KR101867239B1 - Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof - Google Patents

Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof Download PDF

Info

Publication number
KR101867239B1
KR101867239B1 KR1020170151259A KR20170151259A KR101867239B1 KR 101867239 B1 KR101867239 B1 KR 101867239B1 KR 1020170151259 A KR1020170151259 A KR 1020170151259A KR 20170151259 A KR20170151259 A KR 20170151259A KR 101867239 B1 KR101867239 B1 KR 101867239B1
Authority
KR
South Korea
Prior art keywords
carbon
porous carbon
surface area
specific surface
present
Prior art date
Application number
KR1020170151259A
Other languages
Korean (ko)
Other versions
KR20170129081A (en
Inventor
김광호
윤제문
장텅페이
Original Assignee
재단법인 하이브리드 인터페이스기반 미래소재 연구단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 하이브리드 인터페이스기반 미래소재 연구단 filed Critical 재단법인 하이브리드 인터페이스기반 미래소재 연구단
Priority to KR1020170151259A priority Critical patent/KR101867239B1/en
Publication of KR20170129081A publication Critical patent/KR20170129081A/en
Application granted granted Critical
Publication of KR101867239B1 publication Critical patent/KR101867239B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7022

Abstract

본 발명은 비표면적을 획기적으로 넓히기 위하여 탄화수소계의 가스를 챔버 안으로 유입시켜 탄화수소계열의 가스를 플라즈마 방전하여 활성화된 초미세 탄소 입자들로 하여금 기상에서 핵생성 및 핵성장 또는 활성화된 카본 라디칼 간의 결합에 의해 생성된 고상의 초미세입자들이 3차원적으로 연결되어 제작되는 것을 특징으로 하는 초미세 다공성 탄소 전구체 재료를 제공하며, 질소분위기 또는 불활성 가스분위기 또는 진공 하에서 열처리하여 높은 전기전도도를 갖으며 높은 비표면적 의 다공성 탄소 나노폼을 제공한다. 본 발명으로 제공된 재료를 사용하여 제조된 수퍼커패시터 전극의 비정전용량은 상용화된 활성탄소의 비정전용량 (~ 140 F/g at 1 A/g)을 상회하는 ~ 400 F/g (at 1 A/g)의 높은 비정전용량을 가지며, 충방전 사이클 수명도 10,000회 까지 초기 대비 ~ 98%의 비정전용량을 보유하는 내구성이 우수한 사이클 안정성을 보였다.
본 발명에 따라 제작된 탄소 나노폼 소재는 다양한 종류의 고성능 에너지 저장용, 센서용, 경량의 고강도 재료용 등으로 활용할 가치가 높다.
In order to dramatically increase the specific surface area of the present invention, a hydrocarbon-based gas is introduced into a chamber to discharge a hydrocarbon-based gas into a plasma, thereby activating ultrafine carbon particles to cause nucleation and nucleation or activation The present invention provides an ultrafine porous carbon precursor material which is produced by three-dimensionally connecting solid phase ultrafine particles generated by a high-temperature and low-temperature ultrafine particles, and has high electrical conductivity by heat treatment in a nitrogen atmosphere, an inert gas atmosphere, Surface porous carbon nanofibers. The noncontact capacity of the supercapacitor electrode manufactured using the material provided by the present invention is in the range of ~ 400 F / g (at 1 A / g), which is higher than that of commercialized activated carbon (~ 140 F / g at 1 A / And the cycle life of the charge / discharge cycle was excellent in cycle stability with a non-discharge capacity of ~ 98% from the initial value up to 10,000 cycles.
The carbon nanofoam material manufactured according to the present invention is highly valuable for various kinds of high performance energy storage, sensor, lightweight, high strength material and the like.

Description

플라즈마 화학 기상 합성법을 활용한 탄소 기반 고 비표면적 나노 폼 소재 및 그 제조방법{Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof}Technical Field [0001] The present invention relates to a carbon-based high specific surface area nanofoam material using a plasma chemical vapor phase synthesis method and a manufacturing method thereof,

본 발명은 고 비표면적 탄소계 나노폼 소재 및 상기의 제조방법에 관한 것으로서, 수퍼커패시터, 밧데리, 에너지 저장을 위한 다양한 제품들에 전극물질로서 활용될 수 있는 기술이다.TECHNICAL FIELD The present invention relates to a high specific surface area carbon-based nanofoam material and a manufacturing method thereof, and is a technology that can be utilized as an electrode material in various products for supercapacitors, batteries, and energy storage.

좀 더 상세하게는, 플라즈마 에너지원을 사용하여 탄화수소계의 가스로부터 초미세 전구체를 합성하는 기술로서 상온 제조공정 및 양산 공정을 특징으로 갖고 있으며, 상기 전구체를 열처리하여 고 비표면적 다공성 탄소계 나노폼 소재로 최종 제조하는 기술이다. More specifically, it is a technology for synthesizing an ultrafine precursor from a hydrocarbon-based gas using a plasma energy source, and is characterized by a room temperature manufacturing process and a mass production process. The precursor is heat-treated to produce a high specific surface area porous carbon- It is a technology that makes final manufacture by material.

