증착함으로써 제조하고 있다. F. Beguin(Adv. Mater. 2005, 17, 2380)와 T. Liu(Carbon 2003, 41, 2427)등은 탄소나노튜브와 폴리아크릴로니트릴을 혼합한 후 탄화공정을 거쳐 탄소나노튜브/활성탄소 복합재료를 제조하여 100F/g의 단위 무게당 용량(specific capacitance) 특성을 나타냈으며, J. S. Ye(Small 2005, 5, 560) 등은 탄소나노튜브에 RuO2를 스퍼터링으로 증착하여 16.94mF/cm2의 단위 면적 당 용량을 나타냈다. 또한 V. Gupta(Electrochimica Acta 2006, 52, 1721)등은 탄소나노튜브에 폴리아닐 린을 전기화학적으로 증착하여 485F/g의 높은 단위 무게 당 용량 특성을 보였다. 현재 가격적으로 부담이 적은 활성탄소를 이용한 전기이중층 슈퍼캐패시터 전극재료의 제작연구가 활발히 진행되고 있지만, 아직까지 활성탄소를 이용한 탄소나노튜브 복합재료 전극의 단위 무게당 용량은 기존의 금속 산화물(700F/g)과 전도성 폴리머(500F/g)의 값에 비해 상당히 낮은 수준으로 이를 향상시키는 것이 앞으로 해결해야 할 핵심적 과제이다.Research on ultra-capacity supercapacitor electrode materials has approached practical technical limitations at this stage due to the commercialization of ultra-capacitors using activated carbon in Japan since the early 1980s. It's going on. Research on carbon nanotube composites for ultracapacitor electrode materials has been actively conducted in advanced countries such as the United States and Japan, and there are two methods of using carbon nanotubes as electrode materials or manufacturing carbon nanotube composites. Is being studied. Carbon nanotube composites are manufactured by mixing carbon nanotubes with activated carbon, which is widely used as a conventional ultracapacitor electrode material, or depositing conductive polymers such as polyaniline or metal oxides such as RuO 2 and IrO 2, and depositing them on carbon nanotubes. have. F. Beguin (Adv. Mater. 2005, 17, 2380) and T. Liu (Carbon 2003, 41, 2427), etc., mix carbon nanotubes and polyacrylonitrile, and then carbonize the carbon nanotubes / active carbon. Composite materials were fabricated and exhibited a specific capacitance characteristic per unit weight of 100 F / g.JS Ye (Small 2005, 5, 560), etc., deposited 16.94mF / cm 2 by sputtering RuO 2 on carbon nanotubes. The capacity per unit area of is shown. In addition, V. Gupta (Electrochimica Acta 2006, 52, 1721) showed high capacity per unit weight of 485F / g by electrochemical deposition of polyaniline on carbon nanotubes. Currently, research on the production of an electric double layer supercapacitor electrode material using activated carbon, which is less expensive, has been actively conducted. However, the capacity per unit weight of the carbon nanotube composite electrode using activated carbon is still higher than that of conventional metal oxide (700F). / g) and conductive polymers (500F / g) at a significantly lower level are key challenges to be addressed in the future.

이와 같은 문제를 해결하기 위해서는 제조되는 활성탄소가 전해질이 침투하기 용이한 메조포어를 다량으로 함유하는 것이 중요하다. In order to solve such a problem, it is important for the activated carbon to be prepared to contain a large amount of mesopores in which electrolyte easily penetrates.

따라서 본 발명은 기존에 이용되었던 PAN계 및 Pitch계 고분자가 아니라 결정질과 비정질 구조가 교대로 적층되어 있는 천연고분자인 녹말을 이용하여 탄화공정을 거쳐 균일한 크기의 메조포어를 가지는 탄소섬유를 제조하고 자 하였다. 전술한 바와 같이 난섬유성형성인 녹말을 전기방사하기 위해 PVA(Polyvinyl alchol) 및 탄소나노튜브를 첨가하여 초극세사 섬유 펠트의 제조가 가능하며, 이의 산화 안정화 및 탄화공정의 공정제어를 통해 최종적으로 탄소나노튜브가 강화된 메조포어를 다량으로 함유하는 탄소섬유의 제조가 가능하고 이를 이용해 전기화학용 전극소재의 특성을 향상시킬 수 있을 것으로 기대된다.Therefore, the present invention is to produce a carbon fiber having a mesopore of uniform size through a carbonization process using starch, which is a natural polymer in which crystalline and amorphous structures are alternately laminated, not PAN and Pitch-based polymers. Now. As described above, PVA (Polyvinyl alchol) and carbon nanotubes can be added to electrospin starch which is hardly fibrous, and thus, microfiber fiber felt can be manufactured, and finally, carbon nanofibers can be processed through oxidation stabilization and process control of carbonization process. It is expected that carbon fibers containing a large amount of mesopores reinforced with tubes can be manufactured and that the characteristics of the electrode material for electrochemical can be improved by using the same.

본 발명은 천연의 난섬유성형성 고분자인 녹말 용액에 탄소나노튜브 및 섬유성형성 고분자를 분산시킨 후 고전압(∼60kV)의 전기장을 가하여 직경 200nm 미만의 초극세사 섬유를 함유하는 펠트를 제조한다. 이 탄소섬유 펠트를 산화 안정화 시킨 후 탄화공정의 제어를 통해 10nm 크기의 메조포어를 다량으로 함유하고 있는 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 제조하는 방법 및 이를 이용한 전기화학용 전극소재의 용도에 관한 것이다. The present invention disperses carbon nanotubes and fibrous forming polymers in a starch solution, which is a natural fibrillar forming polymer, and then applies a high voltage (˜60 kV) electric field to produce a felt containing ultra-fine fibers having a diameter of less than 200 nm. Oxidative stabilization of the carbon fiber felt and control of the carbonization process to produce carbon nanotube-reinforced porous carbon fiber felt containing a large amount of mesopores of 10 nm size and use of electrode material for electrochemical using the same It is about.

