JPH04133271A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH04133271A
JPH04133271A JP2254527A JP25452790A JPH04133271A JP H04133271 A JPH04133271 A JP H04133271A JP 2254527 A JP2254527 A JP 2254527A JP 25452790 A JP25452790 A JP 25452790A JP H04133271 A JPH04133271 A JP H04133271A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
oxygen
power generation
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2254527A
Other languages
Japanese (ja)
Inventor
Toshio Matsushima
敏雄 松島
Kazuo Oshima
大島 一夫
Toshio Kameyama
亀山 寿雄
Takashi Hasegawa
崇 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2254527A priority Critical patent/JPH04133271A/en
Publication of JPH04133271A publication Critical patent/JPH04133271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent a fuel cell from deteriorating by detecting an output of power generation of a fuel cell, regulating a gas quantity generated from an oxidizing agent gas controlling means and the opening degree of an intake port of the atmosphere corresponding to a generating current, and controlling oxygen content in oxidizing agent gas. CONSTITUTION:When oxygen content in an oxidizing agent gas is made high, it is necessary to start voltage control from a larger current value than that at the time when the ordinary atmosphere is fed. When the oxygen content enters such a region, a gas quantity generated from an oxygen enriching device 6 and an intake quantity of the atmosphere from an air intake port 63 are regulated by a controller 61, the oxygen content in the oxidizing agent gas to be fed into an oxidizing agent pole 13 is controlled, and a current region of voltage control which is performed by a means sending a current to a dummy load is made as small as possible, so as to make the oxygen content correspond to the current value. Since the oxygen content of oxygen-rich gas from the device 6 is made of constant value, the device 6 is regulated only for a flow rate of the generated gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、燃料と酸化剤を用い、これらの反応によって
発電する燃料電池の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of a fuel cell that uses a fuel and an oxidizing agent and generates electricity through the reaction of these.

[従来の技術] 燃料電池は、燃料極と酸化剤極が電解質とセパレータを
介して交互に積ろ重ねられた発電部を有し、各極板に燃
料および酸化剤を供給することで発電するものの総称で
あり、構成材料によって、いくつかの種類に分類される
が、実用的な見地からはリン酸を電解質に使用したリン
酸型燃料電池が技術的な完成域に到達している。
[Prior Art] A fuel cell has a power generation unit in which fuel electrodes and oxidizer electrodes are stacked alternately with an electrolyte and a separator in between, and generates electricity by supplying fuel and oxidizer to each electrode plate. It is a general term for things, and is classified into several types depending on the constituent materials, but from a practical standpoint, phosphoric acid fuel cells that use phosphoric acid as an electrolyte have reached technological perfection.

このリン酸型燃料電池の従来例の系統図は第3図のとお
りであり、また発電部の構成は第4図のとおりである。
A system diagram of a conventional example of this phosphoric acid fuel cell is shown in FIG. 3, and the configuration of the power generation section is shown in FIG. 4.

この従来例は、発電部1とその発電部1に供給する水素
を主成分とする燃料ガスを原料ガスから作製する改質器
2と、この改質器2を高温で作動させるためのバーナ3
と、このツク−す3に空気を送り込むとともに前記発電
部1の各セルの酸化剤極13に対して酸化剤ガスとして
空気を送り込むブロワ−4と、上記燃料ガスを作製する
際に原料ガスへ混入する水蒸気を供給する水蒸気発生装
置5とを有している。
This conventional example includes a power generation section 1, a reformer 2 for producing a fuel gas containing hydrogen as a main component to be supplied to the power generation section 1 from a raw material gas, and a burner 3 for operating the reformer 2 at a high temperature.
and a blower 4 which sends air to the gas 3 and also sends air as an oxidizing gas to the oxidizing electrode 13 of each cell of the power generation section 1, and a blower 4 which sends air to the raw material gas when producing the fuel gas. It has a steam generator 5 that supplies water vapor to be mixed.

発電部1は、電解質14を挟んて燃料極11と酸化剤極
13か配置されて構成されるセル(単セル)かセパレー
タ15を介して多数積層されており、一定数のセル毎に
冷却板12か設けられるとともに、各極11.13には
電気出力部16か設けられている。冷却板12に対して
は、水の補給ライン51から供給された水か水蒸気発生
装置5と冷却水ライン52を通して冷却水として供給さ
れ、冷却板12を通過した後、一部の冷却水は水蒸気発
生装置5で水蒸気となる。その際、発電部1で集められ
た熱は水蒸気発生に必要な熱として利用される。改質器
2へは、原料ガス供給ライン21を通して原料ガスか供
給され、この原料ガスに水蒸気発生装置5からの水蒸気
か水蒸気供給ライン53を通して混入される。これらに
より、改質器2て原料ガス中のメタンガス等か水素ガス
を主成分とするガスに改質され、このガスか燃料供給ラ
イン22を通して各セルの燃料極11に均等に送られる
。各セルの燃料極11からの抽出ガスは、燃料ガス排出
ライン31を通してバーナ3に燃料として供給され、ブ
ロワ−4からの空気で排出ガス中の未反応の水素か燃焼
される。ブロワ−4は反応用空気の送風も兼ねており、
発電部1の各セルの酸化剤極13への空気は空気供給ラ
イン41を通して供給され、反応後の空気は空気排出ラ
イン42を通して排出される。
The power generation section 1 is composed of a large number of cells (single cells) in which a fuel electrode 11 and an oxidizer electrode 13 are arranged with an electrolyte 14 in between, or a large number of cells are stacked with a separator 15 interposed therebetween, and a cooling plate is provided for each certain number of cells. 12, and each pole 11.13 is provided with an electrical output section 16. The cooling plate 12 is supplied as cooling water with water supplied from the water supply line 51 or through the steam generator 5 and the cooling water line 52, and after passing through the cooling plate 12, some of the cooling water becomes steam. It becomes water vapor in the generator 5. At this time, the heat collected by the power generation section 1 is used as heat necessary for steam generation. A raw material gas is supplied to the reformer 2 through a raw material gas supply line 21, and steam from the steam generator 5 is mixed into this raw material gas through a steam supply line 53. As a result, the raw material gas is reformed by the reformer 2 into a gas whose main component is hydrogen gas, such as methane gas, and this gas is uniformly sent to the fuel electrodes 11 of each cell through the fuel supply line 22. Extracted gas from the fuel electrode 11 of each cell is supplied as fuel to the burner 3 through the fuel gas exhaust line 31, and unreacted hydrogen in the exhaust gas is combusted with air from the blower 4. Blower 4 also serves as a blower for reaction air.
Air is supplied to the oxidizer electrode 13 of each cell of the power generation section 1 through an air supply line 41, and air after the reaction is discharged through an air discharge line 42.