*화석연료의 사용으로 인한 자원의 고갈과 환경오염 문제가 심각해짐에 따라 자연으로부터 무한히 얻을 수 있는 태양 및 풍력 에너지와 같은 재생에너지 자원의 활용이 점차 중요해지고 있다. 이러한 재생 에너지를 간헐적으로 그리고 효과적으로 저장하는 에너지 저장 시스템이 필요하다. 이에 수퍼커패시터가 에너지 저장 장치로 주목을 받고 있는데, 수퍼커패시터는 신속한 방전과 충전 특성, 그리고 반영구적인 충방전 내구성의 장기 안정성을 갖고 있기 때문이다. 수퍼커패시터의 커패시턴스는 대체로 전극의 표면적에 비례하며, 이온의 흡/탈착이 수월한 전극재료가 고려되고 있다. 현재 사용되고 있는 수퍼커패시터 전극물질로서 활성탄소가 주로 사용되고 있으나, 120 F/g ~ 140 F/g 정도의 낮은 비정전용량을 보이고 있다. 최근에는 탄소나노튜브, 탄소나노섬유, 및 그래핀의 응용이 고려되고 있다. 이들 소재를 사용할 경우 이론적으로는 높은 비표면적 값을 가질 수는 있으나, 실질적으로는 구현되지 않고 있으며, 연구단계에 있다. 뿐만 아니라, 상기 물질들의 제조공정은 복잡하며 분산성을 획기적으로 증가시킬 수 있는 공정을 확보하지 못한 상황으로서 실용적으로 사용되기에는 아직 높은 기술장벽이 있는 실정이다.* With the depletion of resources and environmental pollution problems caused by the use of fossil fuels, it becomes increasingly important to utilize renewable energy sources such as solar and wind energy that can be obtained infinitely from nature. There is a need for an energy storage system that intermittently and efficiently stores such renewable energy. Therefore, supercapacitors are attracting attention as energy storage devices because supercapacitors have fast discharging and charging characteristics and long-term stability of semi-permanent charge / discharge durability. The capacitance of the supercapacitor is generally proportional to the surface area of the electrode, and an electrode material in which ion attraction / desorption is easy is considered. Although active carbon is used as a supercapacitor electrode material currently used, it has a low non-recycle capacity of about 120 F / g to 140 F / g. In recent years, applications of carbon nanotubes, carbon nanofibers, and graphenes are being considered. When these materials are used, they can have a high specific surface area in theory, but they are not practically implemented and are in the research stage. In addition, the manufacturing process of the above-mentioned materials is complicated and a process that can greatly increase the dispersibility can not be secured. Therefore, there are still high technology barriers to be used practically.

대한민국 등록특허 제10-1570738호는 3 차원 다공성 탄소 구조체 및 그의 제조 방법에 관한 것으로, 3차원 다공성 고분자 패턴으로부터 3차원 다공성 탄소 구조체를 제조하는 기술이며, 이를 이용하여 수퍼커패시터를 제조하는 방법에 대해서 제시하고 있다. Korean Patent No. 10-1570738 relates to a three-dimensional porous carbon structure and a method for producing the same, and is a technique for manufacturing a three-dimensional porous carbon structure from a three-dimensional porous polymer pattern. A method for manufacturing a supercapacitor I am suggesting.

대한민국 등록특허 제10-0995154호는 탄소소재 원료인 전구체 고분자를 전기 방사하여 만들어진 섬유를 탄화시킨 탄소섬유 제조방법, 상기 방법으로 방사용액의 조성을 변경시켜 만들어진 섬유를 탄화시킨 다공성 탄소섬유 제조 방법, 및 이를 이용하여 수퍼커패시터를 제조하는 방법에 대해서 보고한다. Korean Patent No. 10-0995154 discloses a method for producing carbon fiber in which fibers made by electrospinning a precursor polymer as a raw material of carbon material are carbonized, a method for producing porous carbon fiber in which fibers made by changing the composition of a spinning solution are carbonized, A method of fabricating a supercapacitor using this method will be described.

대한민국 등록특허 제10-1486658호는 Hummer 방법을 통해 제조한 그래핀 산화물을 멜라민 수지 모노머 분산 용액을 혼입하여 그래핀 산화물의 관능기와 결합/중합하여 다공성의 탄소구조체를 제조하는 방법을 제시하였다. Korean Patent No. 10-1486658 discloses a method of preparing a porous carbon structure by mixing / polymerizing a graphene oxide prepared by Hummer method with a functional group of graphene oxide by mixing a melamine resin monomer dispersion solution.

또한, 대한민국 출원특허 제10-2013-0093740호는 EDLC 전극용 물질인 균일 다공성 활성탄(activated carbon) 제조 방법을 제시하였으며, 그 물질의 최대 비정전용량은 137 F/g 이었다.Korean Patent Application No. 10-2013-0093740 also discloses a method for producing a uniform porous activated carbon, which is a material for an EDLC electrode. The maximum non-capacity of the material is 137 F / g.