가격이 저렴한 활성탄소를 이용한 전기이중층 슈퍼캐패시터 전극재료는 활성탄소가 전해질이 침투하기 용이한 메조포어를 다량으로 함유하는 것이 중요하다. 본 발명은 종래의 PAN계 및 피치(Pitch)계 고분자가 아니라 결정질과 비정질 구조가 교대로 적층되어 있는 천연고분자인 녹말을 이용하여 탄화공정을 거쳐 균일한 크기의 메조포어를 가지는 탄소섬유를 제조하는 데 있다. In the electric double layer supercapacitor electrode material using inexpensive activated carbon, it is important that the activated carbon contains a large amount of mesopores in which electrolyte easily penetrates. The present invention is to produce a carbon fiber having a mesopore of uniform size through a carbonization process using starch, which is a natural polymer in which crystalline and amorphous structures are alternately stacked, not conventional PAN- and pitch-based polymers. There is.

본 발명은 난섬유성형성 천연고분자인 녹말을 전기방사하기 위하여 섬유성형성 고분자와 탄소나노튜브를 균질 분산시켜 초극세사 나노섬유로 구성된 펠트를 제조하는 방법과 이를 산화 안정화 및 탄화공정의 공정제어를 통해 탄소나노튜브가 강화된 다공성의 탄소섬유 펠트를 제조하는 방법을 제공하고자 한다. 또한, 본 발명에 의해 제조된 탄소나노튜브가 강화된 메조포어를 다량으로 함유하고 있는 탄소섬유 펠트를 전기화학용 전극재료로 응용하는 방법을 제공하고자 한다.
보다 구체적으로 본 발명은 1) 난섬유성형성 녹말의 가공공정에 의하여 섬유성형성 녹말 복합용액을 제조하는 단계와, 2) 섬유성형성 녹말 복합용액의 섬유성형 공정을 통해 녹말 복합섬유를 제조하는 단계와, 3) 녹말 복합섬유의 제어된 열처리 공정을 통하여 메조포어를 함유한 다공성 탄소섬유를 제조하는 단계를 포함하되; 상기 가공공정은 녹말을 100℃∼150℃에서 가열하고 상온으로 냉각시켜 겔(gel)화 된 녹말 용액을 제조하는 제1단계; 및 제1단계에서 수득한 녹말 용액과 섬유성형성 고분자를 5:5∼8:2의 비율로 혼합한 후, 유기산을 처리하여 고온 열처리에 대한 내열성 및 탄소화의 속도를 향상시키는 제2단계로 구성되는 것을 특징으로 하고, 상기 열처리 공정은 녹말 복합섬유를 150∼300℃의 온도범위에서 산화 열처리하여 안정화시킨후, 500∼1,400℃의 온도범위에서 진공 및 불활성 열처리하여 탄소섬유화하는 제a단계; 및 상기 a단계 이후 1,400∼2,200℃의 온도범위에서 진공 열처리하여 탄소섬유 표면에 평균 10nm의 크기를 가지는 메조포어를 형성시키는 제b단계로 구성되는 것을 특징으로 하는; 다공성 탄소섬유의 제조방법을 제공한다.
The present invention is to homogeneously disperse the fibrous forming polymer and carbon nanotubes for the electrospinning of starch, which is a non-fibrous forming natural polymer, to prepare a felt consisting of ultra-fine nanofibers and to control the oxidation stabilization and carbonization process It is to provide a method for producing a carbon fiber felt of carbon nanotube reinforced porous. In addition, the present invention provides a method for applying a carbon fiber felt containing a large amount of carbon nanotubes reinforced mesopores prepared by the present invention as an electrode material for electrochemistry.
More specifically, the present invention provides a method for preparing starch composite fiber through the steps of 1) preparing a fibrous starch composite solution by a process of processing fibrous starch forming starch, and 2) fibrous forming process of a fibrous starch composite solution. And 3) preparing a porous carbon fiber containing mesopores through a controlled heat treatment process of the starch composite fiber; The processing step is a first step of preparing a gelling starch solution by heating the starch at 100 ℃ ~ 150 ℃ and cooled to room temperature; And mixing the starch solution obtained in the first step with the fibrous forming polymer in a ratio of 5: 5 to 8: 2, and then treating the organic acid to improve heat resistance and carbonization rate for high temperature heat treatment. Characterized in that, the heat treatment process is a step of oxidizing and stabilizing the starch composite fiber at a temperature range of 150 ~ 300 ℃, carbon fiber by vacuum and inert heat treatment at a temperature range of 500 ~ 1,400 ℃; And a b step of forming a mesopor having an average size of 10 nm on the surface of the carbon fiber by vacuum heat treatment at a temperature range of 1,400 to 2,200 ° C. after the step a. It provides a method for producing a porous carbon fiber.

본 발명의 탄소나노튜브가 강화된 다공성 탄소섬유 펠트는 종래의 섬유 성형성 고분자인 PAN계 및 Pitch계를 이용하여 탄소섬유를 제조한 것과 달리 비표면적 및 고축전용량의 우수한 전기화학적 성질을 갖고, 환경친화적이며 저비용의 난섬유성형성 천연고분자인 녹말을 전기방사하여 최초로 탄소섬유를 제조할 수 있다. 또한 탄화공정의 공정제어를 통해 탄소섬유의 표면에 평균 10nm 크기의 메조포어를 다량으로 함유하고 있는 다공성 탄소섬유를 제조하여 기존의 전해질이 침투하기 어려운 구조인 마이크로포어(<1nm)를 다량으로 함유하고 있으므로 탄소섬유의 한계를 극복할 수 있다. Porous carbon fiber felt reinforced carbon nanotubes of the present invention has excellent electrochemical properties of specific surface area and high storage capacity, unlike carbon fiber prepared using PAN-based and Pitch-based polymers. Environmentally friendly, low-cost, non-fibrous forming natural polymers can be produced by electrospinning starch, the first carbon fiber. In addition, through the process control of the carbonization process, a porous carbon fiber containing a large amount of mesopores having an average size of 10 nm is produced on the surface of the carbon fiber, and thus contains a large amount of micropores (<1 nm), a structure in which the electrolyte is difficult to penetrate. It can overcome the limitation of carbon fiber.

