JPS60177565A - Operation method of fuel cell power generating system - Google Patents

Operation method of fuel cell power generating system

Info

Publication number
JPS60177565A
JPS60177565A JP59032384A JP3238484A JPS60177565A JP S60177565 A JPS60177565 A JP S60177565A JP 59032384 A JP59032384 A JP 59032384A JP 3238484 A JP3238484 A JP 3238484A JP S60177565 A JPS60177565 A JP S60177565A
Authority
JP
Japan
Prior art keywords
power generation
fuel cell
pressure
reaction gas
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59032384A
Other languages
Japanese (ja)
Inventor
Toshiaki Takemoto
嶽本 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59032384A priority Critical patent/JPS60177565A/en
Publication of JPS60177565A publication Critical patent/JPS60177565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent deterioration, caused by aggregation, of noble metal catalyst by controlling cell operation so as not to exceed a setting voltage of unit cell at which a noble metal catalyst is deteriorated by aggregation in low load operation. CONSTITUTION:An electric signal sent from an output detector 11 mounted in a cell main body 1 is inputted into a computing element 13, and an instruction is sent from the computing element 13 to a rotating controller 12 of a compressor 2c in an air supply line 2b by pressure pattern corresponding to a setting load. A setting pressure signal is sent to a cell inlet pressure controller 14 and a pressure control valve 15 is controlled so that setting pressure is kept. Operating pressure is controlled in low load operation so that unit cell voltage is made small by decreasing pressure. Thereby, cell voltage in low load operation can be decreased, and deterioration, caused by aggregation, of a noble metal catalyst in low load operation can be prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池発電システムの運転方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of operating a fuel cell power generation system.

〔発明の背景〕[Background of the invention]

第1図には一般的な燃料電池発電システムの従来例が示
されている。同図に示されているように燃料電池発電シ
ステムは電池本体1、この電池本体1に反応ガスを給排
する反応ガス供給系統2すなわち燃料を給排する燃料改
質供給系統2aおよび空気を給排する空気供給系統2b
、電池本体1の温度を制御する温度制御系統3等より構
成されている。そして電池本体1は貴金属触媒(白金ま
たは白金系合金)を有する一対のガス拡散電極間に電解
質(酸性電解質)を保持した単電池(いずれも図示せず
)から構成されている。なお同図において4.5は気水
分離器、6は水処理装置、7は空気供給ライン、8は燃
料供給ライン、9は燃料改質器、10はシフトコンバー
タである。
FIG. 1 shows a conventional example of a general fuel cell power generation system. As shown in the figure, the fuel cell power generation system includes a battery body 1, a reaction gas supply system 2 that supplies and discharges reaction gas to and from the battery body 1, that is, a fuel reforming supply system 2a that supplies and discharges fuel, and a fuel reforming supply system 2a that supplies and discharges air. Exhaust air supply system 2b
, a temperature control system 3 for controlling the temperature of the battery body 1, and the like. The battery body 1 is composed of a single cell (none of which is shown) in which an electrolyte (acidic electrolyte) is held between a pair of gas diffusion electrodes having a noble metal catalyst (platinum or a platinum-based alloy). In the figure, 4.5 is a steam separator, 6 is a water treatment device, 7 is an air supply line, 8 is a fuel supply line, 9 is a fuel reformer, and 10 is a shift converter.

このように構成された燃料電池発電システムで燃料電池
の一般的な電流密度−電圧特性およびこれに対応した電
流密度−出力特性の一例が第2図および第3図に示され
ている。第2図は縦軸に単電池の電圧である単セル電圧
をとり、横軸に電流密度をとって電流密度による単セル
電圧の変化特性を示したものであり、第3図は縦軸に単
セルの出力をとり、横軸に電流密度をとって電流密度に
よる単セルの出力の変化特性を示したものである。
Examples of general current density-voltage characteristics and corresponding current density-output characteristics of a fuel cell in a fuel cell power generation system configured as described above are shown in FIGS. 2 and 3. Figure 2 shows the change characteristics of the single cell voltage due to current density, with the vertical axis representing the single cell voltage and the horizontal axis representing the current density. The output of a single cell is taken, and the horizontal axis represents the current density to show the change characteristics of the output of the single cell depending on the current density.

これら両図に示されているように燃料電池においては低
負荷時には単セル電圧が高く、高負荷時にはその電圧が
低くなる。なお第2図においてSは定格点である。
As shown in both of these figures, in a fuel cell, the single cell voltage is high when the load is low, and the voltage is low when the load is high. In addition, in FIG. 2, S is the rated point.

ところでガス拡散電極の触媒である電極触媒に用いられ
る貴金属系触媒は、酸性電解液中の高温・高電位雰囲気
において貴金属粒子が凝集し、触媒活性の劣化を生じる
ことが知られており、白金触媒の場合には0.79V/
セルが単セルの許容電圧V1と云われている。従って同
図から明らかなように出力が01以下の低負荷時にはこ
の許容電圧v1を越える場合が生じるが、許容電圧v1
を越えると貴金属触媒が凝集劣化するようになる。
By the way, it is known that noble metal catalysts used in electrode catalysts, which are catalysts for gas diffusion electrodes, aggregate in the high temperature and high potential atmosphere of acidic electrolytes, causing deterioration of catalytic activity. In the case of 0.79V/
The cell is said to have an allowable voltage V1 of a single cell. Therefore, as is clear from the figure, when the output is under low load (01 or less), the allowable voltage v1 may be exceeded, but the allowable voltage v1
If this value is exceeded, the noble metal catalyst will coagulate and deteriorate.

この問題を解決するため従来の燃料電池発電システムに
おいては直流または交流側にダミー負荷を設け、系統の
要求負荷に関係なく単セル出力がセル許容電圧v1に達
する01以上の発電を行ない単セル電圧とりもなおさず
電池電圧の高電圧化を防止していた。このため要求負荷
が単セル出力01よシ低い場合にはその差分だけ無駄な
発電を行なうことになυ、熱効率が低下する。またこの
差分すなわち余剰分を燃料電池発電システム内で消費さ
せる場合でも、熱効率に寄与しない用途もあるため低負
荷での効率が悪かった。そしてまた系統側の事故などで
直流側はいつでも送電可能な状態を維持する、いわばホ
ットスタンバイモードの時に燃料電池は保護用のダミー
負荷、すなわち最低負荷で運転されるが、このモードで
の必要な負荷抵抗値が大きいという問題があった。
In order to solve this problem, in conventional fuel cell power generation systems, a dummy load is installed on the DC or AC side, and the single cell output is generated at 01 or higher, which reaches the cell allowable voltage v1, regardless of the required load of the system. This was to prevent the battery voltage from becoming too high. For this reason, if the required load is lower than the single cell output 01, power generation will be wasted by the difference υ, resulting in a decrease in thermal efficiency. Furthermore, even when this difference, that is, surplus, is consumed within the fuel cell power generation system, there are applications in which it does not contribute to thermal efficiency, resulting in poor efficiency at low loads. In addition, in the event of an accident on the grid side, the DC side remains ready to transmit power at any time, in what is called a hot standby mode, and the fuel cell is operated with a protective dummy load, that is, the lowest load. There was a problem that the load resistance value was large.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点に鑑みなされたものであシ、低負荷時
での貴金属触媒の凝集劣化防止を可能とした燃1!電池
発電システムの運転方法を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and is a fuel that makes it possible to prevent cohesive deterioration of precious metal catalysts at low loads. The purpose of this invention is to provide a method for operating a battery power generation system.