그러나, 상기 나열된 탄소 전극물질 제조기술은 배터리 또는 수퍼커패시터의 전극제 등에 활용하기 위한 각기 다른 방법 및 물질들을 소개하고 있다. However, the carbon electrode material manufacturing techniques listed above introduce different methods and materials for use in electrode materials for batteries or supercapacitors.

제시되는 기술은 플라즈마 에너지원을 사용하여 탄화수소계의 가스로부터 직접 고상의 초미세 다공성 탄소 전구체 및 고 비표면적 다공성 탄소계 나노폼 소재를 제조하는 독특한 공정기술이며, 최종 물성인 비정전용량은 기존 보고된 물질의 값들 보다 현격히 향상된 소재기술을 소개하고 있다. 또한, 이 기술은 상온에서도 양산할 수 있는 장점을 갖고 있다. The proposed technology is a unique process technology for producing a solid ultra-porous carbon precursor and a high specific surface area porous carbon nanofoam material directly from a hydrocarbon gas using a plasma energy source. It introduces material technology which is significantly improved than the value of material. In addition, this technology has the advantage of mass production at room temperature.

장기 내화학성을 가지면서 값 싼 탄소소재가 실용화의 관점에서 주목받고 있으나, 기존의 방법들은 최종 성능인 비정전용량이 크지 못하고, 제조공정의 실용성에 한계를 지니고 있다. 따라서, 본 발명의 목적은 아주 높은 비 표면적을 갖도록 형상화시켜 최종 성능인 수퍼커패시터 비정전용량을 획기적으로 증가시킬 수 있는 새로운 탄소소재 및 그 제조 기술을 개발하는 것이다. Although carbon materials having long term chemical resistance and low cost are attracting attention from the commercialization point of view, existing methods have a limit in the practicality of the manufacturing process because the final nonaqueous capacity is not large. Accordingly, an object of the present invention is to develop a new carbon material and a manufacturing technique thereof which can shape the super-capacitor non-recoatable capacity, which is a final performance, to have a very high specific surface area.

상기 목적에 따라 본 발명은, 기상으로부터의 고체 합성시 초미세 형상을 이룰 수 있다는 일반적 개념을 도입하여, 탄화소수계의 가스를 플라즈마 에너지원에 의하여 활성화시켜 기상으로부터 고상의 초미세 다공성 탄소전구체를 우선 합성하고, 이후 열처리하여 전도성이 크게 향상된 고 비표면적 다공성 탄소계 나노폼을 제조하는 것이다. According to the above object, the present invention provides a general concept that an ultrafine shape can be formed in solid synthesis from a gas phase, and a carbonaceous water gas is activated by a plasma energy source to form a solid phase ultrafine porous carbon precursor And then heat-treated to prepare a high specific surface area porous carbon-based nano-foam having improved conductivity.

또한, 본 발명은 제작된 고 비표면적 다공성 탄소 나노폼이 수퍼커패시터의 전극소재로서 활용시 비정전용량을 획기적으로 향상시킬 수 있는 기술이 된다. In addition, the present invention is a technique for dramatically improving the non-ionic capacity when the prepared high specific surface area porous carbon nanofoam is utilized as an electrode material of a supercapacitor.

또한, 본 발명은, 기상에서 제조되는 3차원 다공성 탄소 전구체가 특별한 열원 없이 상온 (room temperature)에서 형성되는 것을 특징으로 한다. Further, the present invention is characterized in that the three-dimensional porous carbon precursor produced in the vapor phase is formed at room temperature without any special heat source.

또한, 본 발명에서, 3차원 다공성 탄소 전구체 제조는, 이중결합, 삼중결합, 또는 이중 결합과 삼중결합을 포함하여 갖고 있는 탄소화합물의 증기 (예를 들어, 아세틸렌 가스 등)를 사용하여 기상에서 합성할 수 있는 기법을 포함한다.Further, in the present invention, the production of a three-dimensional porous carbon precursor may be carried out by using vapor of a carbon compound (for example, acetylene gas or the like) containing a double bond, a triple bond or a double bond and a triple bond It includes techniques that can be done.

상기에서, 3차원 다공성 탄소 전구체가 형성되면서 다공성의 복합구조가 형성되는데 기공사이즈가 수십 nm에서 수십 μm 크기로 임의적으로 형성될 수 있다. 형성된 3차원 다공성 탄소 전구체를 형성하는 입자의 크기는 수십 nm에서 수백 nm 정도일 수 있다.In the above, a porous composite structure is formed with the formation of the three-dimensional porous carbon precursor, and the pore size may be arbitrarily selected from several tens of nanometers to several tens of micrometers. The size of the particles forming the formed three-dimensional porous carbon precursor may be several tens nm to several hundreds nm.

또한, 본 발명은, 상기에서 기술된 3차원 다공성 탄소 전구체를 질소분위기하에서 열처리시 열처리온도에 따라 비정전용량이 다른 고 비표면적 다공성 탄소 나노폼 소재를 제공한다.  The present invention also provides a high specific surface area porous carbon nanofoam material in which the above-described three-dimensional porous carbon precursor is heat-treated at a heat treatment temperature in a nitrogen atmosphere and has a different non-discharge capacity.