본 발명은 녹말을 이용한 탄소나노튜브가 강화된 다공성 탄소섬유의 제조방법 및 전기화학용 전극소재 용도을 나타낸다.The present invention shows a method for producing carbon nanotube-reinforced porous carbon fiber using starch and an electrode material for electrochemistry.

본 발명은 (1) 난섬유성형성 녹말의 가공공정에 의하여 섬유성형성 녹말 복합용액을 제조하는 단계와, (2) 섬유성형성 녹말 복합용액의 섬유성형 공정을 통해 녹말 복합섬유를 제조하는 단계와, (3) 녹말 복합섬유의 제어된 열처리 공정을 통하여 메조포어를 다량으로 함유한 다공성 탄소섬유를 제조하는 단계를 포함하는 다공성 탄소섬유의 제조방법을 나타낸다. The present invention comprises the steps of (1) preparing a fiber-forming starch composite solution by the processing process of the oocyte-forming starch, and (2) manufacturing a starch composite fiber through the fiber molding process of the fibrous forming starch composite solution And, (3) shows a method for producing a porous carbon fiber comprising the step of producing a porous carbon fiber containing a large amount of mesopores through a controlled heat treatment process of the starch composite fiber.

상기에서 난섬유성형성 녹말의 가공공정은 녹말을 100℃∼150℃에서 가열하고 상온으로 냉각시켜 겔(gel)화 된 녹말 용액을 제조할 수 있다.In the above process of processing the fibrous starch-forming starch, the starch may be heated at 100 ° C. to 150 ° C. and cooled to room temperature to prepare a gelized starch solution.

상기에서 난섬유성형성 녹말의 가공공정은 녹말과 섬유성형성 고분자를 5:5∼8:2의 비율로 혼합하여 실시할 수 있다.The processing step of the oocyte-forming starch may be carried out by mixing the starch and the fibrous forming polymer in a ratio of 5: 5 to 8: 2.

상기에서 난섬유성형성 녹말의 가공공정은 겔(gel)화 된 녹말 용액에 유기산을 처리하여 고온 열처리에 대한 내열성 및 탄소화의 속도를 향상시킬 수 있다. In the above process of processing the fibrous starch-forming starch may improve the heat resistance and the rate of carbonization for the high temperature heat treatment by treating the organic acid in the gel (gel) starch solution.

상기에서 섬유성형성 녹말 복합용액은 겔(gel)화 된 녹말, 용매, 유기산, 탄소나노튜브 및 섬유성형성 고분자를 포함할 수 있다. The fibrous starch composite solution may include gelled starch, a solvent, an organic acid, carbon nanotubes, and a fibrous forming polymer.

상기에서 녹말 복합용액의 섬유성형 공정은 전기방사법 또는 습식방사법을 포함할 수 있다. The fiber forming process of the starch composite solution may include an electrospinning method or a wet spinning method.

상기에서 녹말 복합섬유의 열처리 공정은 150∼300℃의 온도범위에서 산화 열처리하여 안정화시킬 수 있다. The heat treatment process of the starch composite fiber in the above can be stabilized by oxidative heat treatment in the temperature range of 150 ~ 300 ℃.

상기에서 녹말 복합섬유의 열처리 공정은 500∼1,400℃의 온도범위에서 진공 및 불활성 열처리하여 탄소섬유화할 수 있다. The heat treatment process of the starch composite fiber may be carbon fiber by vacuum and inert heat treatment in the temperature range of 500 ~ 1,400 ℃.

상기에서 녹말 복합섬유의 제어된 열처리 공정은 1,400∼2,200℃의 온도범위에서 진공 열처리하여 탄소섬유 표면에 평균 5∼10nm의 크기를 가지는 메조포어를 다량으로 형성시킬 수 있다. In the controlled heat treatment process of the starch composite fiber, vacuum heat treatment may be performed at a temperature range of 1,400 to 2,200 ° C. to form a large amount of mesopores having an average size of 5 to 10 nm on the surface of the carbon fiber.

상기에서 섬유성형성 고분자는 폴리비닐알콜, 폴리에틸렌옥사이드, Polycarboate, Polylactic acid, Polyvinylcarbazole, Polymethacrylate, Cellulose acetate, Collagen, Polycaprolactone, Poly(2-hydroxyethyl methacrylate) 중에서 선택된 어느 하나 이상을 포함할 수 있다.The fibrous forming polymer may include at least one selected from polyvinyl alcohol, polyethylene oxide, Polycarboate, Polylactic acid, Polyvinylcarbazole, Polymethacrylate, Cellulose acetate, Collagen, Polycaprolactone, and Poly (2-hydroxyethyl methacrylate).

상기에서 용매는 물, 에탄올, 메탄올, Dichloromethane, isopropanol, aceton, Hexafluoro-isopropanol(HFIP) 중에서 선택된 어느하나 이상을 포함할 수 있다.The solvent may include any one or more selected from water, ethanol, methanol, Dichloromethane, isopropanol, aceton, Hexafluoro-isopropanol (HFIP).

상기에서 유기산은 P-toluenesulfonic acid, Methanesulfonic acid, Trifluoromethanesulfonic acid, alkylbenzenesulfonic acid, P-aminobenzenesulfonic acid 중에서 선택된 어느 하나 이상을 포함할 수 있다.The organic acid may include any one or more selected from P-toluenesulfonic acid, Methanesulfonic acid, Trifluoromethanesulfonic acid, alkylbenzenesulfonic acid, and P-aminobenzenesulfonic acid.