〔発明の概要〕[Summary of the invention]

すなわち本発明は貴金属触媒を有する一対のガス拡散電
極間に電解質を保持した単電池から構成される電池本体
およびこの電池本体に酸化剤、燃料の反応ガスを夫々給
排する反応ガス供給系統並びに前記電池本体の温度を制
御する温度制御系統を備え比燃料電池発電システムを、
低負荷運転時には前記貴金属触媒が凝集劣化を開始する
前記単電池の許容電圧を越えない制御手段をもって運転
させるようにしたことを特徴とするものであシ、これに
よって燃料電池発電システムは低負荷運転時でも貴金属
触媒が凝集劣化を生じない電池電圧で運転されるように
なる。
That is, the present invention provides a battery main body composed of a single cell that holds an electrolyte between a pair of gas diffusion electrodes having a noble metal catalyst, a reaction gas supply system for supplying and discharging reaction gases of an oxidizer and fuel to and from the battery main body, respectively, and the above-mentioned. A specific fuel cell power generation system equipped with a temperature control system that controls the temperature of the battery body,
The fuel cell power generation system is characterized in that during low load operation, the fuel cell power generation system is operated with a control means that does not exceed the permissible voltage of the single cell at which the precious metal catalyst starts coagulating and deteriorating. The noble metal catalyst can now be operated at a battery voltage that does not cause agglomeration degradation.

発明者はどのような制御手段が有効であるかを検討した
が、検討に当っては運転圧力、反応ガス分圧、ガス流量
(ガス利用率)、運転温度等に着目した。燃料電池発電
システムは一般に常圧よル高い圧力(4から6Kf/i
G程度)で運転されるが、電流密度が一定の場合の単セ
ル電圧の圧力依存性の一例が縦横に単セル電圧をとシ、
横転に圧力の対数をとって示した第4図に示されている
The inventor investigated what kind of control means would be effective, and focused on operating pressure, reaction gas partial pressure, gas flow rate (gas utilization rate), operating temperature, etc. Fuel cell power generation systems generally operate at higher pressures (4 to 6 Kf/i) than normal pressure.
An example of the pressure dependence of the single cell voltage when the current density is constant is when the single cell voltage is varied vertically and horizontally.
This is shown in FIG. 4, where the rollover is plotted as a logarithm of the pressure.

同図に示されているように電流密度が一定の場合に単セ
ル電圧は圧力の対数に比例して上昇している。従ってこ
れを上述の第2図および第3図のように単′電池の電流
密度−電圧特性および電流密度−出力特性を圧力をパラ
メータとして示すと第5図および第6図のように示され
る。第5図は圧力をパラメータとして縦横に単セル電圧
をとシ、横軸に電流密度をとって電流密度−電圧特性の
圧力依存性が、第6図は圧力をパラメータとして縦軸に
出力をとυ、横軸に電流密度をとって第5図に対応した
電流密度−出力の圧力依存性が夫々示されている。これ
ら両図から明らかなように定格圧力曲線piで25チ(
第6図のB点)の低負荷運転をすると、単セル電圧は第
5図の定格圧力曲線p1のA点の電圧となってセル許容
電圧■1を越えてしまう。そこで25チの低負荷で単電
池の許容電圧Vsを越えないような圧力(第6図の圧力
曲線p2のD点)をめ、この圧力以下で運転すれば単セ
ル電圧は第5図の圧力曲線p2の0点以下の電圧となっ
て低負荷でも許容電圧Vlを越えないので、貴金属触媒
の凝集劣化が防止できる。
As shown in the figure, when the current density is constant, the single cell voltage increases in proportion to the logarithm of the pressure. Therefore, when the current density-voltage characteristics and current density-output characteristics of a cell are shown using pressure as a parameter as shown in FIGS. 2 and 3 above, they are shown in FIGS. 5 and 6. Figure 5 shows the single cell voltage in the vertical and horizontal directions using pressure as a parameter, and the current density on the horizontal axis to show the pressure dependence of the current density-voltage characteristic. Figure 6 shows the pressure dependence of the current density-voltage characteristic with pressure as a parameter and the vertical axis shows the output. υ, current density is plotted on the horizontal axis, and the current density-output pressure dependence corresponding to FIG. 5 is shown. As is clear from these two figures, the rated pressure curve pi is 25 cm (
When operating at a low load at point B in FIG. 6, the single cell voltage becomes the voltage at point A on the rated pressure curve p1 in FIG. 5, exceeding the cell allowable voltage ■1. Therefore, we set a pressure (point D on the pressure curve p2 in Figure 6) that does not exceed the allowable voltage Vs of the single cell at a low load of 25 cm, and if we operate below this pressure, the single cell voltage will be the pressure shown in Figure 5. Since the voltage is below the 0 point of the curve p2 and does not exceed the allowable voltage Vl even under low load, agglomeration and deterioration of the noble metal catalyst can be prevented.

次いで反応ガス分圧について検討した。一般にり゛ン酸
型燃料電池では酸化剤として空気、燃料としてメタンを
主成分とする天然ガスを改質した水素リッチな改質ガス
が用いられるが、電池電圧は第7図に示されているよう
に空気中の酸素濃度や燃料中の水素濃度によって変化す
る。第7図縦軸に単セル電圧をとり、横軸に酸素、水素
濃度の対数をとって電流密度が一定の場合の酸素、水素
濃度による単セル電圧の変化特性を示したものである。
Next, we investigated the partial pressure of the reaction gas. In general, phosphoric acid fuel cells use air as the oxidant and hydrogen-rich reformed gas obtained by reforming natural gas whose main component is methane as the fuel.The cell voltage is shown in Figure 7. It changes depending on the oxygen concentration in the air and the hydrogen concentration in the fuel. FIG. 7 shows the change characteristics of the single cell voltage depending on the oxygen and hydrogen concentrations when the current density is constant, with the vertical axis representing the single cell voltage and the horizontal axis representing the logarithm of the oxygen and hydrogen concentrations.