상기에서, 다공성 탄소 전구체를 질소분위기하에 고온열처리시켜서 높은 비표면적의 다공성 탄소 나노폼 소재를 형성시킬 때, 기공사이즈가 수 nm에서 수 μm 크기로 임의적으로 형성될 수 있으며, 상기 탄소 나노폼 소재를 형성하는 입자의 크기는 수 nm에서 수십 nm 정도일 수 있다.When the porous carbon precursor is heat treated at a high temperature in a nitrogen atmosphere to form a porous carbon nanofoam material having a high specific surface area, the pore size may be arbitrarily selected from a few nm to several micrometers, and the carbon nanofoam material The size of the particles to be formed may be several nm to several tens nm.

또한, 상기에서, 고 비표면적의 다공성 탄소 나노폼 소재는 질소분위기하에 고온열처리 온도 조건에 따라서 내부저항 특성이 달라진다. In the above, the porous carbon nanofoam material having a high specific surface area has different internal resistance characteristics under a high temperature heat treatment temperature condition in a nitrogen atmosphere.

또한, 본 발명은, 상기에서 고 비표면적의 다공성 탄소 나노폼을 사용하여 전기이중층의 대칭성(symmetric) 수퍼커패시터를 제작할 수 있는 기술을 제공한다. 또한, 고 비표면적의 다공성 탄소 나노폼 소재를 음극으로 하고, 다양한 금속산화물, 전도성 고분자, 그리고 고 비표면적의 다공성 탄소 나노폼과 복합구조물을 양극으로 하는 또는 고 비표면적의 다공성 탄소 나노폼을 양극으로 하는 비대칭성(Asymmetric or Hybrid) 수퍼커패시터를 제작할 수 있는 기술을 제공한다. The present invention also provides a technique for fabricating a symmetric supercapacitor of an electric double layer using the above-mentioned porous carbon nanofoam having a high specific surface area. In addition, a porous carbon nanofoam material having a high specific surface area is used as a negative electrode, and a porous carbon nanofoam having various specific surface areas and various metal oxides, conductive polymers, and porous carbon nano- Asymmetric or hybrid supercapacitor, which can be fabricated using a conventional method.

상기 탄소구조체를 포함한 수퍼커패시터 성능은, 활성탄소의 비정전용량 수치 (~ 140 F/g at 1 A/g)를 크게 상회하는 높은 비정전용량 (~ 400 F/g at 1 A/g) 및 비정전용량의 장기 안정성 (~ 98%, 10,000 사이클)을 보인다. The performance of the supercapacitor including the carbon structure was found to be higher than that of the non-activated carbon (~140 F / g at 1 A / g) Term stability (~ 98%, 10,000 cycles).

본 발명에 따라 제공된 고 비표면적의 다공성 탄소 나노폼은 비표면적을 획기적으로 높인 개방형의 초미세 다공성 구조로 인해 전해질이 내부 깊숙이 전달되며, 높은 전도도와 낮은 내부 전기 저항으로 전하이동도가 무척 높아 현존하는 활성탄소 소재의 비정전용량을 크게 상회하는 고용량의 커패시턴스(비정전용량)를 나타내었다. 즉, 본 발명에 따라 제작된 다공성 탄소나노폼 소재를 사용한 수퍼커패시터의 비정전용량은 ~400 F/g (1 A/g에서) 이상의 비정전용량을 가질 수 있어, 기존에 보고된 기타 탄소소재의 비정전용량보다 획기적으로 향상된 것을 알 수 있다. The high specific surface area of the porous carbon nanofibers provided according to the present invention is an open type ultrafine porous structure having a significantly increased specific surface area, and thus the electrolyte is deeply transferred, and the charge mobility is very high due to high conductivity and low internal electric resistance. (Non-electric capacity) which is much higher than the non-electric capacity of the activated carbon material. That is, the noncircuitable capacity of the supercapacitor using the porous carbon nanofoam material fabricated according to the present invention can have a non-discharge capacity of at least 400 F / g (at 1 A / g) The capacity is improved remarkably.

또한, 본 발명의 다공성 탄소나노폼 소재의 수퍼커패시터 전극은 10,000 사이클의 충/방전 반복 후에도 ~ 98%의 비정전용량을 보유하는 내구성이 우수한 사이클 안정성을 보였다. Also, the supercapacitor electrode of the porous carbon nanofoam material of the present invention exhibited excellent cycle stability with ~ 98% noncircular capacity even after 10,000 charge / discharge cycles.