上に述べたように、従来例のリン酸型燃料電池において
は、燃料として原料ガスを改質した水素を使用し、酸化
剤に酸素を用いているか、酸素源としては最も身近な空
気か使用されている。また、発電部1の温度は約190
°C前後とされ、この様な温度条件下における水素と酸
素の反応によって、電気エネルギーが得られている。こ
の時の発電効率としては、約40%が得られている。
As mentioned above, conventional phosphoric acid fuel cells use hydrogen obtained by reforming raw material gas as fuel, and use oxygen as an oxidizing agent, or use air as the oxygen source. has been done. In addition, the temperature of the power generation section 1 is approximately 190
Electrical energy is obtained through the reaction of hydrogen and oxygen under these temperature conditions. The power generation efficiency at this time was approximately 40%.

[発明が解決しようとする課題] ところで、上記の燃料電池において、燃料の保有してい
るエネルギーから電気エネルギーへの変換効率か向上す
れば、発電単価の低減をもたらし結果的には発電コスト
の低減につながるので、燃f−’+電池の効率向上は重
要な検討課題の1つとなっていた。
[Problem to be solved by the invention] By the way, in the above-mentioned fuel cell, if the conversion efficiency from the energy contained in the fuel to electrical energy is improved, the unit cost of power generation will be reduced, and as a result, the cost of power generation will be reduced. Therefore, improving the efficiency of fuel f-'+ batteries has become one of the important issues to be considered.

このような効率の向上に効果のある対策としては、反応
用空気中の酸素分圧を高めることかあげられる。酸素分
圧を高めることは、酸化剤ガス中の酸素濃度そのものを
高めることであり、この場合、酸素分圧がPlからP、
に上昇した際の単セルの発′t4電圧の上昇は下記の式
(1)によって表される。
One effective measure for improving efficiency is increasing the oxygen partial pressure in the reaction air. Increasing the oxygen partial pressure means increasing the oxygen concentration itself in the oxidant gas, and in this case, the oxygen partial pressure increases from Pl to P,
The rise in the t4 voltage of a single cell when the voltage rises to t4 is expressed by the following equation (1).

この式(1)に基づいて、酸素濃度50%の酸化剤ガス
を供給した時の電圧上昇率を計算する。
Based on this equation (1), the voltage increase rate when an oxidant gas with an oxygen concentration of 50% is supplied is calculated.

大気をそのまま使用し、酸素利用率を50%とした場合
、出口の酸素量は入口換算で10.5%で、出口におけ
る酸素分圧は、生成水蒸気の分圧を考慮すると0.09
5気圧となり、酸化剤極板内の平均酸素分圧は0153
気圧となる。一方、入口の酸素濃度を50%、酸素利用
率を20%とした場合、出口の酸素量は入口換算で40
%、酸素分圧は0363気圧となり、酸化剤極板内の平
均酸素分圧は0743気圧となる。従って、酸素濃度を
高めたことによる、単位セル当たりの電圧上昇値、およ
び電圧上昇率は以下のように求められる。なお、通常使
用する運転状態における、リン酸形燃料電池のセル1組
あたりの電圧は、概ね0.65Vてあり、ここては、そ
の値を用いている。
If the atmosphere is used as is and the oxygen utilization rate is 50%, the amount of oxygen at the outlet is 10.5% in terms of the inlet, and the partial pressure of oxygen at the outlet is 0.09 considering the partial pressure of the water vapor produced.
5 atm, and the average oxygen partial pressure inside the oxidizer plate is 0153
It becomes atmospheric pressure. On the other hand, if the oxygen concentration at the inlet is 50% and the oxygen utilization rate is 20%, the amount of oxygen at the outlet is 40% at the inlet.
%, the oxygen partial pressure will be 0363 atm, and the average oxygen partial pressure within the oxidizer plate will be 0743 atm. Therefore, the voltage increase value and voltage increase rate per unit cell due to increasing the oxygen concentration are determined as follows. Note that the voltage per cell set of a phosphoric acid fuel cell under normal operating conditions is approximately 0.65 V, and that value is used here.