同図から明らかなように単セル電圧は酸素、水素濃度の
対数に比例して酸素は直線G1水素は直線Hのよりに上
昇している。従って上述の圧力の場合と同様にこれら酸
素、水素のガス濃度をパラメータとして上述の第5図お
よび第6図と同様な関係特性曲線(図示せず)が得られ
、圧力の場合と同様な手法によシ低負荷での最適な水素
濃度、酸素濃度またはこれらの組合わせが決定できる。
As is clear from the figure, the single cell voltage is proportional to the logarithm of the oxygen and hydrogen concentrations, and increases along the straight line G for oxygen and the straight line H for hydrogen. Therefore, as in the case of pressure, a relationship characteristic curve (not shown) similar to that shown in Figs. The optimal hydrogen concentration, oxygen concentration, or a combination thereof at low loads can be determined.

更にガス流量について検討した。燃料電池では実際の電
流を取9出すのに必要なファラデーの法則から計算され
る理論ガス量よシも多く、酸素、水素などの反応ガスが
電池内に供給される。この理論址と実際のガス供給量と
の比をガスの利用率と称し、このガス利用率と単セル賦
圧との関係を第8図に示した。これは縦軸に幣セル電圧
をと9、横軸にガス利用率およびガス流量をとって電流
密度が一定の場合のガス利用率またはガス流量による単
セル電圧の変化特性を示したものであるが、ガス利用率
は図中右側にゆくに従って大きく、ガス流量は図中右側
にゆくに従って小さくなるようにして図示した。同図か
ら明らかなように単セル電圧はガス流−駄の減少と共に
、酸素は曲線GO1水素は曲線H6のように共に低下し
、またガス利用率の増加と共に、共に低下する。従って
この場合も上述の圧力の場合と同様にこれらガス流量ま
たはガス利用率をパラメータとして上述の第5図および
第6図と同様な関係特性曲線(図示せず)が得られ、圧
力の場合と同様な手法により低負荷での最適な空気利用
率、燃料利用率またはこれらの組合わせが決定できる。
Furthermore, we investigated the gas flow rate. In fuel cells, reactant gases such as oxygen and hydrogen are supplied into the cell, which is greater than the theoretical amount of gas calculated from Faraday's law required to draw an actual current. The ratio between this theoretical value and the actual gas supply amount is called the gas utilization rate, and the relationship between this gas utilization rate and the single cell pressure is shown in FIG. This shows the change characteristics of the single cell voltage depending on the gas utilization rate or gas flow rate when the current density is constant, with the cell voltage on the vertical axis and the gas utilization rate and gas flow rate on the horizontal axis. However, the gas utilization rate increases as it goes to the right in the diagram, and the gas flow rate decreases as it goes to the right in the diagram. As is clear from the figure, the single cell voltage decreases as the gas flow decreases, as shown by curve GO1 for oxygen and curve H6 for hydrogen, and also decreases as the gas utilization rate increases. Therefore, in this case as well, the same relational characteristic curves (not shown) as in Figs. 5 and 6 above can be obtained using these gas flow rates or gas utilization rates as parameters, as in the case of pressure. Similar techniques can be used to determine optimal air utilization, fuel utilization, or a combination thereof at low loads.

更に運転温度である電池温度について検討した。Furthermore, we investigated the battery temperature, which is the operating temperature.

燃料電池での電気化学的反応は発熱反応であシ、電池温
度を一定に制御するために冷却系統が設けられているが
、電池電圧と電池温度との関係が第9図に示されている
。第9図は縦軸に電池電圧をとり、横軸に電池温度をと
って電池温度と電圧との関係を示したものであるが、同
図から明らかなように、ある温度範囲で電池電圧は電池
温度に比例して上昇する。従ってこの場合も上述の圧力
の場合と同様に電池温度をパラメータとして上述の第5
図および第6図と同様な関係特性曲線(図示せず)が得
られ、圧力の場合と同様な手法によシ低負荷での電池電
圧の上昇を抑制した電池温度が決定できる。
The electrochemical reaction in a fuel cell is an exothermic reaction, and a cooling system is provided to keep the cell temperature constant. Figure 9 shows the relationship between cell voltage and cell temperature. . Figure 9 shows the relationship between battery temperature and voltage, with battery voltage on the vertical axis and battery temperature on the horizontal axis.As is clear from the figure, the battery voltage varies within a certain temperature range. Increases in proportion to battery temperature. Therefore, in this case as well, the battery temperature is used as a parameter as in the case of the above-mentioned pressure.
A relationship characteristic curve (not shown) similar to that shown in FIG. 6 and FIG. 6 is obtained, and the battery temperature that suppresses the rise in battery voltage at low loads can be determined using the same method as in the case of pressure.

これらのことからこれら圧力、反応ガス分圧、ガス流量
および運転温度等の制御手段が、低負荷運転時に貴金属
触媒が凝集劣化を開始する単電池の許容電圧を越えない
制御手段として有効でアp1この制御手段をもって運転
させれば低負荷運転時でも効率よく貴金属触媒を凝集劣
化させずに運転できることが確められた。そこで本発明
では燃料電池発電システムを、低負荷運転時には貴金属
触媒が凝集劣化を開始する単電池の許容電圧を越えない
制御手段をもって運転させるようにした。このようにす
ることによシ低負荷時での貴金属触媒の凝集劣化防止を
可能とした燃料電池発車システムの運転方法を得ること
を可能としたものである。
For these reasons, control means for controlling pressure, reaction gas partial pressure, gas flow rate, operating temperature, etc. are effective as control means to prevent the noble metal catalyst from exceeding the permissible voltage of the cell, which causes coagulation deterioration during low-load operation. It has been confirmed that if the system is operated with this control means, the system can be operated efficiently even during low load operation without coagulating and deteriorating the precious metal catalyst. Therefore, in the present invention, the fuel cell power generation system is operated with a control means that does not exceed the permissible voltage of the single cell at which the noble metal catalyst starts to coagulate and deteriorate during low load operation. By doing so, it is possible to obtain a method of operating a fuel cell starting system that makes it possible to prevent cohesive deterioration of the precious metal catalyst during low load conditions.

〔発明の実施例〕[Embodiments of the invention]

以下、図示した実施例に基づいて本発明を説明する。第
10図には本発明の一実施例の制御手段が示されている
。なお従来と同じ部品には同じ符号を付したもので説明
を省略する。本実施例は制御手段に上述の運転圧力を用
い、空気供給系統2bの圧力を□低下させた場合である
The present invention will be explained below based on the illustrated embodiments. FIG. 10 shows a control means according to an embodiment of the present invention. Note that parts that are the same as those in the prior art are designated by the same reference numerals, and explanations thereof will be omitted. In this embodiment, the above operating pressure is used for the control means and the pressure of the air supply system 2b is reduced by □.