도 1은 본 발명에 따라 제작된 고비표면적 다공성 탄소 나노폼을 꽃술 위에 올려놓은 사진이다.
도 2는 본 발명에 따라 저분자의 탄화수소계의 탄소 소스가 상온에서 플라즈마 에너지원에 의하여 활성화되어 제조되는 과정의 사진 (A), 활성화된 탄소 소스들이 기상에서 합성하여 형성된 고상의 초미세 다공성 탄소 전구체 사진 (B), 그리고 다공성 탄소 전구체를 포집한 사진 (C)이다.
도 3은 본 발명에 따라 제작된 다공성 탄소전구체를 질소분위기하에 열처리 한 후 형성된 고비표면적의 다공성 탄소 나노폼 사진이다.
도 4는 본 발명에 따라 제작된 고상의 초미세 다공성 탄소 전구체에 대한 미세구조를 확대배율에 따라 보여주는 주사전자현미경 (FE-SEM) 사진이다.
도 5는 본 발명에 따라 제작된 다공성 탄소전구체를 질소분위기하에 고온 열처리 한 후, 최종 형성되는 다공성의 높은 비표면적을 갖는 탄소 나노폼의 미세구조를 확대배율에 따라 보여주는 주사전자현미경 (FE-SEM) 사진이다.
도 6은 본 발명에 따라 제작된 고 비표면적 탄소 나노폼의 BET (Brunauer-Emmett-Teller) 그래프이다.
도 7은 본 발명에 따라 제작된 다공성 탄소전구체 (A)와 이를 질소분위기하에 열처리한 고 비표면적 탄소 나노폼 (B)을 커패시턴스 전극으로 제조하여 측정한 순환전압 전류법(Cyclic Voltammetry, CV) 그래프이다. 본 발명에 따른 탄소 나노폼 재료 (600 ℃, 800℃ 열처리)와 기보고된 그래핀과의 비정전용량 특성을 비교한 그래프 (C), 열처리된 다공성 탄소 나노폼에 대한 장기 충방전 사이클 그래프 (D).
도 8은 전극 제조시 첨가제로서 10% 혼합시키는 상용화된 아세틸렌계 카본 블랙 소재를 커패시턴스 전극으로 제조하여 비정전용량 성능을 분석한 결과를 보여주는 그래프이다. 카본 블랙의 순환전압전류곡선 (cyclic voltammogram, CV) 그래프 (A)와 충방전 사이클 그래프 (B) 이다.
FIG. 1 is a photograph of a high specific surface area porous carbon nanofoam prepared according to the present invention on a flower bed.
FIG. 2 is a photograph (A) of a process in which a hydrocarbonaceous carbon source of a low molecular weight is activated by a plasma energy source at room temperature according to the present invention, a solid state ultrafine porous carbon precursor Photograph (B), and photograph (C) of a porous carbon precursor.
FIG. 3 is a photograph of porous carbon nanofoam having a high specific surface area formed by heat-treating a porous carbon precursor prepared according to the present invention under a nitrogen atmosphere.
FIG. 4 is a scanning electron microscope (FE-SEM) photograph showing the microstructure of the solid-state ultrafine porous carbon precursor fabricated according to the present invention according to the magnification.
5 is a scanning electron microscope (FE-SEM) showing a microstructure of a porous carbon nanoform having a high specific surface area, which is finally formed, according to an enlargement magnification, after a porous carbon precursor prepared according to the present invention is heat- ) It is a photograph.
FIG. 6 is a BET (Brunauer-Emmett-Teller) graph of the high specific surface area carbon nanofoam fabricated according to the present invention.
7 is a graph showing a cyclic voltammetry (CV) graph obtained by measuring a porous carbon precursor (A) prepared according to the present invention and a high specific surface area carbon nanofoam (B) obtained by heat treatment thereof in a nitrogen atmosphere as a capacitance electrode to be. (C) comparing the non-discharge capacity characteristics of the carbon nanofoam material (600 ° C., 800 ° C. heat treatment) and reported graphene according to the present invention and the long-term charge and discharge cycle graph (D ).
FIG. 8 is a graph showing the results of analyzing the non-conducting capacity performance of a commercially available acetylene-based carbon black material prepared by mixing 10% as an additive in the production of an electrode with a capacitance electrode. A graph (A) and a charge / discharge cycle graph (B) of a cyclic voltammogram (CV) of carbon black are shown.

이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 대해 상세히 설명한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

비표면적이 매우 넓은 다공성 탄소 나노폼 구조체를 제작하기 위하여 탄화수소계열의 가스, 보다 구체적으로 아세틸렌 가스를 상온에서 플라즈마 에너지원으로 활성화시켜 랜덤하게 기상에서 핵생성 및 핵성장 또는 활성화된 카본 라디칼 간의 결합에 의해 생성된 고상의 초미세입자들이 3차원적으로 연결되게 한다. 이 결과는 초미세 다공성 탄소전구체를 형성케하여 고 비표면적의 다공성 탄소 나노폼으로 제작케 한다. 여기서 탄화수소계열의 가스는 아세틸렌 가스 외에 다양한 종류의 이중결합, 삼중결합, 또는 이중결합과 삼중결합 두 가지 결합을 동시에 갖고 있는 탄소화합물을 적용할 수 있으며, 본 기술에서는 아세틸렌을 예시적으로 적용하였다. 이하 본 발명을 구현하기 위한 방법을 예를 들어 기술하고자 한다.In order to fabricate a porous carbon nanofoam structure having a very large specific surface area, a hydrocarbon-based gas, more specifically, acetylene gas is activated as a plasma energy source at room temperature to randomly form nucleation and nucleation in the vapor phase or bonding between activated carbon radicals Dimensional ultrasound generated by the three-dimensional connection of the three-dimensional. These results lead to the formation of ultrafine porous carbon precursors, which make porous carbon nanofoams of high specific surface area. Herein, the hydrocarbon-based gas may be a carbon compound having two kinds of double bonds, triple bonds, or double bonds and triple bonds at the same time in addition to acetylene gas. In the present invention, acetylene is exemplarily applied. Hereinafter, a method for implementing the present invention will be described by way of example.