電圧上昇値(セル1組あたり) △V=103・l  o g      =46.22
  mV電圧上昇率  0.046+ 0.65 = 
io7倍0.65 このように、酸素濃度を高めると、入口と出口間の平均
酸素分圧は高くなり、燃料電池の出力を高めることがで
きる。
Voltage rise value (per cell set) △V=103・log=46.22
mV voltage increase rate 0.046+ 0.65 =
io7 times 0.65 In this way, increasing the oxygen concentration increases the average oxygen partial pressure between the inlet and the outlet, making it possible to increase the output of the fuel cell.

ところで、燃料電池の出力特性は、第5図のような電流
(電流密度)−電圧(単セル出力電圧)特性で表現され
る。この電流−電圧特性は、従来の燃料電池に酸素濃度
の高い酸化剤ガスを供給した時の燃料電池の出力特性を
示し、(a)は比較のために空気をそのま才酸化剤極に
供給した場合、(b)は酸素濃度か高いガスを供給した
場合である。この図から明らかなように、酸素濃度を高
めると、出力特性カーブは電圧の高いほうに全体的にシ
フトする。一方、燃料電池の通常の運転条件を見ると、
電流密度は200 m A / c m ’程度を上限
とし、これ以下の領域で使用されている。この理由の1
つは、電流密度を過度に大きくしても電圧が低下してし
まうため出力の上昇か大きくならず、効工も良くないた
めである。一方、電流密度が小さい場合には、セルの出
力電圧が高くなるが、使用状態におけるセル電圧には電
池の特性上から上限が存在する。この限界は、セル電圧
の上昇か特に酸化剤極の電圧上昇に大きく表れ、この酸
化剤極の電圧上昇か極板上に分散されている触媒の溶出
や電極の基板であるカーホンの腐食をもたらすので、こ
れを防くために定められたものである。リン酸型燃料電
池における、このような限界電圧は0.8Vと言われて
いる。
Incidentally, the output characteristics of a fuel cell are expressed by current (current density)-voltage (single cell output voltage) characteristics as shown in FIG. This current-voltage characteristic shows the output characteristics of a conventional fuel cell when an oxidant gas with a high oxygen concentration is supplied to the fuel cell, and (a) for comparison, air is directly supplied to the oxidizer electrode. In this case, (b) is the case where a gas with a high oxygen concentration is supplied. As is clear from this figure, when the oxygen concentration is increased, the output characteristic curve shifts to the higher voltage side overall. On the other hand, if we look at the normal operating conditions of fuel cells,
The upper limit of the current density is about 200 mA/cm', and it is used in the range below this. One of the reasons for this
The first reason is that even if the current density is increased excessively, the voltage will drop, so the output will not increase much, and the efficiency will not be good. On the other hand, when the current density is low, the output voltage of the cell increases, but there is an upper limit to the cell voltage in use due to the characteristics of the battery. This limit is greatly manifested in the rise in cell voltage, especially in the voltage rise at the oxidizer electrode, and this rise in voltage at the oxidizer electrode leads to elution of the catalyst dispersed on the electrode plate and corrosion of the carphone, which is the substrate of the electrode. Therefore, it was established to prevent this. Such a limit voltage in a phosphoric acid fuel cell is said to be 0.8V.

以上のように、燃料電池の電流密度には、上限だ!づて
なく下限も存在することになる。従って、通常、燃料電
池の出力部には擬似的な負荷か設置されており、外部の
負荷へ流れる電流か小さくなり電流密度か限界値以下に
なりそうな状況にな、つた際には、発電電流を増加させ
、負荷の所要量を越えた電流をこの擬似負荷に流し、セ
ルの出力電圧か過度に高(なることを防止している。燃
料電池を運転する状態では、通常、放電電流は定格出力
近辺に設定されていることか多いため、このような対策
を講じる必要性は少ない。しかし、待機状態や出力か小
さい場合にはこの様な対策か必要になってくる。
As mentioned above, there is an upper limit to the current density of fuel cells! Therefore, a lower limit also exists. Therefore, a pseudo load is usually installed at the output section of the fuel cell, and when the current flowing to the external load becomes small and the current density is likely to drop below the limit value, the power generation This increases the current and causes a current in excess of the load requirement to flow through this pseudo load, preventing the cell's output voltage from becoming excessively high. When a fuel cell is in operation, the discharge current is normally Since the output is often set close to the rated output, there is little need to take such measures. However, in standby conditions or when the output is low, such measures become necessary.

酸素濃度を高めた酸化剤ガスを燃料電池に送入した場合
、既に述へたように燃料電池の出力電圧か高くなる。従
来例の燃料電池では、ブロワ−か]台しかなく、この1
台のブロワ−4がバーナ3に空気を送るとともに、発電
部1内の酸化剤極13への空気の送入を兼ねており、酸
化剤極13に送る気体の酸素濃度だけを高めることはて
きなかった。もし、これまてのバーナ3への空気の流路
と酸化剤極13への流路とを分離し、各々専用の流路を
設けても、単に酸素濃度を高めた酸化剤ガスを送入する
構成のままでは、電流密度の小さい領域で使用する時に
は、従来と同様に発電電流を増加させ、負荷の所要量を
越えた電流はこの擬似負荷に流すことによって電流密度
を大きくさせて電圧を降下させる以外に方法な無い。し
かし、この方法は敢えて必要とされる電流以上の値で発
電を行わせているに他ならず、出力か小さい運転状態や
待機状態か多い場合、これは燃料をいたずらに浪費して
いることになり、燃料電池の総合的な効率の観点から見
ると重大な欠点である。
When an oxidant gas with increased oxygen concentration is fed into a fuel cell, the output voltage of the fuel cell increases as described above. In conventional fuel cells, there is only one blower, and this one
The blower 4 on the stand sends air to the burner 3 and also to the oxidizer electrode 13 in the power generation section 1, and it is not possible to increase only the oxygen concentration of the gas sent to the oxidizer electrode 13. There wasn't. Even if the air flow path to the burner 3 and the flow path to the oxidizer electrode 13 were separated and a dedicated flow path was provided for each, it would be impossible to simply feed the oxidizer gas with a higher oxygen concentration. With this configuration, when used in areas with low current density, the generated current will be increased as before, and if the current exceeds the required amount of the load, it will be passed through this pseudo load to increase the current density and increase the voltage. There is no other way than to let it fall. However, this method is only intentionally generating electricity at a value higher than the required current, and if the output is low or in standby mode, this means that fuel is wasted unnecessarily. This is a serious drawback from the viewpoint of the overall efficiency of the fuel cell.