본 발명은 상기에서 언급한 방법에 의해 제조한 다공성 탄소섬유를 재료로 하는 펠트를 포함한다. The present invention includes a felt made of a porous carbon fiber material produced by the above-mentioned method.

본 발명은 상기 다공성 탄소섬유 펠트를 이용한 초고용량 슈퍼커패시터용 전극을 포함한다.The present invention includes an electrode for ultra-high capacity supercapacitor using the porous carbon fiber felt.

본 발명은 상기 다공성 탄소섬유 펠트를 초고용량 슈퍼커패시터용 전극제조에 사용할 수 있다.The present invention can be used for producing the electrode for the ultra-high capacity supercapacitor of the porous carbon fiber felt.

본 발명은 상기 다공성 탄소섬유 펠트를 이용한 연료전지용 전극을 포함한다.The present invention includes an electrode for a fuel cell using the porous carbon fiber felt.

본 발명은 상기 다공성 탄소섬유 펠트를 연료전지용 전극제조에 사용할 수 있다.The present invention can use the porous carbon fiber felt in the production of electrodes for fuel cells.

이하 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 도 2와 같이 (a)난섬유성형성 녹말의 가공공정에 의해 섬유성형성 녹말 복합용액을 제조하는 단계; (b) 섬유성형성 녹말 복합용액의 섬유성형 공정을 통해 녹말 복합섬유를 제조하는 단계; (c) 녹말 복합섬유의 제어된 열처리 공정을 통하여 메조포어를 다량으로 함유한 다공성 탄소섬유를 제조하는 단계로 구성된다. The present invention comprises the steps of preparing a fibrous forming starch composite solution by the process of (a) egg fibrous forming starch as shown in Figure 2; (b) preparing a starch composite fiber through a fiber forming process of the fibrous forming starch composite solution; (c) producing a porous carbon fiber containing a large amount of mesopores through a controlled heat treatment process of the starch composite fiber.

보다 상세하게는 천연고분자인 녹말은 결정질과 비정질의 구조가 나노크기로 교대로 적층되어 있다. 이러한 녹말을 전기방사하고 최종적으로 탄화시킨 후 탄소섬유내에 메조포어를 다량으로 함유시키기 위해서는 녹말의 gelatization 공정이 필요하다. 따라서 제조공정 (a) 단계에서 녹말을 100℃∼150℃ 온도에서 끓인 후 냉각시키면서 gel화를 진행시킨 후 유기산 처리를 하고 (c) 단계의 탄화공정을 통해 녹말내의 비정질 구조를 메조포어로 변환시키게 된다.More specifically, starch, a natural polymer, has a crystalline and amorphous structure alternately stacked in nano size. In order to contain a large amount of mesopores in carbon fiber after electrospinning and finally carbonizing such starch, the gelatization process of starch is required. Therefore, in the step (a) of the manufacturing process, the starch is boiled at a temperature of 100 ° C. to 150 ° C., the gelation is performed while cooling, and the organic acid is treated, and the amorphous structure in the starch is converted into mesopores through the carbonization step (c). do.

천연고분자인 녹말은 기존의 섬유 성형성 고분자와는 달리 전기방사법에 의해 난섬유 성형성이므로 섬유성형성 녹말 복합용액을 제조하기 위해 다음과 같은 공정을 수행한다. 녹말의 전기방사를 용이하게 하기위해 탄소나노튜브를 분산제인 NaDDBS (Sodium Dodecylbenzene Sulfonate)와 함께 용매에 분산시킨 후 섬유성형성 고분자를 첨가하여 균질하게 혼합한 후 상온으로 냉각시켜 탄소나노튜브/섬유성형성 고분자 용액을 제조한다. 제조된 탄소나노튜브/섬유성형성 고분자 용액을 gel화 된 녹말용액과 균질하게 혼합한 후 전기방사를 위한 탄소나노튜브/녹말/섬유성형성 고분자 용액을 제조한다. Starch, a natural polymer, is different from conventional fiber-forming polymers because it is egg-fiber formable by electrospinning. Thus, the following process is performed to prepare a fiber-forming starch composite solution. In order to facilitate the electrospinning of starch, carbon nanotubes are dispersed in a solvent with NaDDBS (Sodium Dodecylbenzene Sulfonate) as a dispersant, and then homogeneously mixed with a fibrous forming polymer, and then cooled to room temperature to form carbon nanotubes / fiber forming. Prepare a polymeric polymer solution. After homogeneously mixing the prepared carbon nanotube / fibrous forming polymer solution with the gelled starch solution to prepare a carbon nanotube / starch / fibrous forming polymer solution for electrospinning.

용매는 물, 에탄올, 메탄올, Dichloromethane, isopropanol, acetone, Hexafluoro-isopropanol(HFIP) 중에서 선택된 어느하나 이상을 사용하고, 유기산 은 P-toluenesulfonic acid, Methanesulfonic acid, Trifluoromethanesulfonic acid, alkylbenzenesulfonic acid, P-aminobenzenesulfonic acid 중에서 선택된 어느하나 이상을 사용할 수 있다. 그리고 상기에서 섬유성형성 고분자는 PVA(Polyvinyl alcohol), PEO(Polyethylene oxide), PC(Polycarboate), PLA(Polylactic acid), Polyvinylcarbazole, PMMA(Polymethacrylate), CA(Cellulose acetate), Collagen, PCL(Polycaprolactone), HEMA(Poly(2-hydroxyethyl methacrylate)) 중에서 선택하여 사용할 수 있다. The solvent is one or more selected from water, ethanol, methanol, dichloromethane, isopropanol, acetone, and Hexafluoro-isopropanol (HFIP), and the organic acid is selected from P-toluenesulfonic acid, Methanesulfonic acid, trifluoromethanesulfonic acid, alkylbenzenesulfonic acid and Any one or more selected may be used. And the fibrous forming polymer is PVA (Polyvinyl alcohol), PEO (Polyethylene oxide), PC (Polycarboate), PLA (Polylactic acid), Polyvinylcarbazole, PMMA (Polymethacrylate), CA (Cellulose acetate), Collagen, Polycaprolactone (PCL) , HEMA (Poly (2-hydroxyethyl methacrylate)) can be selected and used.