챔버 안에 주원료인 아세틸렌 가스를 유입시키고 상온 저진공 (약 0.1 torr ~ 수 torr) 하에서 유입된 아세틸렌 가스가 플라즈마 제너레이터에 의해 플라즈마 방전될 만큼의 충분한 전력을 공급한다. 이 때, 플라즈마에 의해 활성화된 아세틸렌 분자들은 서로 결합하면서 고상의 초미세 다공성 탄소 전구체가 만들어진다 (도 2). 아세틸렌 가스의 방전에 필요한 전력은 일반적으로 널리 알려져 있으므로 그에 따라 충분히 실시할 수 있으며, 가스 용량에 따라 약간의 변동을 줄 수 있다. 또한, 플라즈마 방전이 일어나면 충분하고 전력 수치에 대해 특별한 제한이 따르는 것은 아니다. Acetylene gas as a main raw material is introduced into the chamber and sufficient power is supplied to the plasma generator to discharge the acetylene gas introduced under low temperature and low vacuum (about 0.1 torr to several torr). At this time, the acetylene molecules activated by the plasma are bonded to each other to form a solid ultrafine porous carbon precursor (FIG. 2). The power required for the discharge of the acetylene gas is generally well known, and therefore it can be sufficiently carried out, and it may vary slightly depending on the gas capacity. Also, it is sufficient if a plasma discharge occurs, and there is no particular limitation on the power value.

형성된 초미세 다공성 탄소 전구체를 질소분위기 하에서 100 ~ 2,000 ℃로 열처리하여 고 비표면적의 다공성 탄소계 나노폼 구조체로 만들 수 있으며, 본 실시예에서는 400 내지 800℃로 하여 만들었다(도 3). 주사전자현미경 (FE-SEM) 사진을 통하여 다공성 탄소 전구체의 미세 구조와 입자 크기를 확인하였다 (도 4). 400 내지 800℃로 열처리한 후 얻어진 고 비표면적의 다공성 탄소 나노폼의 구조와 입자크기를 주사전자현미경 (FE-SEM) 사진을 통하여 확인하였다 (도 5). 제작된 다공성의 탄소 전구체는 100℃ ~ 2,000 ℃에서 열처리하는 것 외에도, 고주파, 레이저, UV 또는 X-ray 중 어느 하나 이상의 빔을 조사하여 상기 다공성 탄소 전구체를 개질 시켜 비표면적을 높인 다공성 탄소 나노 폼을 만들 수 있다. The ultrafine porous carbon precursor thus formed may be heat treated at 100 to 2,000 DEG C under a nitrogen atmosphere to obtain a porous carbon nanofoam structure having a high specific surface area. In this embodiment, the temperature is 400 to 800 DEG C (FIG. 3). The microstructure and particle size of the porous carbon precursor were confirmed by scanning electron microscope (FE-SEM) photograph (FIG. 4). The structure and particle size of the porous carbon nanofoam of high specific surface area obtained after heat treatment at 400 to 800 ° C were confirmed by scanning electron microscope (FE-SEM) photograph (FIG. 5). The prepared porous carbon precursor is heat treated at 100 ° C. to 2,000 ° C., and the porous carbon precursor is modified by irradiating at least one of high frequency, laser, UV, and X-ray to increase the specific surface area of the porous carbon nanofoam .

수퍼 커패시터의 비정전용량을 획기적으로 높이기 위해서는 비표면적이 매우 중요한 파라미터이다. 본 발명에 따라 제조된 탄소 나노폼의 비표면적을 BET 측정하여 확인한 바, 2242.3 m2/g으로 매우 넓은 비표면적임을 확인하였다 (도 6). The specific surface area is a very important parameter for dramatically increasing the non-discharge capacity of the supercapacitor. The specific surface area of the carbon nanofibers prepared according to the present invention was measured by BET measurement and found to be very wide (2242.3 m 2 / g).