本発明は、このような欠点を改善するために創案された
もので、酸素濃度の増加により燃料電池の効率向上を図
るとともに、発電電流が小さい状態となりセルの出力電
圧か高くなった場合には、酸素濃度を調整して燃料電池
の劣化を防止し、燃料の浪費を抑える燃料電池を提供す
ることを目的とする。
The present invention was devised to improve these drawbacks, and aims to improve the efficiency of the fuel cell by increasing the oxygen concentration. An object of the present invention is to provide a fuel cell that prevents deterioration of the fuel cell by adjusting oxygen concentration and suppresses waste of fuel.

[課題を解決するための手段] 上記の目的を達成するための本発明の燃料電池の構成は
、 燃料極と酸化剤極と電解質から成るセルを多数積み重ね
て発電部を構成し、前記燃料極には燃料ガスを供給し、
前記酸化剤極には酸化剤ガスを供給することによって発
電する燃料電池において、前記酸化剤極への酸化剤ガス
供給通路の入口に通常の大気よりも高い酸素濃度の酸化
剤ガスを調製l、供給する酸化剤ガス調製手段を接続す
るとともに、あわせて通常の大気の取り入れ口も併設し
、かつ前記燃料電池の発電出力を検出して発電電流に応
じて前記酸化剤ガス調製手段からの発生ガス量と前記大
気取り入れ口の開口度とを調節するコントロール部を具
備し、 前記燃料電池の発電出力に応じて該酸化剤ガス中の酸素
濃度をフントロール出来るようにしたことを特徴とする
[Means for Solving the Problems] The structure of the fuel cell of the present invention for achieving the above object is as follows: a power generation section is constructed by stacking a large number of cells each consisting of a fuel electrode, an oxidizer electrode, and an electrolyte, and the fuel electrode supply fuel gas to
In a fuel cell that generates electricity by supplying an oxidizing gas to the oxidizing electrode, an oxidizing gas having an oxygen concentration higher than that of normal air is prepared at the entrance of an oxidizing gas supply passage to the oxidizing electrode; In addition to connecting the oxidant gas preparation means to be supplied, a normal atmospheric intake port is also provided, and the generated output from the oxidant gas preparation means is detected according to the generated current by detecting the power generation output of the fuel cell. The present invention is characterized in that it includes a control unit that adjusts the amount of oxygen and the degree of opening of the air intake port, and the oxygen concentration in the oxidant gas can be controlled according to the power generation output of the fuel cell.

[作用] 本発明は、酸素富化装置により、燃料電池の発電部への
酸化剤ガスの供給通路の人口から通常の大気よりも高い
酸素濃度の酸化剤ガスを供給して、酸素濃度の増加によ
って燃料電池の効率向上を図るとともに、発電電流が小
さい状態となり発電部を構成するセルの出力電圧か高く
なった場合には、この状態を検出して酸化剤ガスの供給
通路の入口に並設した通常の大気の取り入れ口の開口度
をその状態に応してコントロール部で調節し、酸化剤ガ
ス中の酸素濃度を調節して、出力電圧を低下させて燃料
電池の劣化を防止するとともに、燃料の浪費を抑える。
[Function] The present invention increases the oxygen concentration by supplying an oxidant gas with an oxygen concentration higher than that of normal air from the supply path of the oxidant gas to the power generation section of the fuel cell using an oxygen enrichment device. In addition to improving the efficiency of the fuel cell, when the generated current is small and the output voltage of the cells that make up the power generation section becomes high, this condition is detected and a system is installed in parallel at the entrance of the oxidizing gas supply passage. The control section adjusts the opening degree of the normal atmospheric air intake according to the condition, adjusts the oxygen concentration in the oxidant gas, lowers the output voltage, and prevents deterioration of the fuel cell. Reduce fuel wastage.