단계 (b)에서는 제조된 탄소나노튜브/녹말/섬유성형성 고분자 용액을 주사기내에 넣고 고전압을 가하여 방사노즐을 통해 방사시켜 극세의 탄소나노튜브가 강화된 녹말/섬유성형성 고분자 나노섬유 펠트를 제조한다. 도 3은 단계 (b)를 통하여 제조된 탄소나노튜브가 강화된 녹말/PVA 나노섬유 펠트의 미세조직이다. 단계 (c)에서는 단계 (b)에서 제조된 섬유형태의 펠트를 산소분위기 하에서 열처리 하고 500∼1,400℃의 온도범위에서 진공 또는 불활성 가스로 탄화시켜 최종적으로 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 제조한다. 도 4는 이렇게 만들어진 탄소나노튜브가 강화된 다공성 탄소섬유 펠트의 미세조직이며 탄소섬유 표면에 10nm 크기의 메조포어를 다량으로 함유하고 있음을 알 수 있다. In step (b), the prepared carbon nanotube / starch / fibrous forming polymer solution is placed in a syringe and subjected to high voltage to spin through a spinning nozzle to prepare starch / fibrous forming polymer nanofiber felt reinforced with ultrafine carbon nanotubes. do. Figure 3 is a microstructure of the carbon nanotube reinforced starch / PVA nanofiber felt prepared through step (b). In step (c), the fiber-formed felt prepared in step (b) is heat-treated under oxygen atmosphere and carbonized with vacuum or inert gas at a temperature in the range of 500-1,400 ° C. to finally obtain a carbon nanotube-reinforced porous carbon fiber felt. Manufacture. 4 is a microstructure of the carbon nanotubes reinforced carbon nanotubes made of reinforced carbon nanotubes, and it can be seen that the carbon fiber surface contains a large amount of mesopores of 10 nm size.

이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail through examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited thereto.

<실시예 1>&Lt; Example 1 >

상기와 같은 제조공정에 따라서 물 30ml에 녹말 2g을 용해시켜 100∼150℃의 온도범위에서 끓인 후 상온으로 냉각시키고 incubator에서 저온보관(5℃)하여 겔(gel)화 시킨 후 유기산인 p-toluenesulfonic acid을 녹말 1g당 0.1mmol 첨가시켜 녹말용액을 제조하였다. 그리고 물 20ml에 탄소나노튜브 0.02g과 NaDDBS 0.02g을 넣어 초음파처리하고 PVA(Polyvinyl alchol) 2g을 첨가하여 탄소나노튜브/PVA 용액을 제조하였다. 녹말용액와 탄소나노튜브/PVA 용액을 혼합한 후 최종 용액의 점도는 300∼1,500cP를 나타내었다. 전기방사를 통하여 탄소나노튜브/녹말/PVA 나노섬유 펠트를 제조하였고 전기방사의 조건은 인가전압 10∼30kV, 방사노즐과 방사구와의 거리는 15∼20cm 이었다.According to the above manufacturing process, 2g of starch is dissolved in 30ml of water, boiled in the temperature range of 100 ~ 150 ℃, cooled to room temperature and stored at low temperature (5 ℃) in an incubator to gel (gel) and then organic acid p-toluenesulfonic A starch solution was prepared by adding acid to 0.1 mmol per 1 g of starch. In addition, 0.02 g of carbon nanotubes and 0.02 g of NaDDBS were added to 20 ml of water, and PVA (Polyvinyl alchol) 2g was added to prepare a carbon nanotube / PVA solution. After mixing the starch solution and the carbon nanotube / PVA solution, the final solution showed a viscosity of 300-1,500 cP. Carbon nanotubes / starch / PVA nanofiber felts were prepared by electrospinning. The conditions of electrospinning were 10-30 kV, and the distance between the spinneret and spinneret was 15-20 cm.

<실시예 2><Example 2>

실시예 1에 의해 제조된 탄소나노튜브/녹말/PVA 펠트를 150∼300℃의 온도범위에서 산화 열처리 하여 안정화 시킨 후 500∼1,400℃의 온도범위에서 진공 또는 불활성 가스로 탄화시켜 탄소나노튜브/탄소섬유 펠트를 제조하였다. 그리고 1,400∼2,200℃의 온도범위에서 진공 열처리 하여 최종적으로 탄소섬유 표면에 평균 10nm의 기공크기를 가지는 탄소나노튜브/다공성 탄소섬유 펠트를 제조하였다. 이러한 온도범위에서 제조된 탄소나노튜브/다공성 탄소섬유 펠트의 비표면적은 320m2/g 에서 480m2/g의 범위를 나타냈다.The carbon nanotubes / starch / PVA felt prepared in Example 1 was stabilized by oxidative heat treatment at a temperature range of 150 to 300 ° C., and carbonized with a vacuum or an inert gas at a temperature range of 500 to 1,400 ° C. Fiber felt was prepared. And vacuum heat treatment at a temperature range of 1,400 ~ 2,200 ℃ to finally prepare a carbon nanotube / porous carbon fiber felt having an average pore size of 10nm on the surface of the carbon fiber. The specific surface area of the carbon nanotubes / porous carbon fiber felt prepared in this temperature range was in the range of 320m 2 / g to 480m 2 / g.

<실시예 3><Example 3>

실시예 2에 의해 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 가로, 세로 각각 1cm씩 절단하여 전기이중층 슈퍼캐패시터 비축전용량을 측정하였다. 탄소나노튜브가 강화된 다공성 탄소섬유 펠트 자체를 전극으로 사용하고 전해질로는 1mol 황산 수용액을 사용하였다. 충방전 전압은 0.0∼0.5V 범위였으며, C=I(??V)/(??t)에 의해 축전용량을 계산하였다. 도 5는 탄소섬유의 표면에 10nm 크기의 메조포어를 가지는 탄소나노튜브가 강화된 다공성 탄소섬유 펠트의 인가전압에 따른 방전전류밀도를 나타낸 그래프이며, 그래프의 형태는 이상적인 rectangular shape과 거의 유사했고 위의 수식에 따라 계산된 비축전용량은 170F/g을 나타내었다. The carbon nanotube reinforced porous carbon fiber felt prepared in Example 2 was cut by 1 cm each in width and length, and the electrical capacitance of the superlayer supercapacitor was measured. The carbon nanotube-reinforced porous carbon fiber felt itself was used as an electrode, and 1 mol of sulfuric acid was used as an electrolyte. The charge / discharge voltage ranged from 0.0 to 0.5V, and the capacitance was calculated by C = I (?? V) / (?? t). 5 is a graph showing the discharge current density according to the applied voltage of the carbon nanotubes reinforced carbon nanotubes having a mesopores of 10nm size on the surface of the carbon fiber, the shape of the graph is almost similar to the ideal rectangular shape The specific capacitance calculated according to the formula was 170F / g.

<실시예 4><Example 4>

실시예 2에 의해 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트를 가로, 세로 각각 1cm씩 절단하여 백금 나노입자를 스퍼터링(sputtering) 하였다. 도 6(a)는 탄소섬유 표면에 백금 나노입자가 코팅되어 있는 것을 주사전자현미경을 이용하여 관찰한 것이고 이를 EDAX를 통하여 탄소섬유 표면에 백금 나노입자가 코팅되어 있는 것을 확인하였다. Platinum nanoparticles were sputtered by cutting the carbon nanotubes reinforced by the carbon nanotubes prepared in Example 2 by 1 cm in width and length, respectively. 6 (a) shows that the platinum nanoparticles were coated on the surface of the carbon fiber using a scanning electron microscope, and the platinum nanoparticles were coated on the surface of the carbon fiber through EDAX.

이와 같이 제조된 백금 나노입자가 코팅된 탄소나노튜브는 강화된 다공성 탄소섬유 펠트를 연료전지 전극촉매로 응용할 수 있다. The carbon nanotubes coated with the platinum nanoparticles prepared as described above may apply the reinforced porous carbon fiber felt as a fuel cell electrode catalyst.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the invention described in the claims below. It will be appreciated that it can be changed.

본 발명을 통해 제시된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트는 기존의 섬유 성형성 고분자인 PAN계 및 Pitch계를 이용하여 탄소섬유를 제조한 것과 비교하여 고비표면적 및 고축전용량의 우수한 전기화학적 성질을 갖고, 환경친화적이며 저비용의 난섬유성형성 천연고분자인 녹말을 전기방사하여 최초로 탄소섬유를 제조할 수 있다. 또한 탄화공정의 공정제어를 통해 탄소섬유의 표면에 평균 10nm 크기의 메조포어를 다량으로 함유하고 있는 다공성 탄소섬유를 제조하여 기존의 전해질이 침투하기 어려운 구조인 마이크로포어(<1nm)를 다량으로 함유하고 있는 활성탄소섬유의 한계를 극복할 수 있다. The carbon nanotube-reinforced porous carbon fiber felt presented through the present invention has excellent electrochemical properties of high specific surface area and high storage capacity as compared with the carbon fiber manufactured using the PAN-based and Pitch-based polymers. It is possible to produce carbon fiber for the first time by electrospinning starch, which is environmentally friendly and low-cost, non-fibrous forming polymer. In addition, through the process control of the carbonization process, a porous carbon fiber containing a large amount of mesopores having an average size of 10 nm is produced on the surface of the carbon fiber, and thus contains a large amount of micropores (<1 nm), a structure in which the electrolyte is difficult to penetrate. It can overcome the limitation of activated carbon fiber.

본 발명으로 난섬유성형성 천연고분자인 녹말을 전기방사하여 나노섬유 펠트를 제조하였고 이를 산화 안정화 및 탄화공정의 공정제어를 통해 메조포어를 다량으로 함유하고 있는 다공성 탄소섬유의 제조가 가능함을 확인하였고, 이 기술을 이 용해 고비표면적, 고전기전도도의 특성을 갖는 소재가 요구되는 전기화학용 전극재료인 초고용량 슈퍼캐패시터나 연료전지 전극 재료 뿐만 아니라, 각종 필터재료로의 응용이 가능하여 산업상 이용가능성이 크다.In the present invention, nanofiber felt was prepared by electrospinning starch, which is a non-fibrous forming natural polymer, and it was confirmed that it is possible to prepare porous carbon fiber containing a large amount of mesopores through oxidation control and process control of carbonization process. Using this technology, it can be applied to various filter materials as well as ultra-capacity supercapacitors and fuel cell electrode materials, which are electrode materials for electrochemicals that require materials with high specific surface area and high conductivity. This is big.

도 1은 녹말의 전기방사에 의해 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트의 기본 개념도이다.1 is a basic conceptual view of a carbon nanotube-reinforced porous carbon fiber felt prepared by electrospinning of starch.

도 2는 본 발명에서 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 펠트의 제조 공정도이다.2 is a manufacturing process chart of the carbon nanotube reinforced carbon fiber felt prepared in the present invention.

도 3은 도2의 공정에 의해 제조된 탄소나노튜브가 강화된 녹말/PVA 섬유의 주사 전자 현미경 사진이다.FIG. 3 is a scanning electron micrograph of carbon nanotube-reinforced starch / PVA fibers prepared by the process of FIG. 2.

도 4는 도2의 공정에 의해 제조된 10nm 크기의 메조포어를 갖는 탄소나노튜브가 강화된 다공성 탄소섬유의 주사 전자 현미경 사진이다.FIG. 4 is a scanning electron micrograph of a carbon nanotube-reinforced porous carbon fiber having a mesopore of 10 nm size prepared by the process of FIG. 2.

도 5는 본 발명에서 도2의 제조공정으로 제조된 탄소나노튜브가 강화된 다공성 탄소섬유의 초고용량 슈퍼캐패시터의 방전전류밀도에 따른 단위 무게당 비축전용량이다. 5 is a specific storage capacity per unit weight according to the discharge current density of the ultra-high capacity supercapacitor of the carbon nanotubes reinforced porous carbon fiber prepared by the manufacturing process of FIG. 2 in the present invention.

도 6은 도 2의 공정에 의해 제조된 탄소나노튜브가 강화된 다공성 탄소섬유 표면에 백금 나노입자가 코팅된 주사 전자 현미경 사진이고 EDAX를 통하여 백금 나노입자가 탄소섬유 표면에 코팅되어 있는 것을 확인한 것이다.FIG. 6 is a scanning electron micrograph in which platinum nanoparticles are coated on a carbon nanotube-reinforced porous carbon fiber surface prepared by the process of FIG. 2, and it is confirmed that platinum nanoparticles are coated on a carbon fiber surface through EDAX. .

Claims (15)

1) 난섬유성형성 녹말의 가공공정에 의하여 섬유성형성 녹말 복합용액을 제조하는 단계와,1) preparing a fibrous starch composite solution by a processing step of egg fibrous starch; 2) 섬유성형성 녹말 복합용액의 섬유성형 공정을 통해 녹말 복합섬유를 제조하는 단계와,2) preparing a starch composite fiber through a fiber forming process of the fibrous forming starch composite solution; 3) 녹말 복합섬유의 제어된 열처리 공정을 통하여 메조포어를 함유한 다공성 탄소섬유를 제조하는 단계를 포함하되;3) preparing a porous carbon fiber containing mesopores through a controlled heat treatment process of the starch composite fiber; 상기 가공공정은 녹말을 100℃∼150℃에서 가열하고 상온으로 냉각시켜 겔(gel)화 된 녹말 용액을 제조하는 제1단계; 및 제1단계에서 수득한 녹말 용액과 섬유성형성 고분자를 5:5∼8:2의 비율로 혼합한 후, 유기산을 처리하여 고온 열처리에 대한 내열성 및 탄소화의 속도를 향상시키는 제2단계로 구성되는 것을 특징으로 하고,The processing step is a first step of preparing a gelling starch solution by heating the starch at 100 ℃ ~ 150 ℃ and cooled to room temperature; And mixing the starch solution obtained in the first step with the fibrous forming polymer in a ratio of 5: 5 to 8: 2, and then treating the organic acid to improve heat resistance and carbonization rate for high temperature heat treatment. Characterized in that configured, 상기 열처리 공정은 녹말 복합섬유를 150∼300℃의 온도범위에서 산화 열처리하여 안정화시킨후, 500∼1,400℃의 온도범위에서 진공 및 불활성 열처리하여 탄소섬유화하는 제a단계; 및 상기 a단계 이후 1,400∼2,200℃의 온도범위에서 진공 열처리하여 탄소섬유 표면에 평균 10nm의 크기를 가지는 메조포어를 형성시키는 제b단계로 구성되는 것을 특징으로 하는;The heat treatment process is a step of oxidizing and stabilizing the starch composite fiber in the temperature range of 150 ~ 300 ℃, and carbon fiber by vacuum and inert heat treatment in the temperature range of 500 ~ 1,400 ℃; And a b step of forming a mesopor having an average size of 10 nm on the surface of the carbon fiber by vacuum heat treatment at a temperature range of 1,400 to 2,200 ° C. after the step a. 다공성 탄소섬유의 제조방법.Method for producing porous carbon fiber. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020080096148A 2008-09-30 2008-09-30 Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode KR101045001B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080096148A KR101045001B1 (en) 2008-09-30 2008-09-30 Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode
US12/385,763 US20100081351A1 (en) 2008-09-30 2009-04-17 Fabrication method for porous carbon fibers
US13/571,509 US20130034804A1 (en) 2008-09-30 2012-08-10 Hybrid porous carbon fiber and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080096148A KR101045001B1 (en) 2008-09-30 2008-09-30 Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode

Publications (2)

Publication Number Publication Date
KR20100036768A KR20100036768A (en) 2010-04-08
KR101045001B1 true KR101045001B1 (en) 2011-06-29

Family

ID=42057962

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080096148A KR101045001B1 (en) 2008-09-30 2008-09-30 Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode

Country Status (2)

Country Link
US (1) US20100081351A1 (en)
KR (1) KR101045001B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123137A1 (en) * 2012-02-16 2013-08-22 Cornell University Ordered porous nanofibers, methods, and applications
KR20180130477A (en) 2018-11-30 2018-12-07 한양대학교 산학협력단 Method for preparing polyaniline gel for super capacitor electrode, method for preparing polyaniline fiber for super capacitor electrode using thereof and application thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034804A1 (en) * 2008-09-30 2013-02-07 Korea Advanced Institute Of Science And Technology Hybrid porous carbon fiber and method for fabricating the same
US20150045454A1 (en) * 2012-02-27 2015-02-12 The Penn State Research Foundation Methods and compositions relating to starch fibers
NO2857355T3 (en) 2012-06-05 2018-10-06
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
US9273415B2 (en) 2012-09-07 2016-03-01 International Business Machines Corporation Methods for preparing carbon hybrid materials
CN103215748A (en) * 2013-04-01 2013-07-24 复旦大学 Functional fiber felt covered by transition metal oxide nanomaterials and preparation method thereof
KR101484252B1 (en) * 2013-05-21 2015-01-20 한국과학기술원 Carbon electrode with vertically oriented carbon fiber layer and method for preparing the carbon electrode, unit cell having the carbon electrode and method for preparing the unit cell
CN103355813B (en) * 2013-07-23 2015-07-15 康富材料科技有限公司 Woven vamp and preparation method thereof
WO2015027052A1 (en) * 2013-08-21 2015-02-26 Cornell University Porous carbon nanofibers and manufacturing thereof
US20170110735A1 (en) * 2014-03-27 2017-04-20 Japan Vilene Company, Ltd. Conductive porous material, polymer electrolyte fuel cell, and method of manufacturing conductive porous material
WO2016004457A1 (en) * 2014-07-10 2016-01-14 Deakin University Process for producing carbon nanofibre precursor yarn and carbon nanofibre yarn therefrom
GB201416239D0 (en) * 2014-09-15 2014-10-29 Univ York And Consejo Superior De Investigaciones Cientificas Mesoporous materials from nanoparticle enhanced polysaccharides
KR101814153B1 (en) 2015-09-25 2018-01-30 금오공과대학교 산학협력단 Method Of Carbon fiber-binder complex powder, electrical discharge machining electrode and the preparing method thereof
KR101832395B1 (en) 2015-09-25 2018-02-26 주식회사 카보랩 Method Of Carbon fiber powder material, Carbon fiber electrode including the Carbon fiber powder material and manufacturing method thereof
KR101794440B1 (en) * 2016-03-08 2017-11-07 한국과학기술원 Method of manufacturing coated porous material, coated porous material and electrode comprising the coated porous material
EP3246436A1 (en) 2016-05-19 2017-11-22 DWI - Leibniz-Institut für Interaktive Materialien e.V. Process for the preparation of highly porous carbon fibers by fast carbonization of carbon precursor fibers
US20210123174A1 (en) * 2017-12-30 2021-04-29 University Of Cincinnati Composite
CN113416080B (en) * 2021-06-25 2022-05-10 上海大学 Carbon nano modified carbon fiber preform, carbon/carbon composite material, carbon/ceramic composite material and preparation method thereof
CN113388959B (en) * 2021-06-25 2023-01-31 济南大学 Low-softening-point asphalt-based flexible carbon nanofiber film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930010250A (en) * 1991-11-07 1993-06-22 페르신 프리드릭, 메인저 엘크 Starch fiber and its manufacturing method and use
KR100402549B1 (en) * 2000-12-20 2003-10-22 휴마트로 코포래이션 Electro-spinning process for making starch filaments for flexible structure
US7025821B2 (en) * 2002-02-01 2006-04-11 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
KR100824719B1 (en) * 2006-09-04 2008-04-24 주식회사 아모메디 Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930010250A (en) * 1991-11-07 1993-06-22 페르신 프리드릭, 메인저 엘크 Starch fiber and its manufacturing method and use
KR100402549B1 (en) * 2000-12-20 2003-10-22 휴마트로 코포래이션 Electro-spinning process for making starch filaments for flexible structure
US7025821B2 (en) * 2002-02-01 2006-04-11 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
KR100824719B1 (en) * 2006-09-04 2008-04-24 주식회사 아모메디 Bio-degradable food-packing materials consisting of starch-contained nonwoven-nanofabrics and preparation methods therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123137A1 (en) * 2012-02-16 2013-08-22 Cornell University Ordered porous nanofibers, methods, and applications
KR20180130477A (en) 2018-11-30 2018-12-07 한양대학교 산학협력단 Method for preparing polyaniline gel for super capacitor electrode, method for preparing polyaniline fiber for super capacitor electrode using thereof and application thereof

Also Published As

Publication number Publication date
KR20100036768A (en) 2010-04-08
US20100081351A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
KR101045001B1 (en) Fabrication Method of Porous Carbon Fibers Reinforced with Carbon Nanotubes Using Starch and Use for Electrochemical Electrode
KR100995154B1 (en) Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same
KR100988032B1 (en) Carbon nano-fiber with skin-core structure, method for producing the same and products comprising the same
Ago et al. Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes
Singh et al. Kraft lignin-derived free-standing carbon nanofibers mat for high-performance all-solid-state supercapacitor
KR100701627B1 (en) Manufacturing method of nano sized activated carbon fiber comprising metal oxide and electrode for super capacitor using the same nano sized activated carbon fiber manufactured thereby
KR100805104B1 (en) Carbonaceous material having high surface area and conductivity and method of preparing same
Sheng et al. Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors
KR101348202B1 (en) Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
KR101668391B1 (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
KR101811764B1 (en) Non-Pt catalyst for oxygen reduction electrode and manufacturing method thereof
KR20080093309A (en) Electrode for supercapacitor having metal oxide deposited onto ultrafine carbon fiber and the fabrication method thereof
KR20110033733A (en) Method for producing complex of manganese dioxide and carbon nanofiber and pseudo capacitor including the complex
Kim et al. A new hybrid architecture consisting of highly mesoporous CNT/carbon nanofibers from starch
CN112761025B (en) Carbon paper for gas diffusion layer, preparation method thereof and fuel cell
KR101794440B1 (en) Method of manufacturing coated porous material, coated porous material and electrode comprising the coated porous material
KR20090055299A (en) Carbonaceous material and method of preparing same
US20130034804A1 (en) Hybrid porous carbon fiber and method for fabricating the same
Jiang et al. Advances in biomass-based nanofibers prepared by electrospinning for energy storage devices
EP2241658B1 (en) Fabrication method for porous carbon fibers
KR20070118496A (en) Super capacitor using graphite type material comprising nano sized activated carbon fiber
JP4773545B2 (en) Method for producing porous carbon fiber
Tang et al. Integrated electrospun carbon nanofibers with vanadium and single-walled carbon nanotubes through covalent bonds for high-performance supercapacitors
KR101147923B1 (en) Method of preparing porous carbon nanofibers containing metaloxide, porous carbon nanofibers thereby and their applications including the same
Dubal et al. Electrospun polyacrylonitrile carbon nanofiber for supercapacitor application: a review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150526

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160526

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190603

Year of fee payment: 9

R401 Registration of restoration