전극제작 방식은 다음과 같다. 전극 시료, 전도성 아세틸렌계 카본 블랙(Carbon Black), 바인더인 폴리테트라 플루오로에틸렌(PTFE, Polytetrafluoroethylene)를 각각 8 : 1 : 1의 비율로 혼합하고, 이소프로필 알코올(isopropylalcohol)을 이용하여 슬러리를 제조하였다. 슬러리를 집전체(current collector)인 니켈 폼(nickel foam)을 사용하여 전극을 만든 후, 120 ℃의 오븐에 12시간 동안 건조하였다. 그 다음, 제작된 전극들은 3 전극 시스템 (분석 시료 전극, 기준 전극 (Hg/HgO), 카운터 전극 (Pt))으로 6 M 수산화 칼륨 수용액에 넣어 각 전극 샘플에 대하여 단위 질량당 커패시턴스를 순환전압 전류법(Cyclic Voltammetry, CV)을 이용하여 산출하였다.The electrode manufacturing method is as follows. Electrode samples, conductive acetylene carbon black and binder polytetrafluoroethylene were mixed at a ratio of 8: 1: 1, and a slurry was prepared using isopropyl alcohol. Respectively. The slurry was made into an electrode using a nickel foam as a current collector, and then dried in an oven at 120 DEG C for 12 hours. Then, the electrodes thus prepared were placed in a 6 M aqueous potassium hydroxide solution with a three-electrode system (analytical sample electrode, reference electrode (Hg / HgO) and counter electrode (Pt)) to measure the capacitance per unit mass (Cyclic Voltammetry, CV).

제작된 시료의 전기적 특성을 분석한 결과, 고온 열처리한 고 비표면적의 다공성 탄소 나노폼의 전극이 열처리하지 않은 것에 비해 매우 높은 전기 활성종이며, 전해질의 전하 이동 흡탈착 특성도 우수하였으며 (도 7의 A, B), 높은 온도에서 열처리한 전극 시료가 더 우수한 성능을 보였다 (도 7의 C). As a result of analyzing the electrical characteristics of the fabricated samples, it was found that the electrode of the porous carbon nanofoam having a high specific surface area at a high temperature was very high electroactive species as compared with the non-heat treated electrode, and the charge transfer desorption property of the electrolyte was excellent A, B), and electrode samples heat-treated at higher temperatures showed better performance (Fig. 7C).

도 7의 D에 나타난 바와 같이 고온 열처리한 고비표면적 다공성 탄소 나노폼의 충/방전 사이클 안정성이 10,000회 충/방전 반복 후에도 97.5% 비정전용량 성능이 유지됨을 확인하였다. As shown in FIG. 7D, it was confirmed that the charge / discharge cycle stability of the high specific surface area porous carbon nanofoam obtained by the high temperature heat treatment maintained 97.5% non-discharge capacity performance even after 10,000 charge / discharge cycles.

참고적으로, 첨가제로 사용된 아세틸렌계 카본블랙의 영향성을 확인하기 위해서 전기적 특성을 분석한 결과, 카본 블랙은 매우 낮은 비정전용량 (0.56 F/g at 1 A/g)으로 그 기여하는 정도가 매우 낮음을 확인하였다 (도 8). As a result, it was found that carbon black has a very low noncontact capacity (0.56 F / g at 1 A / g), and the contribution of carbon black Very low (Fig. 8).

한편, 본 발명에 따라 제작된 고비표면적의 다공성 탄소 나노폼은 수퍼커패시터, 흡탈착 센서, 압력센서, 배터리 등 다양한 전자소자에 적용될 수 있다. Meanwhile, the porous carbon nanofoam having a high specific surface area prepared according to the present invention can be applied to various electronic devices such as a supercapacitor, an absorption / desorption sensor, a pressure sensor, and a battery.

본 발명의 권리는 위에서 설명된 실시 예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. It is to be understood that the invention is not limited to the disclosed embodiment, but is capable of many modifications and variations within the scope of the appended claims. It is self-evident.

Claims (3)

탄소 원자가 함유된 탄화수소계열의 가스를 플라즈마 발생장치 내에 주입하고,
플라즈마 발생장치에 플라즈마 방전될 수 있는 전력을 공급하여, 상기 탄화수소계열의 가스를 플라즈마 에너지원으로 활성화시켜 플라즈마를 방전하여,
플라즈마 에너지원으로 활성화된 초미세 탄화수소 입자들로 하여금 랜덤하게 기상에서 핵생성 및 핵성장 또는 활성화된 카본 라디칼 간의 결합을 일으켜, 생성되는 고상의 초미세입자들이 3차원적으로 연결되게 함으로써 초미세 다공성 탄소전구체로 형성되게 하는 것을 특징으로 하는 초미세 다공성 탄소 전구체의 제조방법.
A hydrocarbon-based gas containing carbon atoms is injected into the plasma generator,
Supplying a plasma discharge power to the plasma generator, activating the gas of the hydrocarbon series as a plasma energy source to discharge the plasma,
The ultrafine hydrocarbon particles activated by the plasma energy source randomly generate nucleation and nucleation or activation of carbon radicals in the gas phase to generate three-dimensionally connected solid ultrafine particles, To form a precursor of a precursor of the microporous carbon precursor.
제1항의 방법으로 제작된 다공성의 탄소 전구체를 100℃ ~ 2,000 ℃에서 열처리하거나, 고주파, 레이저, UV 또는 X-ray 중 어느 하나 이상의 빔을 조사하여 상기 다공성 탄소 전구체를 개질 시켜 비표면적을 높인 다공성 탄소 나노 폼을 제조하는 방법.A porous carbon precursor prepared by the method of claim 1 is heat-treated at 100 ° C to 2,000 ° C or irradiated with a beam of at least one of high frequency, laser, UV, and X-ray to modify the porous carbon precursor, A method for producing a carbon nanoform. 제2항의 방법으로 제작된 비표면적을 높인 다공성 탄소 나노폼을 적용한 것을 특징으로 하는 전자소자.
An electronic device comprising porous carbon nanofibers prepared by the method of claim 2 and having increased specific surface area.
KR1020170151259A 2017-11-14 2017-11-14 Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof KR101867239B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170151259A KR101867239B1 (en) 2017-11-14 2017-11-14 Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170151259A KR101867239B1 (en) 2017-11-14 2017-11-14 Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160028047A Division KR101802636B1 (en) 2016-03-09 2016-03-09 Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof

Publications (2)

Publication Number Publication Date
KR20170129081A KR20170129081A (en) 2017-11-24
KR101867239B1 true KR101867239B1 (en) 2018-06-12

Family

ID=60810265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170151259A KR101867239B1 (en) 2017-11-14 2017-11-14 Carbon-Based Nano-Foam Materials with High Specific Surface Area using Plasma Enhanced Chemical Vapor Synthesis and Methods for Production Thereof

Country Status (1)

Country Link
KR (1) KR101867239B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617872B1 (en) * 2018-09-20 2023-12-22 주식회사 엘지에너지솔루션 Sulfur-carbon composite, method for preparing the same and lithium secondary battery comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110045668A (en) * 2009-10-27 2011-05-04 아주대학교산학협력단 Solid doping method of conductive polymers using plasma and apparatus for the same
JP2011111335A (en) * 2009-11-24 2011-06-09 Asahi Kasei Chemicals Corp Nitrogen-containing carbon porous body and method for producing the same
KR20160005385A (en) * 2014-07-04 2016-01-15 재단법인대구경북과학기술원 Preparation method for nitrogen-doped carbon nanostructure using electospinning, and the nitrogen-doped carbon nanostructure thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100832300B1 (en) * 2006-03-22 2008-05-26 한국에너지기술연구원 Production process of high-efficient metal filters onto which nanotubes or nanofibers are grown by direct synthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110045668A (en) * 2009-10-27 2011-05-04 아주대학교산학협력단 Solid doping method of conductive polymers using plasma and apparatus for the same
JP2011111335A (en) * 2009-11-24 2011-06-09 Asahi Kasei Chemicals Corp Nitrogen-containing carbon porous body and method for producing the same
KR20160005385A (en) * 2014-07-04 2016-01-15 재단법인대구경북과학기술원 Preparation method for nitrogen-doped carbon nanostructure using electospinning, and the nitrogen-doped carbon nanostructure thereby

Also Published As

Publication number Publication date
KR20170129081A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Zheng et al. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors
Wang et al. Synthesis of N-doped carbon nanosheets with controllable porosity derived from bio-oil for high-performance supercapacitors
Zhang et al. Scalable synthesis of hierarchical macropore-rich activated carbon microspheres assembled by carbon nanoparticles for high rate performance supercapacitors
Shi et al. Highly porous carbon with graphene nanoplatelet microstructure derived from biomass waste for high‐performance supercapacitors in universal electrolyte
Niu et al. Hierarchical core–shell heterostructure of porous carbon nanofiber@ ZnCo 2 O 4 nanoneedle arrays: advanced binder-free electrodes for all-solid-state supercapacitors
Xiao et al. Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors
Hu et al. 3D hierarchical porous N-doped carbon aerogel from renewable cellulose: An attractive carbon for high-performance supercapacitor electrodes and CO 2 adsorption
Wang et al. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities
Kumar et al. Doped graphene supercapacitors
Miao et al. Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability
Wang et al. Asymmetric supercapacitors based on nano-architectured nickel oxide/graphene foam and hierarchical porous nitrogen-doped carbon nanotubes with ultrahigh-rate performance
Qin et al. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors
Kim et al. High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity
Sahoo et al. Significance of optimal N-doping in mesoporous carbon framework to achieve high specific capacitance
Cai et al. Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors
KR101832663B1 (en) three dimensional graphene structure having high density and capacity properties, manufacturing method thereof and electrode material comprising the same
Hou et al. Morphology and structure control of amine-functionalized graphene/polyaniline composite for high-performance supercapacitors
KR101485867B1 (en) Porous carbon structure comprising polymers of intrinsic microporosity and preparation method thereof
WO2014078423A1 (en) Nanostructured materials
Zou et al. Three dimensional heteroatom-doped carbon composite film for flexible solid-state supercapacitors
Dong et al. Synthesis of hollow carbon spheres from polydopamine for electric double layered capacitors application
Jia et al. A 3-D covalently crosslinked N-doped porous carbon/holey graphene composite for quasi-solid-state supercapacitors
Liu et al. High‐Performance Aqueous Supercapacitors Based on Biomass‐Derived Multiheteroatom Self‐Doped Porous Carbon Membranes
Li et al. N, P co-doped porous carbon from cross-linking cyclophosphazene for high-performance supercapacitors
Zou et al. Hierarchical N-and O-doped porous carbon composites for high-performance supercapacitors

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant