JPS61264416A - Control system for reactive power compensating device - Google Patents

Control system for reactive power compensating device

Info

Publication number
JPS61264416A
JPS61264416A JP10721885A JP10721885A JPS61264416A JP S61264416 A JPS61264416 A JP S61264416A JP 10721885 A JP10721885 A JP 10721885A JP 10721885 A JP10721885 A JP 10721885A JP S61264416 A JPS61264416 A JP S61264416A
Authority
JP
Japan
Prior art keywords
circuit
reactive power
compensating device
gain
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10721885A
Other languages
Japanese (ja)
Other versions
JPH07104739B2 (en
Inventor
Masatoshi Takeda
正俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60107218A priority Critical patent/JPH07104739B2/en
Publication of JPS61264416A publication Critical patent/JPS61264416A/en
Publication of JPH07104739B2 publication Critical patent/JPH07104739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To increase the average power factor after compensation by changing the gain of compensation of a reactive power compensating device in response to the shift bias value equal to the quantity of load electricity. CONSTITUTION:A reactive power compensating device consisting of a capacitor, a thyristor, etc. is provided to an AC power supply connected to an arc furnace having large fluctuation of load. A reactive power detecting circuit of said compensating device is provided with a thyristor firing angle control circuit 14, a multiplier 15 serving as a variable gain circuit, a primary delay circuit 16 serving as a shift bias arithmetic circuit, a subtraction circuit 17, a gain setting circuit 18 and an addition circuit 19. When the reactive power QA is generated, the shift bias QM is calculated by the circuit 16 and multiplied by the power QA via the circuits 17-19. As a result, the output of the reactive power compensating device shows the large value in an area having small power QA and compensates completely the value smaller than the compensation capacity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無効電力補償装置の制御方式に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control method for a reactive power compensator.

〔従来の技術〕[Conventional technology]

第4図は例えば、雑誌1’−OHMJ(1975年1月
発行)に示された従来の静止形無動電力補償装置の制御
方式を示す回路図であり、第4図において、1は交流電
源、2は交流電源1に接続した系統インピーダンス、3
は1次側を系統インピーダンス2に接続した炉用変圧器
、4は炉用変圧器3の2次側に接続したアーク炉、5は
系統インピーダンス2と炉用変圧器3の接続路とアーク
間に接続したコンデンサである。6はリアクトル、7は
リアクトルの無効電力を制御するサイリスタ装置で、こ
れらリアクトル6とサイリスタ装置7を直列にし、前記
コンデンサ5と並列に接続して無効電力補償装置11を
構成している。8は電流変成器、9は電圧変成器、10
は制御回路である。
FIG. 4 is a circuit diagram showing the control method of a conventional static type non-dynamic power compensator shown in the magazine 1'-OHMJ (published in January 1975). In FIG. 4, 1 is an AC power supply , 2 is the system impedance connected to AC power supply 1, 3
is a furnace transformer whose primary side is connected to grid impedance 2, 4 is an arc furnace connected to the secondary side of furnace transformer 3, and 5 is between the connection path between grid impedance 2 and furnace transformer 3 and the arc. It is a capacitor connected to 6 is a reactor, and 7 is a thyristor device for controlling the reactive power of the reactor.These reactor 6 and thyristor device 7 are connected in series and in parallel with the capacitor 5 to form a reactive power compensator 11. 8 is a current transformer, 9 is a voltage transformer, 10
is the control circuit.

第5図は上記制御回路10の構成例のブロック図を示し
たもので、順次に接続された電気量演算回路としての無
効電力検出回路12、補償ゲイン設定回路13、サイリ
スタ点弧角制御回路14で構成されている。
FIG. 5 shows a block diagram of an example of the configuration of the control circuit 10, in which a reactive power detection circuit 12, a compensation gain setting circuit 13, and a thyristor firing angle control circuit 14 are sequentially connected as electrical quantity calculation circuits. It consists of

次に動作について説明する。アーク炉負荷4に流入する
遅相無効電力QA(以下、QAと略称する)が変動する
と、第4図のA点で下式に従って電圧変動37人が生じ
る。
Next, the operation will be explained. When the slow phase reactive power QA (hereinafter abbreviated as QA) flowing into the arc furnace load 4 fluctuates, a voltage fluctuation 37 occurs at point A in FIG. 4 according to the formula below.

ΔVA = X−QA 但し Xは電力系統インピーダンス2のリアクタンス分
(p、u)、QAはアーク炉負荷に流入する無効電力を
示す。
ΔVA = X-QA where X is the reactance (p, u) of power system impedance 2, and QA is the reactive power flowing into the arc furnace load.

この電圧変動37人を低減するためK、コンデンサ5、
リアクトル6、サイリスタ装置7で構成する無効電力補
償装置11を、A点に系統インピーダンス2と炉用変圧
器301次側を結ぶ接続路のA点とブー18間に接続し
、アーク炉4に流れる無効電力に比例した補償無効電力
−Qoを制御している。
To reduce this voltage fluctuation, K, capacitor 5,
A reactive power compensator 11 consisting of a reactor 6 and a thyristor device 7 is connected between point A and boo 18 of the connection path connecting the system impedance 2 and the primary side of the furnace transformer 30 at point A, and the power flowing into the arc furnace 4 Compensated reactive power -Qo proportional to reactive power is controlled.

この場合、電源側に流れる無効電力Qsは、Qs=QA
 Qoとなり、無効電力Qsにより生じるA点の電圧変
動ΔVAは、 ΔVA=X−Qs=X ・(QA  QO)で表わされ
、無効電力補償装置11により電圧変動ΔVムが低減で
きることになる。
In this case, the reactive power Qs flowing to the power supply side is Qs=QA
The voltage fluctuation ΔVA at point A caused by the reactive power Qs is expressed as ΔVA=X−Qs=X·(QAQO), and the reactive power compensator 11 can reduce the voltage fluctuation ΔVA.

そこで、電圧変成器9と電流変成器8により検出された
アーク炉負荷4の電圧■と電流Iは、第5図に示した制
御回路10の無効電力検出回路12に入力され、アーク
炉負荷4に流入する無効電力9人が検出される。
Therefore, the voltage ■ and current I of the arc furnace load 4 detected by the voltage transformer 9 and the current transformer 8 are input to the reactive power detection circuit 12 of the control circuit 10 shown in FIG. 9 reactive power flows into the area are detected.

この検出値QAは次段の補償ゲイン設定回路13へ入力
され、一定ゲインのに倍されてサイリスタ点弧角制御回
路14に入力される。このサイリスタ点弧角制御回路1
4においては、入力信号に−QAK相当した無効電力を
出力するためのサイリスタ点弧位相角αを決定し、点弧
角αの位相でゲート点弧指令をサイリスタに与える。こ
の結果、無効電力補償装置11はに−QAなる無効電力
を出力することKなる。
This detected value QA is input to the next stage compensation gain setting circuit 13, multiplied by a constant gain, and input to the thyristor firing angle control circuit 14. This thyristor firing angle control circuit 1
In step 4, the thyristor firing phase angle α for outputting reactive power corresponding to -QAK to the input signal is determined, and a gate firing command is given to the thyristor at the phase of the firing angle α. As a result, the reactive power compensator 11 outputs a reactive power of -QA.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の無効電力補償装置110制御回路は以上のように
構成されているので、無効電力補償装置11の出力Qo
は Qo=に−QA で制御されることになり、例えばアーク炉負荷4の無効
電力9人が第6図(alの実線のように変化した場合、
出力Qoは第6図(alの点線のように制御されること
になる。
Since the conventional reactive power compensator 110 control circuit is configured as described above, the output Qo of the reactive power compensator 11
will be controlled by Qo = -QA. For example, if the reactive power of 9 people with arc furnace load 4 changes as shown in the solid line in Fig. 6 (al),
The output Qo will be controlled as shown by the dotted line in FIG. 6 (al).

第4図において、出力Qoは固定進相コンデンサ5の無
効電力Qcとサイリスタ制御によるリアクトルの遅相無
効電力−QRとの和になるため、出力Qoが第6図(a
)の点線のように制御される場合、リアクトルの無効電
力QR(以下、QRと略称する)は$6図(blの矢印
方向忙制御されること九なり、QRは第6図(diのよ
うな無効電力変化を辿ることになる。この結果、電源系
統側に流出する無効電力Qs(以下、Qsと略称する)
は、第6図(c)のようになり無効電力変動を抑制でき
る。
In Fig. 4, the output Qo is the sum of the reactive power Qc of the fixed phase advance capacitor 5 and the lagging reactive power -QR of the reactor controlled by the thyristor.
), the reactor's reactive power QR (hereinafter abbreviated as QR) is controlled in the direction of the arrow in Figure 6 (bl), and QR is controlled in the direction of the arrow in Figure 6 (di). As a result, reactive power Qs (hereinafter abbreviated as Qs) flows out to the power supply system.
is as shown in FIG. 6(c), and reactive power fluctuations can be suppressed.

しかしながら、QAの小さな領域■と領域■ではQAが
最大補償容量Qc(以下、Qcと略称する)以下である
にもかかわらず、Qo=に−QAの大きさに制御される
ため、QRを大きくしておく必要がある。このため、リ
アクトル6及びサイリスタ装置7に太ぎた電流を流すこ
とになり、9人の小さな領域において、リアクトル6及
びサイリスタ装置7の電気損失が大きいという問題点が
ある。
However, even though QA is less than the maximum compensation capacity Qc (hereinafter abbreviated as Qc) in the small QA region It is necessary to do so. Therefore, a large current is passed through the reactor 6 and the thyristor device 7, and there is a problem that the electrical loss of the reactor 6 and the thyristor device 7 is large in a small area of nine people.

また、第6図(a)に示すように、領域■及び領域■に
おいて、QA<Qcであるにもかかわらず、Qsは遅相
となり、力率が低下するという問題点がある。
Furthermore, as shown in FIG. 6(a), in region (2) and region (2), although QA<Qc, Qs becomes slow in phase and the power factor decreases.

この発明は上記のような問題点を解消するためになされ
たもので、アーク炉負荷の軽負荷領域におけるサイリス
タ装置及びリアクトルの損失を軽減すると共に補償後の
力率を向上できる無効電力補償装置の制御方式を得るこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is a reactive power compensator that can reduce the loss of the thyristor device and reactor in the light load region of the arc furnace and improve the power factor after compensation. The purpose is to obtain a control method.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無効電力補償装置の制御方式は、アーク
炉負荷の軽負荷時に制御回路の補償ゲインを増加し、負
荷が大きくなると補償ゲインを元へ戻すよ5にしたもの
である。
The control method of the reactive power compensator according to the present invention increases the compensation gain of the control circuit when the arc furnace load is light, and returns the compensation gain to the original value when the load becomes large.

〔作用〕[Effect]

この発明における無効電力補償装置の制御方式は、検出
したアーク炉負荷の無効電力の移動バイアス値を演算し
、移動バイアス値の大きさに応じて補償ゲインを変える
よう和することにより、軽負荷時の補償ゲインを大きく
し、重負荷時の補償ゲインを元へ戻すようにする。
The control method of the reactive power compensator in this invention calculates the moving bias value of the reactive power of the detected arc furnace load, and adds the compensation gain to change according to the magnitude of the moving bias value. Increase the compensation gain and restore the compensation gain during heavy loads to the original value.

〔1嘲を実施例〕 以下、この発明の一実施例を前記第4図と同一部分に同
一符号を付した第1図について説明する。
[1st Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIG. 1, in which the same parts as in FIG. 4 are given the same reference numerals.

第1図において、15は制御ゲインの大きさを変えるた
めの可変ゲイン回路としての乗算器、16は無効電力検
出値Qの移動バイアスを作成するための移動ノjイアス
演算回路としての1次遅れ回路、17は減算回路、18
はゲイン設定回路、19は加算回路である。
In FIG. 1, 15 is a multiplier as a variable gain circuit for changing the magnitude of the control gain, and 16 is a first-order delay as a moving noise calculation circuit for creating a moving bias of the detected reactive power value Q. circuit, 17 is a subtraction circuit, 18
1 is a gain setting circuit, and 19 is an addition circuit.

次に動作について説明する。第2図、第3図は前記第7
図に示したものと同じ無効電力9人に対する動作を示し
た図である。
Next, the operation will be explained. Figures 2 and 3 show the above-mentioned 7
It is a diagram showing the same reactive power operation for nine people as shown in the figure.

いま、第3図(a)の点線で示すような第6図(a)と
同じアーク炉負荷4の無効電力QAが生じた場合、9人
の移動バイアスは第3図(a)に示すQMの波形となり
、QMは第1図の1次遅れ回路16で演算される。なお
、−次遅れ回路16における時定数Tは、フリッカとし
て問題にならない周波数領域の時定数になるように比較
的大きな値に選ばれる。
Now, if the same reactive power QA of arc furnace load 4 as shown in FIG. 6(a) occurs as shown by the dotted line in FIG. 3(a), the moving bias of the nine people will be QM shown in FIG. QM is calculated by the first-order lag circuit 16 in FIG. Note that the time constant T in the -order delay circuit 16 is selected to be a relatively large value so as to be a time constant in a frequency domain that does not cause a problem as flicker.

減算回路17では、一定値Qzと一次遅れ回路16から
出力された移動バイアス値QM (以下、QMと略称す
る)との差が演算され、(QI  QM)が出力される
。ここで、QRの値は第3図(a)の一点鎖線で示すよ
うに、QMのほぼ最大値に選択される。従って、(Qz
  QM)は第3図(a)の2点鎖線で示す波形となる
。(QI  QM)は次段のゲイン設定回路18に入力
され、一定のゲインK1倍されて第3図(b) K示す
よ57jKt (QI  QM) 力出力される。
The subtraction circuit 17 calculates the difference between the constant value Qz and the moving bias value QM (hereinafter abbreviated as QM) output from the first-order lag circuit 16, and outputs (QI QM). Here, the value of QR is selected to be approximately the maximum value of QM, as shown by the dashed line in FIG. 3(a). Therefore, (Qz
QM) has the waveform shown by the two-dot chain line in FIG. 3(a). (QI QM) is input to the next stage gain setting circuit 18, multiplied by a certain gain K1, and output as 57jKt (QI QM) as shown in FIG. 3(b).

加算回路19においては、一定値に2と前述のに1・(
QRQM)の和が演算され、第3図(blK示すような
に2+ Kt (Qz  Q M )が出力される。
In the adder circuit 19, the constant value is 2 and the above-mentioned value is 1.(
QRQM) is calculated, and 2+ Kt (Qz Q M ) is output as shown in FIG. 3 (blK).

(Kg +Kt (Qz  M )  )は乗算回路1
5において、無効電力検出回路12の出力QAと乗算さ
れて(Kg +Kt (Qz  M ) ) ・Q h
が出力サレル。ココで、(K2 +に1 (Qz  M
 ))の値は可変ゲインとして作用し、第3図(blに
示すように、QAが大きい領域■ではほぼに2の近傍に
あり、9人の小さい領域■及び■ではに2より大きな値
となる。
(Kg +Kt (Qz M)) is the multiplier circuit 1
5, it is multiplied by the output QA of the reactive power detection circuit 12 and becomes (Kg +Kt (Qz M )) ・Q h
is the output salel. Here, (K2 + 1 (Qz M
)) acts as a variable gain, and as shown in Figure 3 (bl), it is almost close to 2 in the area ■ where QA is large, and it is significantly larger than 2 in areas ■ and ■ where QA is small. Become.

第1図のサイリスタ点弧角制御回路14では(K2 +
KI (QRQM ) )QA Vc相当り、り”)−
イ’) スタ点弧角αを選択してサイリスタ装置7に点
弧信号を与えるよう忙作用するので、無効電力補償装置
11の無効電力出力Qoは Qo=(Kz+Kl(Qz  QM)’t ・9人とな
る。
In the thyristor firing angle control circuit 14 of FIG.
KI (QRQM)) QA Vc equivalent, ri”)-
b') Since the star firing angle α is selected and a firing signal is given to the thyristor device 7, the reactive power output Qo of the reactive power compensator 11 is Qo=(Kz+Kl(Qz QM)'t ・9 Become a person.

この結果、無効電力補償装置11の出力Qoは第2図(
b)の実線で示すような波形となり、第2図(blの点
線で示した従来の制御方式の場合に比べると、QAの小
さな領域でQoは大きな値を示し、最大無効電力補償容
量より小さなQAの値に対してはほぼ完全に補償できる
ようになる。
As a result, the output Qo of the reactive power compensator 11 is as shown in FIG.
The waveform becomes as shown by the solid line in b), and compared to the case of the conventional control method shown by the dotted line in Fig. 2 (bl), Qo shows a large value in a small QA region, and is smaller than the maximum reactive power compensation capacity. It becomes possible to almost completely compensate for the value of QA.

従って、第2図(C)の実線に示すように、本発明の場
合の制御方式における電源側の無効電力Q8はQAの小
さな領域では第2図(clに点線で示した従来の制御方
式の場合のQsK比べ小さくすることができ、無効電力
変動を小さくすると共に平均力率を向上させることがで
きる。
Therefore, as shown by the solid line in FIG. 2(C), the reactive power Q8 on the power supply side in the control method of the present invention is lower than that of the conventional control method shown in FIG. QsK can be made smaller than that of the case, and it is possible to reduce the reactive power fluctuation and improve the average power factor.

また、第2図(d)の実線で示すように本発明の制御方
式の場合のりアクドルの無効電力QRは、第2図(d)
の点線で示した従来の制御方式の場合のQRに比べ小さ
くすることができるので、前記第5図に示した無効電力
補償装置11内のおけるリアクトル6及びサイリスタ装
置7の運転損失を小さくすることができることになる。
Furthermore, as shown by the solid line in Fig. 2(d), the reactive power QR of the steering wheel in the case of the control method of the present invention is as shown in Fig. 2(d).
Since the QR can be made smaller than the QR in the case of the conventional control method shown by the dotted line, the operating loss of the reactor 6 and thyristor device 7 in the reactive power compensator 11 shown in FIG. 5 can be reduced. will be possible.

なお、上記実施例では無効電力検出値の移動バイアス値
に応じて補償ゲインを変化させた場合について示したが
、負荷の電流値や有効電力等の電気量の大きさの移動バ
イアス値に応じて補償ゲインを変えても良く、上記実施
例と同様の効果を奏する。
In addition, in the above embodiment, the case where the compensation gain is changed according to the moving bias value of the reactive power detection value is shown, but it is also possible to change the compensation gain according to the moving bias value of the electric quantity such as the current value of the load or the active power. The compensation gain may be changed, and the same effect as in the above embodiment can be obtained.

また、負荷の電気量の大きさの時間的変化量として、1
次遅れ回路16を用いて演算した移動バイアス値を用い
たが、第4図に示すように比較回路を用いて、電気量の
大きさく応じて段階的に変化させた移動バイアス値であ
っても良く、上記実施例と同様の効果を奏する。なお第
4図において、21は加算回路であり、図示例では、比
較回路20 a、  20 b、  20 cの3段階
の出力値に応じて、加算回路21の出力としての移動バ
イアス値QMは3段階の段階的変化をすることKなる。
Also, as the amount of time change in the amount of electricity of the load, 1
Although the moving bias value calculated using the next delay circuit 16 was used, it is also possible to use the moving bias value that is changed stepwise according to the magnitude of the electric quantity using the comparing circuit as shown in FIG. Good, the same effects as in the above embodiment can be achieved. In FIG. 4, 21 is an adder circuit, and in the illustrated example, the moving bias value QM as the output of the adder circuit 21 is 3 depending on the output values of the three stages of the comparator circuits 20a, 20b, and 20c. It is a step-by-step change.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、負荷の電気量の大き
さの移動バイアス値に応じて無効電力補償装置の補償ゲ
インを変えるようにしたので、補償後の平均力率を向上
することができると共に無効電力補償装置の構成要素で
あるサイリスタ装置とりアクドルの運転損失を低減する
ことができるという効果がある。
As described above, according to the present invention, since the compensation gain of the reactive power compensator is changed according to the moving bias value of the magnitude of the electrical quantity of the load, it is possible to improve the average power factor after compensation. This has the effect of reducing operating loss of the thyristor device and the accelerator, which are components of the reactive power compensator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による無効電力補償装置の
制御方式を示す回路図、第2図と第3図はこの発明の制
御方式の動作を説明する図、第4図は本発明の他の実施
例を示した図、第5図は無効電力補償装置の回路図、第
6図は従来の制御方式を示す回路図、第7図は従来の制
御方式の動作を説明する図である。 8は電流検出手段(電流変成器)、9は電圧検出手段(
電圧変成器)、10は制御回路、11は無効電力補償装
置、12は電気量演算回路(無効電力検出回路)、15
は可変ゲイン回路(乗算回路)、16は移動バイアス演
算回路(1次遅れ回路)、20.21は移動バイアス演
算回路(比較回路、加算回路)。 なお、図中同一符号は同−又は相当部分を示す。 特許出願人   三菱電機株式会社 (外2名) 第1図 12:無効電力検出回路ト 15:東V口外 16:−二〉(菰δ」挿へ、[ニ3プ戸?ト、第2図 (a) (C) (dン 第3図 (a) (b) 亀 第4図 第6図
FIG. 1 is a circuit diagram showing a control method of a reactive power compensator according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams explaining the operation of the control method of the present invention, and FIG. 5 is a circuit diagram of a reactive power compensator, FIG. 6 is a circuit diagram showing a conventional control method, and FIG. 7 is a diagram explaining the operation of the conventional control method. . 8 is a current detection means (current transformer), 9 is a voltage detection means (
voltage transformer), 10 is a control circuit, 11 is a reactive power compensator, 12 is an electrical quantity calculation circuit (reactive power detection circuit), 15
16 is a variable gain circuit (multiplication circuit), 16 is a moving bias calculation circuit (first-order delay circuit), and 20.21 is a moving bias calculation circuit (comparison circuit, addition circuit). Note that the same reference numerals in the figures indicate the same or equivalent parts. Patent applicant: Mitsubishi Electric Corporation (2 others) Fig. 1 12: Reactive power detection circuit (a) (C) (d) Figure 3 (a) (b) Figure 4 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)変動負荷に供給される電圧と電流に基づいて、無
効電力補償装置を制御する無効電力補償装置の制御方式
において、前記変動負荷の電圧及び電流を検出する電圧
及び電流検出手段と、前記の検出した電圧と電流から負
荷の電気量を演算する電気量演算回路と、前記電気量の
時間的変化に追随した移動バイアス量を演算する移動バ
イアス演算回路と、前記移動バイアス量の大きさに応じ
て制御ゲインを可変できる可変ゲイン回路とを有し、前
記電気量演算回路の出力に対する制御ゲインを、前記の
可変ゲイン回路により移動バイアス量に応じて変化させ
、無効電力出力を制御するようにしたことを特徴とする
無効電力補償装置の制御方式。
(1) In a control method for a reactive power compensator that controls a reactive power compensator based on voltage and current supplied to a fluctuating load, voltage and current detection means for detecting the voltage and current of the fluctuating load; an electrical quantity calculation circuit that calculates an electrical quantity of a load from the detected voltage and current; a moving bias computing circuit that computes a moving bias amount that follows temporal changes in the electrical quantity; and a variable gain circuit that can vary the control gain accordingly, and the variable gain circuit changes the control gain for the output of the electrical quantity calculation circuit in accordance with the amount of movement bias to control the reactive power output. A control method for a reactive power compensator characterized by:
(2)前記移動バイアス演算回路を1次遅れ回路で構成
したことを特徴とする特許請求の範囲第(1)項記載の
無効電力補償装置の制御方式。
(2) A control method for a reactive power compensator according to claim (1), characterized in that the moving bias calculation circuit is constituted by a first-order lag circuit.
(3)前記移動バイアス演算回路を複数の比較回路とそ
の出力を加算する加算回路で構成したことを特徴とする
特許請求の範囲第(1)項記載の無効電力補償装置の制
御方式。
(3) A control method for a reactive power compensator according to claim (1), wherein the moving bias calculation circuit is constituted by a plurality of comparison circuits and an addition circuit that adds the outputs of the comparison circuits.
JP60107218A 1985-05-20 1985-05-20 Controller for reactive power compensator Expired - Lifetime JPH07104739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107218A JPH07104739B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107218A JPH07104739B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Publications (2)

Publication Number Publication Date
JPS61264416A true JPS61264416A (en) 1986-11-22
JPH07104739B2 JPH07104739B2 (en) 1995-11-13

Family

ID=14453480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107218A Expired - Lifetime JPH07104739B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Country Status (1)

Country Link
JP (1) JPH07104739B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843519B2 (en) * 2007-02-09 2011-12-21 財団法人電力中央研究所 Voltage analysis method, apparatus and program
JP5545048B2 (en) * 2010-06-08 2014-07-09 富士電機株式会社 Control device for reactive power compensator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165926A (en) * 1983-03-08 1984-09-19 富士電機株式会社 Automatic sensitivity setting circuit of reactive power regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165926A (en) * 1983-03-08 1984-09-19 富士電機株式会社 Automatic sensitivity setting circuit of reactive power regulator

Also Published As

Publication number Publication date
JPH07104739B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JP2793327B2 (en) Reactive power compensator
JPS61264416A (en) Control system for reactive power compensating device
JP3343711B2 (en) Static var compensator
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JPS6035890B2 (en) circuit constant generator
JPH07104740B2 (en) Controller for reactive power compensator
JP2003324847A (en) Method and apparatus for compensating voltage flicker
JPH0417570A (en) Voltage control method for inverter
JPH07123700A (en) Controlling method for input oscillation of semiconductor power conversion device
JPH06261584A (en) Control device of ac motor
JPH0389860A (en) Power converter
RU2084066C1 (en) Power minimizer of thyristor-type reactive-power compensator final element
SU1119140A2 (en) Group frequency converter
JPH0251332A (en) Fault current compensator
RU2088015C1 (en) Method for controlling static reactive-power thyristor compensator
JPH07115770A (en) Control system for power converter
JPS6148724B2 (en)
JPS5910134B2 (en) power regulator
JPH06165385A (en) Power adjuster and controller
JPH08256480A (en) Controller of pwm inverter
JPH0477550B2 (en)
JPS6169335A (en) Controller of stationary reactive power control device
JPS6295618A (en) Reactive power compensating device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term