すなわち電池本体1に出力検出器11を、空気供給系統
2bのコンプレッサ2Cには回転数制御装置12を設け
、これら回転数制御装置12と出力検出器11との間に
は演算器13を設けた。このようにすることによシ図中
点線表示の電気信号回路により電池本体1に取シ付けた
出力検出器11からの電気信号を演算器13に取シ込み
、演算器13から予め上述の方法(圧力を制御手段とし
て検討した場合の方法)によシ設定された負荷に応じた
圧力バターンにより、コンプレッサ2Cの回転数制御装
置12へ回転数の指令を出すと共に、電池入口圧力制御
装置14へ設定圧力の信号を出し、圧力調節バルブ15
によって設定圧力になるように制御される。また中央制
御系統16から予めスケジューリングされた低負荷運転
の指令が演算器13に入力される場合も同様に、コンプ
レッサ2Cの回転数を制御することなどによシ運転圧力
が制御される。
That is, an output detector 11 was provided in the battery body 1, a rotation speed control device 12 was provided in the compressor 2C of the air supply system 2b, and an arithmetic unit 13 was provided between the rotation speed control device 12 and the output detector 11. . By doing this, the electrical signal from the output detector 11 attached to the battery body 1 is inputted to the computing unit 13 by the electrical signal circuit indicated by the dotted line in the figure, and the above-mentioned method is received from the computing unit 13 in advance. (Method when considering pressure as a control means) A pressure pattern corresponding to the set load is used to issue a rotation speed command to the rotation speed control device 12 of the compressor 2C, and to the battery inlet pressure control device 14. A signal of the set pressure is output, and the pressure adjustment valve 15
The pressure is controlled to the set pressure by Further, when a pre-scheduled low-load operation command is input from the central control system 16 to the computing unit 13, the operating pressure is similarly controlled by controlling the rotational speed of the compressor 2C.

この演算器13の入出力特性の例を第1図に示した。こ
れは縦軸に電池圧力および単セル電圧をとシ、横軸に電
池出力をとって電池出力による電池圧力および単セル電
圧の変化特性を示したものであるが、同図に示されてい
る電池圧力曲線に1単セル電圧曲iLのように低負荷時
においては電池圧力を小さくして単セル電圧が小さくな
るように設定しである。このようにして運転圧力を制御
することによp1低負荷時の電池電圧を低くすることが
できるようになって、低負荷時での貴金属触媒の凝集劣
化防止を可能とした燃料電池発電システムの運転方法を
得ることができる。
An example of the input/output characteristics of this arithmetic unit 13 is shown in FIG. This shows the change characteristics of battery pressure and single cell voltage due to battery output, with battery pressure and single cell voltage plotted on the vertical axis and battery output plotted on the horizontal axis. As shown in the single cell voltage curve iL on the battery pressure curve, the battery pressure is set to be low and the single cell voltage is set to be low during low load. By controlling the operating pressure in this way, it is possible to lower the cell voltage during low loads on p1, and this fuel cell power generation system has made it possible to prevent cohesive deterioration of precious metal catalysts during low loads. You can learn how to drive.

なお一般的な燃料電池発電システムの燃料改質供給系統
にはコンプレッサは無いが、空気供給系統と同調させ、
負荷に応じて投入原料ガスの元圧制御などにより圧力制
御が実施できる。また燃料改質供給系統は低圧力で水素
生成の効率が高くなる効果もあシ、高効率のまま貴金属
触媒の劣化を防止した低負荷運転ができるようになる。
Although there is no compressor in the fuel reforming supply system of a general fuel cell power generation system, it is synchronized with the air supply system,
Pressure control can be performed by controlling the source pressure of input raw material gas depending on the load. In addition, the fuel reforming supply system has the effect of increasing the efficiency of hydrogen generation at low pressure, allowing low-load operation while maintaining high efficiency while preventing deterioration of the precious metal catalyst.

第12図には本発明の他の実施例の制御手段が示されて
いる。本実施例は制御手段に上述の反応ガス分圧を用い
た場合で、電池本体1から排出されたガスを再度電池本
体1入口へ、リサイクルして、反応ガス成分の濃度を下
げるようにしたものである。
FIG. 12 shows control means of another embodiment of the invention. This example uses the above-mentioned reactive gas partial pressure as the control means, and the gas discharged from the battery body 1 is recycled again to the inlet of the battery body 1 to reduce the concentration of the reactive gas components. It is.

すなわち電池本体1に直列に出力検出器11および演算
器13aを、この演算器13aと気水分離器4との間に
ストップパルプ17を、このストップパルプ17と空気
供給ライン7との間に直列にリサイクルブロワ−18、
流量計19および流量制御パルプ20を、この流量計1
9と演算器13aとの間に流量制御装置21を夫々設け
た。
That is, an output detector 11 and a calculator 13a are connected in series to the battery body 1, a stop pulp 17 is connected in series between the calculator 13a and the steam/water separator 4, and a stop pulp 17 is connected in series between the stop pulp 17 and the air supply line 7. Recycle blower 18,
The flow meter 19 and the flow control pulp 20 are connected to this flow meter 1.
9 and the computing unit 13a, a flow rate control device 21 was provided, respectively.

このようにすることによシ図中点線表示の電気信号回路
によって通常は空気供給ライン7から供給された空気は
電池本体1を出て気水分離器4で生成水が除去された後
に燃料改質器に供給されるが、′電池本体1が低負荷運
転になったことを出力検出器11で検出するか、中央制
御系統16から負荷低減の先行指令が演算器13aに送
られると、ストップパルプ17が開き、リサイクルブロ
ワ−18が作動し、負荷に応じた演算器13Hのリサイ
クルガス量指令に従って流量計19、流量制御装置21
および流量制御パルプ20によってリサイクル量すなわ
ち酸素濃度が自動制御される。
By doing this, the air normally supplied from the air supply line 7 leaves the battery body 1 by the electrical signal circuit indicated by the dotted line in the figure, and after the generated water is removed by the steam/water separator 4, the fuel is reformed. However, when the output detector 11 detects that the battery main body 1 is in low-load operation, or a preliminary command to reduce the load is sent from the central control system 16 to the calculator 13a, the power supply is stopped. The pulp 17 opens, the recycle blower 18 operates, and the flow meter 19 and flow control device 21 operate according to the recycle gas amount command from the computing unit 13H according to the load.
The amount of recycle, that is, the oxygen concentration, is automatically controlled by the flow rate control pulp 20.

この演算器13aの入出力の例を第13図に、これに対
応した供給空気中の酸素濃度を第14図に示した。すな
わち第13図は縦軸に反応ガスのリサイクル比をと9、
横軸に電池出力をとって電池出力と反応ガスのリサイク
ル比との関係を示したものであり、第14図は縦軸に供
給空気中の酸素濃度をとシ、横軸に電池出力をとって電
池出力による酸素濃度の変化特性を示したものである。
FIG. 13 shows an example of the input/output of the arithmetic unit 13a, and FIG. 14 shows the corresponding oxygen concentration in the supplied air. In other words, in Figure 13, the vertical axis represents the recycle ratio of the reactant gas, and 9.
The horizontal axis shows the battery output and the relationship between the battery output and the recycling ratio of the reaction gas. Figure 14 shows the relationship between the battery output and the reaction gas recycling ratio, with the vertical axis representing the oxygen concentration in the supplied air and the horizontal axis representing the battery output. This figure shows the change characteristics of oxygen concentration depending on battery output.

同図に示されているように排出ガスをリサイクルして低
負荷時の反応ガスである酸素の濃度を下げるように設定
しておる。このようにして排出ガスをリサイクルして低
負荷時の反応ガスの濃度を下げることにより、低負荷時
の電池電圧を低くすることができるようになって、前述
の場合と同様な作用効果を奏することができる。
As shown in the figure, the exhaust gas is recycled to reduce the concentration of oxygen, which is a reactive gas, at low loads. In this way, by recycling the exhaust gas and lowering the concentration of reaction gas at low loads, it becomes possible to lower the battery voltage at low loads, producing the same effect as in the case described above. be able to.

なお本実施例では空気供給ラインの場合について説明し
たが、燃料供給ラインについてもこれと同様にしてリサ
イクル制御をすることができる。
In this embodiment, the case of the air supply line has been described, but the fuel supply line can also be subjected to recycling control in the same manner.

第15図には本発明の更に他の実施例の制御手段が示さ
れている。本実施例は制御手段に前述の場合と同様に反
応ガス分圧を用いた場合であるが、リサイクルをしない
で反応ガスの成分の濃度を下げた場合である。同図に示
されている燃料供給系統で燃料供給ライン8においては
、天然ガスなどの原料ガスが燃料改質器9で水蒸気を加
えて改質する新開水蒸気改質されて水素リッチなガスと
なり、さらに−酸化炭素を除去するためのシフトコンバ
ータ10、熱交換器22およびガス中の水魚気分をとっ
て水素濃度を高くするための気水分離器5を通って電池
本体lに供給される。この気水分離器5でのガス温度は
熱交換器22に供給される冷却水23の量で制御され、
この気水分離器5でのガス温度が低い程水素濃度の高い
燃料が得ら5の温度を上げることにより燃料中の水蒸気
濃度が高くなシ、水素濃度を下げることができるが、本
実施例では電池本体1愕直列に出力検出器11および演
算器13bを設けたので、図中点線表示の電気信号回路
によって電池本体1が低負荷運転 jになったことを出
力検出器11で検出するか、中央制御系統16から負荷
低減の先行指令が演算器13bに送られると、予め設定
された負荷と水素濃度とからめた気水分離器5の温度と
の関係に従ッて温度制御器24および冷却水流量調節パ
ルプ25によシ気水分離器5の温度が上げられる。
FIG. 15 shows control means of still another embodiment of the present invention. In this example, the partial pressure of the reactant gas is used as the control means as in the case described above, but the concentration of the components of the reactant gas is lowered without recycling. In the fuel supply system shown in the same figure, in the fuel supply line 8, raw material gas such as natural gas is reformed by adding steam in the fuel reformer 9, and becomes a hydrogen-rich gas. Further, the gas is supplied to the battery main body 1 through a shift converter 10 for removing carbon oxide, a heat exchanger 22, and a steam separator 5 for increasing the hydrogen concentration by removing water from the gas. The gas temperature in this steam-water separator 5 is controlled by the amount of cooling water 23 supplied to the heat exchanger 22,
The lower the gas temperature in the steam/water separator 5 is, the higher the hydrogen concentration can be obtained. By increasing the temperature in the steam separator 5, the water vapor concentration in the fuel can be kept high and the hydrogen concentration can be lowered. Now, since the output detector 11 and the arithmetic unit 13b are installed in series with the battery body 1, how can the output detector 11 detect that the battery body 1 is in low-load operation using the electrical signal circuit indicated by the dotted line in the figure? When the advance command for load reduction is sent from the central control system 16 to the computing unit 13b, the temperature controller 24 and The temperature of the steam water separator 5 is raised by the cooling water flow rate regulating pulp 25.

この演算器13bの入出力の例を第16図に示したが、
これは縦軸に気水分離器の温度をとり、横軸に電池出力
をとって電池出力による気水分離器の温度変化を示した
ものである。同図から明らかなように低負荷時における
気水分離器の温度が高くなるように設定しである。この
ようにして燃料入口の気水分離器の温度を制御して燃料
中の水素濃度を下げることによシ、低負荷時の電池電圧
を低くすることができるようになって、前述の場合と同
様な作用効果を奏することができる。
An example of the input and output of this arithmetic unit 13b is shown in FIG.
This shows the temperature change of the steam/water separator depending on the battery output, with the vertical axis representing the temperature of the steam/water separator and the horizontal axis representing the battery output. As is clear from the figure, the temperature of the steam/water separator is set to be high when the load is low. In this way, by controlling the temperature of the steam-water separator at the fuel inlet and lowering the hydrogen concentration in the fuel, the battery voltage at low loads can be lowered, which is different from the case described above. Similar effects can be achieved.

第17図には本発明の更に他の実施例の制御手段が示さ
れている。本実施例は上述のガス流量(ガス利用率)を
用いた場合である。空気供給ライン7からの空気はガス
流量計26、流量調節バルブ27を通って電池本体1に
供給され、燃料供給ライン8からの燃料も同様にガス流
〜緻計28、流量調節バルブ29を通って電池本体1に
供給さ−れるが、本実施例では電池本体1に直列に出力
検出器11および演算器13Cを設けたので図中点線表
示の電気信号回路によって、電池本体1が低負荷運転に
なったことを出力検出器11で検出するか、中央制御系
統16から負荷低減の先行指令が演算器13Cに送られ
ると、予め演算器13cに設定された負荷とガス流量と
の関係に従ってガス流量制御器30,31、ガス流量計
26.28および流量調節バルブ27.29によってガ
ス流量が制御される。
FIG. 17 shows control means of still another embodiment of the present invention. This example is a case where the above-mentioned gas flow rate (gas utilization rate) is used. Air from the air supply line 7 is supplied to the battery body 1 through a gas flow meter 26 and a flow rate adjustment valve 27, and fuel from the fuel supply line 8 is similarly supplied through a gas flow meter 28 and a flow rate adjustment valve 29. However, in this embodiment, since the output detector 11 and the arithmetic unit 13C are provided in series with the battery body 1, the electric signal circuit indicated by the dotted line in the figure allows the battery body 1 to operate under low load. When the output detector 11 detects that the load has become low, or when a preliminary load reduction command is sent from the central control system 16 to the computing unit 13C, the gas is The gas flow rate is controlled by flow controllers 30, 31, gas flow meters 26.28, and flow control valves 27.29.

この演算器13Cの入出力の例を第18図に示したが、
これは縦軸にガス利用率およびガス供給量をと9、横軸
に電池出力をとって電池出力によるガス利用率およびガ
ス供給量の変化を示したものである。同図のガス利用率
曲線N1ガス供給量曲線Mから明らかなように低負荷時
におけるガス供給量を低くしてガス利用率が大きくなる
ように設定しである。このようにして電池本体へ供給さ
れるガス量を制御して低負荷時のガス利用率を上げるこ
とによシ、低負荷時の電池電圧の上昇を抑制することが
できるよつになって、前述の場合と同様な作用効果を秦
することができる。
An example of the input/output of this arithmetic unit 13C is shown in FIG.
This graph shows the gas utilization rate and gas supply amount on the vertical axis, and the battery output on the horizontal axis, showing changes in the gas utilization rate and gas supply amount depending on the battery output. As is clear from the gas utilization rate curve N1 and the gas supply amount curve M in the figure, the gas supply rate is set to be low during low load to increase the gas utilization rate. By controlling the amount of gas supplied to the battery body in this way and increasing the gas utilization rate during low loads, it is now possible to suppress the rise in battery voltage during low loads. The same effect as in the case described above can be achieved.

第19図には本発明の更に他の実施例の制御手段が示さ
れている。本実施例は上述の電池温度(運転温度)を用
いた場合である。電池冷却系統は電池本体1内に積層さ
れている冷却器32、冷却水温度検出器33、冷却水温
度制御装置34、冷却水流量調節パルプ35、冷却水循
環ポンプ36およびスチームセパレータ37等から構成
されており、スチームセパレータ37で発生する水蒸気
を燃料の水蒸気改質に用いている。本実施例ではこのよ
うに構成された電池冷却系統の電池本体1に直列に出力
検出器11および演算器13dを設けたので図中点線表
示の電気信号回路によって、電池本体1が低負荷運転に
なったことを出力検出器11で検出するか、中央制御系
統16から負荷低減の先行指令が演算器13dに送られ
ると、予め演算器13dに設定された負荷と電池温度と
の関係に従って冷却水温度検出器33、冷却水温度制御
装置34および冷却水流量調節バルブ35によって冷却
水流量を増やし、電池温度が下げられる。
FIG. 19 shows control means of still another embodiment of the present invention. This example is a case where the above-mentioned battery temperature (operating temperature) is used. The battery cooling system is composed of a cooler 32, a cooling water temperature detector 33, a cooling water temperature control device 34, a cooling water flow rate regulating pulp 35, a cooling water circulation pump 36, a steam separator 37, etc., which are stacked inside the battery body 1. The steam generated in the steam separator 37 is used for steam reforming of fuel. In this embodiment, the output detector 11 and the arithmetic unit 13d are provided in series with the battery body 1 of the battery cooling system configured as described above, so that the battery body 1 can be operated under low load by the electric signal circuit indicated by the dotted line in the figure. When the output detector 11 detects that this has occurred, or when a preliminary load reduction command is sent from the central control system 16 to the computing unit 13d, the cooling water is turned off according to the relationship between the load and battery temperature set in advance in the computing unit 13d. The temperature detector 33, the cooling water temperature control device 34, and the cooling water flow rate adjustment valve 35 increase the cooling water flow rate to lower the battery temperature.

この演算器13dの入出力の例を第20図に示したが、
これは縦軸に電池温度および冷却水流量をとシ、横軸に
電池出力をとって電池出力による電池温度および冷却水
流量の変化を示したものである。同図の電池温度曲線P
1冷却水流量曲線Qから明らかなように、低負荷時にお
ける冷却水流量を大きくして電池温度が低くなるように
設定しである。このようにして冷却水流量を制御して低
負荷時の電池温度を下げることによシ、低負荷時の電池
電圧が下げられるようになるのみならず、スチームセパ
レータでのスチーム発生量を低負荷時に減少させること
ができ、余剰スチーム量が低減できる。
An example of the input/output of this arithmetic unit 13d is shown in FIG.
This shows battery temperature and cooling water flow rate on the vertical axis and battery output on the horizontal axis, showing changes in battery temperature and cooling water flow rate due to battery output. Battery temperature curve P in the same figure
1. As is clear from the cooling water flow rate curve Q, the cooling water flow rate is set to be large during low load to lower the battery temperature. In this way, by controlling the cooling water flow rate and lowering the battery temperature at low loads, it is possible to not only lower the battery voltage at low loads, but also to reduce the amount of steam generated in the steam separator. This can reduce the amount of excess steam.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は低負荷時においても貴金属触媒が
凝集劣化をしない電池電圧で運転することができるよう
になって、低負荷時における貴金属触媒の凝集劣化が防
止されるようになシ、低負荷時での貴金属触媒の凝集劣
化防止を可能とし念燃料電池発電システムの運転方法を
得ることができる。
As described above, the present invention enables operation at a battery voltage that does not cause agglomeration deterioration of the precious metal catalyst even under low load, and prevents agglomeration deterioration of the noble metal catalyst during low load. It is possible to obtain a method for operating a fuel cell power generation system that makes it possible to prevent agglomeration and deterioration of precious metal catalysts at low loads.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の燃料電池発電システムの運転方法による
発電システムの構成図、第2図は従来の燃料電池発電シ
ステムの運転方法の燃料電池の電流密度−直圧特性図、
第3図は第2図に対応した電流密度−出力特性図、第4
図は燃料電池発電システムの運転方法の電池圧力と電池
電圧との関係を示す特性図、第5図は燃料電池発電シス
テムの運転方法の電流密度−電圧特性の圧力依存性を示
す説明図、第6図は第5図に対応した環流密度−出力特
性の圧力依存性を示す説明図、第7図は燃料電池発電シ
ステムの運転方法のガス濃度と電池電圧との関係を示す
特性図、第8図は燃料電池発電システムの運転方法のガ
ス流量およびガス利用率と電池電圧との関係を示す特性
図、第9図は燃料電池発電システムの運転方法の電池温
度と電池電圧との関係を示す特性図、第10図は本発明
の燃料電池発電システムの運転方法の一実施例の空気圧
力制御による運転を示す空気圧力制御系統図、第11図
は第10図に対応した演算器の入出力特性図、第12図
は本発明の燃料電池発電システムの運転方法の他の実施
例の空気供給制御による運転を示す空気供給制御系統図
、第13図は第12図に対応した演算器の入出力特性図
、第14図は第13図に対応した濃度制御結果を示す電
池出力−酸素濃度特性図、第15図は本発明の燃料電池
発電システムの運転方法の更に他の実施例の燃料供給制
御による運転を示す燃料供給制御系統図、第16図は第
15図に対応した演算器の入出力特性図、第17図は本
発明の燃料電池発電システムの運転方法の更に他の実施
例の空気および燃料供給制御による運転を示す空気およ
び燃料供給制御系統図、第18図は第17図に対応した
演算器の入出力特性および制御結果を示す特性図、第1
9図は本発明の燃料電池発電システムの運転方法の更に
他の実施例の電池冷却制御による運転を示す電池冷却制
御系統図、第20図は第19図に対応した演算器の入出
力特性および制御結果を示す特性図である。 1・・・電池本体、2・・・反応ガス給排系統、2a・
・・燃料改質供給系統、2b・・・空気供給系統、3・
・・温度制御系統、4,5・・・気水分離器、6・・・
水処理装置、7・・・空気供給ライン、8・・・燃料供
給ライン、9・・・燃料改質器、10・・・シフトコン
バータ、11・・・出力検出器、12・・・回転数制御
装置、13,13a。 13b、13C,13d・・・演算器、16・・・中央
制御系統、17・・・ストップバルブ、18・・・リサ
イクルブロワ−119・・・流量計、20・・・流量制
御バルブ、21・・・流量制御装置、23・・・冷却水
、25・・・冷却水流量調節バルブ、26.28・・・
ガス流量計、30.31・・・ガス流量制御器、32・
・・冷却器、34・・・冷却水温度制御装置、35・・
・冷却水流量調節バルブ、37・・・スチームセパレー
タ。 代理人 弁理士 高橋明夫く 活?霞 電ンIJ 、鍬 高70 電氾渫戻 高lO口 ?C 活!1霧 電り己二力(乞) 消13I2] ; コ 右/412] 電把云力(ye> 冶1S(2] γ も160 電う二ご力(z) め11 J お18 X 電工上力(%)
Figure 1 is a configuration diagram of a power generation system according to a conventional fuel cell power generation system operation method, and Figure 2 is a fuel cell current density-direct pressure characteristic diagram according to a conventional fuel cell power generation system operation method.
Figure 3 is a current density-output characteristic diagram corresponding to Figure 2;
The figure is a characteristic diagram showing the relationship between cell pressure and battery voltage in the operating method of the fuel cell power generation system. FIG. 6 is an explanatory diagram showing the pressure dependence of the reflux density-output characteristic corresponding to FIG. The figure is a characteristic diagram showing the relationship between gas flow rate, gas utilization rate, and battery voltage depending on the operating method of the fuel cell power generation system, and Figure 9 is the characteristic diagram showing the relationship between battery temperature and battery voltage depending on the operating method of the fuel cell power generation system. 10 is an air pressure control system diagram showing operation by air pressure control in an embodiment of the operating method of the fuel cell power generation system of the present invention, and FIG. 11 is the input/output characteristics of the computing unit corresponding to FIG. 10. Figure 12 is an air supply control system diagram showing operation by air supply control in another embodiment of the operating method of the fuel cell power generation system of the present invention, and Figure 13 is the input/output of the computing unit corresponding to Figure 12. A characteristic diagram, FIG. 14 is a cell output-oxygen concentration characteristic diagram showing the concentration control results corresponding to FIG. 13, and FIG. 15 is a fuel supply control of still another embodiment of the operating method of the fuel cell power generation system of the present invention. 16 is an input/output characteristic diagram of the computing unit corresponding to FIG. 15, and FIG. 17 is a fuel supply control system diagram showing the operation according to the present invention. and an air and fuel supply control system diagram showing operation by fuel supply control.
FIG. 9 is a battery cooling control system diagram showing operation by battery cooling control in still another embodiment of the operating method of the fuel cell power generation system of the present invention, and FIG. 20 is a diagram showing the input/output characteristics of the computing unit and FIG. 3 is a characteristic diagram showing control results. 1... Battery body, 2... Reaction gas supply and exhaust system, 2a.
...Fuel reforming supply system, 2b...Air supply system, 3.
...Temperature control system, 4, 5...Steam water separator, 6...
Water treatment device, 7... Air supply line, 8... Fuel supply line, 9... Fuel reformer, 10... Shift converter, 11... Output detector, 12... Rotation speed Control device, 13, 13a. 13b, 13C, 13d... Arithmetic unit, 16... Central control system, 17... Stop valve, 18... Recycle blower-119... Flow meter, 20... Flow rate control valve, 21... ...Flow rate control device, 23...Cooling water, 25...Cooling water flow rate adjustment valve, 26.28...
Gas flow meter, 30.31... Gas flow controller, 32.
...Cooler, 34...Cooling water temperature control device, 35...
・Cooling water flow rate adjustment valve, 37...Steam separator. Agent Patent Attorney Akio Takahashi active? Kasumi Den IJ, hoe height 70 Den flood return high lO mouth? C Live! 1 mist electric power self 2 power (begging) erase 13I2]; Ko right / 412] electric grip power (ye> ji 1S (2) γ also 160 electric power (z) me11 J 18 X electrician Power(%)

Claims (1)

【特許請求の範囲】 1、貴金属触媒を有する一対のガス拡散電極間に電解質
を保持した単電池から構成される電池本体およびこの電
池本体に酸化剤、燃料の反応ガスを夫々給排する反応ガ
ス供給系統並びに前記電池本体の温度を制御する温度制
御系統を備え念燃料電池発電システムを、低負荷運転時
には前記貴金属触媒が凝集劣化を開始する前記単電池の
許容電圧を越えない制御手段をもって運転させるように
したことを特徴とする燃料電池発電システムの運転方法
。 2、前記制御手段が、前記反応ガス供給系統のガス圧力
を低下させたものである特許請求の範囲第1項記載の燃
料電池発電システムの運転方法。 3、前記制御手段が、前記反応ガスの濃度を前記反応ガ
ス供給系統から排出された前記反応ガスを前記反応ガス
供給系統ヘリサイクルする、または前記反応ガス供給系
統に不活性ガスを混入して低下させたものである特許請
求の範囲第1項記載の燃料電池発電システムの運転方法
。 4、前記制御手段が、前記反応ガス供給系統からの前記
反応ガスの供給量を減らして前記反応ガスの利用率をあ
げたものでおる特許請求の範囲第1項記載の燃料電池発
電システムの運転方法。 5、前記制御手段が、前記温度制御系統の前記電池本体
の運転温度を低下させたものである特許請求の範囲第1
項記載の燃料電池発電システムの運転方法。 6、前記貴金属触媒が、白金または白金系合金である特
許請求の範囲第1項から第5項のいずれかに記載の燃料
!池発電システムの運転方法。 7、前記電解質が、酸性電解質である特許請求の範囲第
1項から第5項のいずれかに記載の燃料電池発電システ
ムの運転方法。
[Scope of Claims] 1. A battery body consisting of a unit cell that holds an electrolyte between a pair of gas diffusion electrodes having a noble metal catalyst, and a reaction gas for supplying and exhausting reactive gases of an oxidizer and fuel to and from the battery body, respectively. A fuel cell power generation system equipped with a temperature control system for controlling the temperature of a supply system and the battery body is operated with a control means that does not exceed the permissible voltage of the single cell at which the precious metal catalyst starts coagulating and deteriorating during low load operation. A method of operating a fuel cell power generation system, characterized in that: 2. The method of operating a fuel cell power generation system according to claim 1, wherein the control means lowers the gas pressure of the reaction gas supply system. 3. The control means lowers the concentration of the reaction gas by recycling the reaction gas discharged from the reaction gas supply system to the reaction gas supply system, or by mixing an inert gas into the reaction gas supply system. 2. A method of operating a fuel cell power generation system according to claim 1, which comprises: 4. Operation of the fuel cell power generation system according to claim 1, wherein the control means increases the utilization rate of the reaction gas by reducing the amount of the reaction gas supplied from the reaction gas supply system. Method. 5. Claim 1, wherein the control means lowers the operating temperature of the battery main body of the temperature control system.
Method of operating the fuel cell power generation system described in Section 1. 6. The fuel according to any one of claims 1 to 5, wherein the noble metal catalyst is platinum or a platinum-based alloy! How to operate a pond power generation system. 7. The method of operating a fuel cell power generation system according to any one of claims 1 to 5, wherein the electrolyte is an acidic electrolyte.
JP59032384A 1984-02-24 1984-02-24 Operation method of fuel cell power generating system Pending JPS60177565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032384A JPS60177565A (en) 1984-02-24 1984-02-24 Operation method of fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032384A JPS60177565A (en) 1984-02-24 1984-02-24 Operation method of fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS60177565A true JPS60177565A (en) 1985-09-11

Family

ID=12357458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032384A Pending JPS60177565A (en) 1984-02-24 1984-02-24 Operation method of fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS60177565A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150663A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Operation method of fuel cell power generation system
JPS62150664A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Fuel cell power generation system
JPS62160668A (en) * 1986-01-10 1987-07-16 Hitachi Ltd Operation method for fuel cell power generation system
JPS62165872A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Operation for fuel cell power generation system
JPS62274563A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Composite power generating plant
JPS63181267A (en) * 1987-01-21 1988-07-26 Toshiba Corp Fuel cell power generation device
JP2011520228A (en) * 2008-05-09 2011-07-14 ベレノス・クリーン・パワー・ホールディング・アーゲー Method for limiting the output voltage of a PEM fuel cell system
JP2012185971A (en) * 2011-03-04 2012-09-27 Honda Motor Co Ltd Fuel cell system
JP2013059219A (en) * 2011-09-09 2013-03-28 Honda Motor Co Ltd Fuel battery system
JP2013062097A (en) * 2011-09-13 2013-04-04 Honda Motor Co Ltd Fuel cell system
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553876A (en) * 1978-10-13 1980-04-19 United Technologies Corp Method of lowering output power of fuel battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62150663A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Operation method of fuel cell power generation system
JPS62150664A (en) * 1985-12-25 1987-07-04 Hitachi Ltd Fuel cell power generation system
JPS62160668A (en) * 1986-01-10 1987-07-16 Hitachi Ltd Operation method for fuel cell power generation system
JPS62165872A (en) * 1986-01-17 1987-07-22 Hitachi Ltd Operation for fuel cell power generation system
JPS62274563A (en) * 1986-05-23 1987-11-28 Hitachi Ltd Composite power generating plant
JPS63181267A (en) * 1987-01-21 1988-07-26 Toshiba Corp Fuel cell power generation device
JP2011520228A (en) * 2008-05-09 2011-07-14 ベレノス・クリーン・パワー・ホールディング・アーゲー Method for limiting the output voltage of a PEM fuel cell system
JP2012185971A (en) * 2011-03-04 2012-09-27 Honda Motor Co Ltd Fuel cell system
US8993184B2 (en) 2011-03-04 2015-03-31 Honda Motor Co., Ltd. Fuel cell system
JP2013059219A (en) * 2011-09-09 2013-03-28 Honda Motor Co Ltd Fuel battery system
US9070917B2 (en) 2011-09-09 2015-06-30 Honda Motor Co., Ltd. Method of controlling fuel cell system
JP2013062097A (en) * 2011-09-13 2013-04-04 Honda Motor Co Ltd Fuel cell system
JP2013125638A (en) * 2011-12-14 2013-06-24 Honda Motor Co Ltd Operational method of fuel cell

Similar Documents

Publication Publication Date Title
US8206860B2 (en) Method to perform adaptive voltage suppression of a fuel cell stack based on stack parameters
JP2001210346A (en) Establishing method of fuel flow through fuel cell laminated material and fuel cell system
EP3249728A1 (en) Fuel cell system and operating method thereof
US6696190B2 (en) Fuel cell system and method
JPS60177565A (en) Operation method of fuel cell power generating system
CN101584070A (en) Fuel cell system
JP2001143732A (en) Solid polymer fuel cell power generating system and its operating method
JPH08153532A (en) Controlling method for operation of fuel cell power system
JPH0715653B2 (en) Fuel cell output controller
JP2007141744A (en) Fuel cell system
JP4828078B2 (en) Method for controlling oxidant flow rate in fuel cell system
JPH04133271A (en) Fuel cell
JP3570355B2 (en) Fuel cell system
JPH0461464B2 (en)
JPS6229867B2 (en)
JP2931372B2 (en) Operating method of fuel cell power generation system
JPS60253171A (en) Fuel battery power generation system
JPS60172175A (en) Load control device of fuel cell system
JP2674867B2 (en) Fuel cell generator
JP4622244B2 (en) Operation control method of fuel cell power generator
JP3387234B2 (en) Fuel cell generator
JP6287010B2 (en) Fuel cell system
JPS62150663A (en) Operation method of fuel cell power generation system
JPH06231786A (en) Fuel cell controller
JPS59154775A (en) Control method of fuel cell power generating device