[実施例] 以下、本発明の実施例を図面に基づいて詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例構成を示す燃料電池の全体の
系統図である。本実施例は、第3図に示した従来例に示
すように一つのブロワ−4からの空気をバーナ3ととも
に直接発電部1の各セルの酸化剤極13に導入する構成
に代えて、各セルの酸化剤極13に対する空気の供給流
路とバーナ3への空気の供給流路を分離し、酸化剤極1
3に対し通常の大気よりも高濃度の酸素を含んた酸化剤
ガスと通常の空気の両方を取り入れ、その酸素濃度を発
電出力に応じて調節可能とする。本実施例における発電
部1の構成は第3図の従来例と同様であり、またその発
電部1の各セルの燃料極11に対する燃料の供給系統の
構成、および発電部1の冷却板12に対する冷却水の供
給系統ならひに上記燃料の供給系統の改質器2に対する
水蒸気の供給系統の構成も従来例と同様であり、第1図
の各要素には第3図と同一符号を付しである。
FIG. 1 is an overall system diagram of a fuel cell showing the configuration of an embodiment of the present invention. In this embodiment, instead of the configuration in which air from one blower 4 is directly introduced into the oxidizer electrode 13 of each cell of the power generation section 1 together with the burner 3 as shown in the conventional example shown in FIG. The air supply channel for the oxidizer electrode 13 of the cell and the air supply channel for the burner 3 are separated, and the oxidizer electrode 1
In contrast to 3, both oxidizing gas containing oxygen at a higher concentration than normal air and normal air are taken in, and the oxygen concentration can be adjusted according to the power generation output. The configuration of the power generation section 1 in this embodiment is the same as that of the conventional example shown in FIG. As for the cooling water supply system, the structure of the steam supply system for the reformer 2 in the fuel supply system is also the same as that of the conventional example, and each element in FIG. 1 is given the same reference numeral as in FIG. 3. It is.

本実施例は、高濃度の酸素を含んだ酸化剤ガスの酸素濃
度を燃料電池の発電出力に応じて調節可能に酸化剤極1
3に導入するために、第3図の従来例に対し、発電部1
の各セルの酸化剤極13への酸化剤ガス供給入口に、通
常の大気よりも高濃度の酸素を含んだ酸化剤ガスを調製
する酸素富化装置6を設置し接続するとともに、酸素富
化装置6からの高濃度の酸素を含んだ酸化剤ガスの濃度
を調整するための空気取り入れ口63と、この空気取り
入れ口63に空気を送風するためのブロワ−62を設置
する一方、発電部1の電気出力部16に発電出力を検出
するための発電電流の電流検出器64を挿入し、この電
流検出器64て検出した発電電流に応じて上記の大気取
り入れ口63の開口度の調節とブロワ−62の運転制御
を行うコントローラ61を付加している。
In this embodiment, the oxygen concentration of the oxidant gas containing high concentration of oxygen can be adjusted in accordance with the power generation output of the fuel cell.
3, the power generation section 1 is
At the oxidant gas supply inlet to the oxidant electrode 13 of each cell, an oxygen enrichment device 6 for preparing an oxidant gas containing oxygen at a higher concentration than normal air is installed and connected. An air intake port 63 for adjusting the concentration of the oxidant gas containing high concentration of oxygen from the device 6 and a blower 62 for blowing air to the air intake port 63 are installed, while the power generation section 1 A current detector 64 for the generated current for detecting the generated output is inserted into the electric output part 16 of the 16, and the opening degree of the air intake port 63 and the blower are adjusted according to the generated current detected by the current detector 64. A controller 61 is added to control the operation of -62.

以上のように構成した実施例の動作及び作用を述べる。The operation and effect of the embodiment configured as above will be described.

第2図は本実施例における燃料電池の出力電圧の制御方
法を説明するための出力特性図であり、(a)は、空気
をそのまま酸化剤極に供給した場合の電流密度−セル電
圧出力特性を示し、(b)。
FIG. 2 is an output characteristic diagram for explaining the method of controlling the output voltage of the fuel cell in this example, and (a) is a current density-cell voltage output characteristic when air is supplied as it is to the oxidizer electrode. (b).

(c)、(d)はそれぞれ酸素濃度が30%、40%、
50%である酸化剤ガスを供給した場合の電流密度−セ
ル電圧出力特性を示している。燃料電池に酸素濃度の高
い酸化剤ガスを供給した際の燃料電池の出力特性は、酸
化濃度に依存して(b)(c)、  (d)の出力特性
カーブで示されるように、酸素濃度が増すにつれ、出力
電圧が(b)。
(c) and (d) have oxygen concentrations of 30% and 40%, respectively.
The current density-cell voltage output characteristics are shown when an oxidant gas of 50% is supplied. When an oxidant gas with a high oxygen concentration is supplied to the fuel cell, the output characteristics of the fuel cell depend on the oxidation concentration, as shown by the output characteristic curves in (b), (c), and (d). As increases, the output voltage (b).

(c)、  (d)の順に高(なる(ここでは、(d)
を酸素濃度50%、酸素利用率20%における特性とし
て説明する)。従って、同一電流で発電を行った場合、
電圧か上昇した分たけ出力電力を増すことが出来る。し
かし、先に述べたように発電部のセルの出力電圧か08
vを越える状態では、酸化剤極の劣化が生じる。従って
、従来は、セルの出力電圧かこのような値を越えないよ
うにするため、擬似負荷に故意に電流を流し、燃料電池
からの発電電流を増加させて電圧の低下を図っていた。
(c), (d) become higher (here, (d)
will be explained as the characteristics at an oxygen concentration of 50% and an oxygen utilization rate of 20%). Therefore, when generating electricity with the same current,
The output power can be increased by the amount that the voltage has increased. However, as mentioned earlier, the output voltage of the cells in the power generation section is 0.8
In a state exceeding v, deterioration of the oxidizer electrode occurs. Therefore, conventionally, in order to prevent the output voltage of the cell from exceeding such a value, current was intentionally passed through a pseudo load to increase the current generated by the fuel cell and thereby lower the voltage.

ところで、酸化剤ガスの酸素濃度を高くすると第5図で
説明したように、出力特性カーブが上方向にシフトする
。従って、このような電圧コントロールの開始電流値は
11から14に移動し、通常の大気を送入していた時よ
りも大きな電流値から電圧コントロールを開始する必要
が生じる。そこで、本実施例では、このような領域にな
った時には、電流値に応じた酸素濃度となるよう、酸素
富化学装置6からの発生ガス量と空気取り入れ口63か
らの大気の取り込み量とをコントローラ61により調整
して、酸化剤極13へ送入する酸化剤ガス中の酸素濃度
をコントロールし、擬似負荷に電流を流すという手段に
よって行われる電圧フントロールの電流領域か極力小さ
くなるようにしている。
By the way, when the oxygen concentration of the oxidant gas is increased, the output characteristic curve shifts upward as explained in FIG. 5. Therefore, the starting current value for such voltage control moves from 11 to 14, and it becomes necessary to start voltage control from a larger current value than when normal air is being introduced. Therefore, in this embodiment, when such a region is reached, the amount of gas generated from the oxygen enrichment chemical device 6 and the amount of atmospheric air taken in from the air intake port 63 are adjusted so that the oxygen concentration corresponds to the current value. The controller 61 adjusts the oxygen concentration in the oxidizing gas fed to the oxidizing electrode 13 so that the current range of the voltage control performed by passing current through the pseudo load is made as small as possible. There is.

上記における燃料電池の出力電圧コントロール時の、供
給酸化剤ガス中の酸素濃度と発電電流との具体的な関係
は、第2図に示したとおりである。
The specific relationship between the oxygen concentration in the supplied oxidant gas and the generated current when controlling the output voltage of the fuel cell in the above is as shown in FIG.

この図では、電流密度の小さい領域を拡大して表示しで
ある。酸素濃度を50%に高めた場合の燃料電池の出力
電圧は、曲線(d)で示されるように、出力電流か減少
してくると、曲線(d)に沿ってDD点からD点まで上
昇する。従って、この時点て、電圧上昇をおさえる対策
を施すことになり、上記による酸素濃度の調整を行う。
In this figure, the region where the current density is low is enlarged and displayed. As shown by curve (d), when the oxygen concentration is increased to 50%, the output voltage of the fuel cell increases from point DD to point D along curve (d) as the output current decreases. do. Therefore, at this point, measures are taken to suppress the voltage increase, and the oxygen concentration is adjusted as described above.

しかし、酸素濃度の高い酸化剤ガスから通常の大気に短
時間で切り替えると出力電圧かD点からAA点まで過渡
的に急激に低下し、燃料電池の出力に大きな変動が生じ
る。そこで、このよう゛な電圧変動を防くため、本実施
例では出力電圧かD点に到達した場合、それ以後はD−
C−B−Aの経路に沿って電圧か移行するように酸素濃
度を制御する。具体的には、第2図の曲線(C)を酸素
濃度40%に対する電圧特性、曲線(b)を酸素a度3
0%に対する電圧特性とすると、0点では酸素濃度か4
0%、8点では30%になるように、酸素富化装置6か
らの発生ガス流量と空気取り入れ口63からの大気量を
制御し、電流密度か低下するにつれて徐々に出力電圧を
低下させている。ちなみに、第2図のケースでは、酸素
富化装置6からのガス流量と空気取り入れ口63からの
大気量の割合は表1のとおりとなる。従って、この表1
に沿って各気体の流量を調整するたけで良い。なお、こ
こては酸素富化装置6からの酸素富化ガスの酸素濃度は
50%の一定値としているので、酸素富化装置6は発生
ガスの流量調整だ1+行えばよい。
However, when switching from an oxidant gas with a high oxygen concentration to normal atmosphere in a short period of time, the output voltage transiently and rapidly decreases from point D to point AA, causing a large fluctuation in the output of the fuel cell. Therefore, in order to prevent such voltage fluctuations, in this embodiment, when the output voltage reaches point D, from then on,
The oxygen concentration is controlled so that the voltage shifts along the C-B-A path. Specifically, the curve (C) in Figure 2 is the voltage characteristic for an oxygen concentration of 40%, and the curve (b) is for an oxygen concentration of 3
Assuming the voltage characteristics for 0%, at the 0 point the oxygen concentration or 4
The flow rate of generated gas from the oxygen enrichment device 6 and the amount of air from the air intake port 63 are controlled so that the current density is 0% and 30% at the 8th point, and the output voltage is gradually lowered as the current density decreases. There is. Incidentally, in the case of FIG. 2, the ratio of the gas flow rate from the oxygen enrichment device 6 to the atmospheric amount from the air intake port 63 is as shown in Table 1. Therefore, this table 1
All you have to do is adjust the flow rate of each gas according to the following. Note that here, since the oxygen concentration of the oxygen-enriched gas from the oxygen enrichment device 6 is set at a constant value of 50%, the oxygen enrichment device 6 only needs to adjust the flow rate of the generated gas.

(以下、余白) 表1  1圧!■!時の酸化剤ガスの人気と1素富化装
置与りの発生ガスの流量割合ただし、*では各電流にお
いて必要とされる酸化剤ガス中の大気と酸素富化ガスの
体積パーセントを示している。
(Below, blank space) Table 1 1 pressure! ■! Popularity of oxidizing gas at the time and flow rate ratio of generated gas for a given element enrichment device. However, * indicates the volume percentage of atmospheric air and oxygen-enriched gas in the oxidizing gas required at each current. .

なお、高濃度の酸素を含んだ酸化剤ガスは、例えば気体
分離膜を適用した酸素富化装置で得ることができるが、
小形の燃料電池においては例えば酸素ボンベ等を用いて
このような酸化剤ガスを得ることも可能であり、このよ
うな酸化剤ガスの調整手段としては特にこれらの装置等
だけに限定されるものでは無く、所定の濃度の酸化剤ガ
スが得られるものであれば適用可能である。また、上記
実施例では、リン酸型燃料電池を例に電圧制御方法を述
べたが、燃料電池の種類が変わった場合ても、出力電圧
等の制御値か変更されるだけで基本的に同様に適用でき
る。このように、本発明はその主旨に沿って種々に応用
され、種々の実施態様を取り得るものである。
Note that oxidant gas containing high concentration of oxygen can be obtained, for example, with an oxygen enrichment device using a gas separation membrane.
In a small fuel cell, it is also possible to obtain such an oxidant gas using, for example, an oxygen cylinder, and the means for adjusting such an oxidant gas is not limited to these devices. Any method that can obtain an oxidant gas of a predetermined concentration can be applied. In addition, in the above embodiment, the voltage control method was described using a phosphoric acid fuel cell as an example, but even if the type of fuel cell is changed, it is basically the same except that the control value such as the output voltage is changed. Applicable to As described above, the present invention can be applied in various ways and can take various embodiments in accordance with its gist.

[発明の効果] 以上の説明で明らかなように、本発明の燃料電池によれ
ば、酸素富化装置等の調製手段によって調製された通常
の大気よりも酸素を多量に含む酸化剤ガスを燃料電池の
酸化剤極に送入することで、燃料電池を通常運転する使
用条件下では発電電力の増加を図ることかでき、一方、
燃料電池の酸化剤極の酸化剤ガス供給口に併設した大気
の取り入れ口の開口度と、酸素富化装置等の調製手段か
らの発生ガス量とを、燃料電池の発電出力に応じて調節
することで、酸化剤ガス中の酸素濃度をコントロールす
ることが可能になり、燃料電池からの取り出し電流か小
さく電極単位面積あたりの電流密度が小さくなるような
運転状態になった場合には、酸素濃度の低減が図れ、電
圧を低下させるために擬似負荷に流す電流量を増すこと
が無く、結果として総合的な燃料の使用量も減少して無
駄な浪費か抑えられ、燃料電池の運転経費そのものも低
減させることができる。
[Effects of the Invention] As is clear from the above explanation, according to the fuel cell of the present invention, the oxidant gas containing a larger amount of oxygen than the normal atmosphere prepared by a preparation means such as an oxygen enrichment device is used as fuel. By feeding it into the oxidizer electrode of the battery, it is possible to increase the power generated under normal operating conditions of the fuel cell, and on the other hand,
The opening degree of the air intake port attached to the oxidant gas supply port of the oxidizer electrode of the fuel cell and the amount of gas generated from the preparation means such as the oxygen enrichment device are adjusted according to the power generation output of the fuel cell. This makes it possible to control the oxygen concentration in the oxidizing gas, and when operating conditions are such that the current taken out from the fuel cell is small and the current density per unit area of the electrode is low, the oxygen concentration can be controlled. It is possible to reduce the amount of current flowing through the pseudo load in order to lower the voltage, and as a result, the overall amount of fuel used is reduced, reducing unnecessary waste and reducing the operating costs of the fuel cell itself. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す全体の系統図、
第2図は上記実施例の動作および作用を説明するための
出力特性図、第3図は従来例の構成を示す系統図、第4
図は上記従来例の発電部の構成を示す模試的な斜視図、
第5図は上記従来例の出力特性図である。 1・・・発電部、6−酸素富化装置、]1・・燃料極、
13・・・酸化剤極、J4・・・電解質、16・電気出
力部、61・・コントローラ、62・・・ブロワ−16
3・空気取り入れ口、64 ・電流検出器。 tri之度 第5図 ImA/cm2)
FIG. 1 is an overall system diagram showing the configuration of an embodiment of the present invention;
Fig. 2 is an output characteristic diagram for explaining the operation and effect of the above embodiment, Fig. 3 is a system diagram showing the configuration of the conventional example, and Fig. 4 is a diagram showing the configuration of the conventional example.
The figure is a schematic perspective view showing the configuration of the power generation section of the above conventional example.
FIG. 5 is an output characteristic diagram of the conventional example. 1... Power generation section, 6-Oxygen enrichment device,] 1... Fuel electrode,
13...Oxidizing agent electrode, J4...Electrolyte, 16.Electrical output section, 61...Controller, 62...Blower 16
3.Air intake, 64.Current detector. tri-degree Figure 5 ImA/cm2)

Claims (1)

【特許請求の範囲】[Claims] (1)燃料極と酸化剤極と電解質から成るセルを多数積
み重ねて発電部を構成し、前記燃料極には燃料ガスを供
給し、前記酸化剤極には酸化剤ガスを供給することによ
って発電する燃料電池において、 前記酸化剤極への酸化剤ガス供給通路の入口に通常の大
気よりも高い酸素濃度の酸化剤ガスを調製し供給する酸
化剤ガス調製手段を接続するとともに、あわせて通常の
大気の取り入れ口も併設し、かつ前記燃料電池の発電出
力を検出して発電電流に応じて前記酸化剤ガス調製手段
からの発生ガス量と前記大気の取り入れ口の開口度とを
調節するコントロール部を具備し、 前記燃料電池の発電出力に応じて該酸化剤ガス中の酸素
濃度をコントロール出来るようにしたことを特徴とする
燃料電池。
(1) A power generation unit is constructed by stacking a large number of cells consisting of a fuel electrode, an oxidizer electrode, and an electrolyte, and power generation is generated by supplying fuel gas to the fuel electrode and supplying oxidant gas to the oxidizer electrode. In the fuel cell, an oxidant gas preparation means is connected to the inlet of the oxidant gas supply passage to the oxidant electrode, and an oxidant gas preparation means for preparing and supplying an oxidant gas having an oxygen concentration higher than that of normal air is connected. a control unit that also includes an air intake port and detects the power generation output of the fuel cell and adjusts the amount of gas generated from the oxidizing gas preparation means and the opening degree of the air intake port in accordance with the generated current; A fuel cell, comprising: an oxygen concentration in the oxidizing gas can be controlled according to the power generation output of the fuel cell.
JP2254527A 1990-09-25 1990-09-25 Fuel cell Pending JPH04133271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2254527A JPH04133271A (en) 1990-09-25 1990-09-25 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2254527A JPH04133271A (en) 1990-09-25 1990-09-25 Fuel cell

Publications (1)

Publication Number Publication Date
JPH04133271A true JPH04133271A (en) 1992-05-07

Family

ID=17266280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2254527A Pending JPH04133271A (en) 1990-09-25 1990-09-25 Fuel cell

Country Status (1)

Country Link
JP (1) JPH04133271A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060654A1 (en) * 1998-05-18 1999-11-25 The Procter & Gamble Company Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
FR2845524A1 (en) * 2002-10-03 2004-04-09 Renault Sa METHOD FOR REGULATING THE AIR FLOW IN A FUEL CELL
US6797419B2 (en) 2001-09-03 2004-09-28 Fujitsu Limited Electronic apparatus powered by fuel cell having oxygen density detector
WO2005081350A1 (en) * 2004-02-19 2005-09-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the same
JP2006100197A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system using solid oxide fuel cell
JP2006196203A (en) * 2005-01-11 2006-07-27 Casio Comput Co Ltd Power supply system and control unit of power supply system, and control method of power supply system
US7476457B2 (en) 1998-06-25 2009-01-13 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling cells
JP2012239311A (en) * 2011-05-12 2012-12-06 Honda Motor Co Ltd Fuel cell vehicle
JP2012238485A (en) * 2011-05-12 2012-12-06 Honda Motor Co Ltd Fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060654A1 (en) * 1998-05-18 1999-11-25 The Procter & Gamble Company Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
US7476457B2 (en) 1998-06-25 2009-01-13 Toyota Jidosha Kabushiki Kaisha Fuel cells system and method of controlling cells
US6797419B2 (en) 2001-09-03 2004-09-28 Fujitsu Limited Electronic apparatus powered by fuel cell having oxygen density detector
FR2845524A1 (en) * 2002-10-03 2004-04-09 Renault Sa METHOD FOR REGULATING THE AIR FLOW IN A FUEL CELL
WO2004032268A3 (en) * 2002-10-03 2005-03-03 Renault Sa Fuel cell air flow regulation method
WO2005081350A1 (en) * 2004-02-19 2005-09-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the same
US8263273B2 (en) 2004-02-19 2012-09-11 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the same
JP2006100197A (en) * 2004-09-30 2006-04-13 Mitsubishi Heavy Ind Ltd Combined power generation system using solid oxide fuel cell
JP2006196203A (en) * 2005-01-11 2006-07-27 Casio Comput Co Ltd Power supply system and control unit of power supply system, and control method of power supply system
JP4513572B2 (en) * 2005-01-11 2010-07-28 カシオ計算機株式会社 Power supply system, control device for power supply system, and control method for power supply system
JP2012239311A (en) * 2011-05-12 2012-12-06 Honda Motor Co Ltd Fuel cell vehicle
JP2012238485A (en) * 2011-05-12 2012-12-06 Honda Motor Co Ltd Fuel cell system

Similar Documents

Publication Publication Date Title
US4904548A (en) Method for controlling a fuel cell
US6558827B1 (en) High fuel utilization in a fuel cell
JP2854138B2 (en) Constant voltage fuel cell with improved reactant supply and control system
US7348083B2 (en) Fuel cell system
US9331351B2 (en) Solid oxide fuel cell device
US6696190B2 (en) Fuel cell system and method
JPH06203863A (en) Fuel cell equipment and its inert-gas discharging and adjusting method
WO2020138338A1 (en) Fuel cell activation method and apparatus
US8663861B2 (en) Fuel cell system and control method therefor
US7951501B2 (en) Fuel cell system and method for controlling current
JPH04133271A (en) Fuel cell
JP4702708B2 (en) Solid oxide fuel cell
JP5391976B2 (en) Solid oxide fuel cell
JP2007141744A (en) Fuel cell system
JP2007073335A (en) Fuel cell system and its operation method
JP2011076941A (en) Solid oxide fuel cell
US20050118470A1 (en) Fuel cell power generation device and fuel cell power generation method
JPS60177565A (en) Operation method of fuel cell power generating system
JP5411901B2 (en) Fuel cell system
US9425475B2 (en) Solid oxide fuel cell system responsive to explosive vaporization of water in reformer to control power
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
US20040131899A1 (en) System and method for process gas stream delivery and regulation using down spool control
JP2011076942A (en) Solid oxide fuel cell
JP2005268091A (en) Operation method of fuel cell, and fuel cell system
JP2012009182A (en) Fuel cell system, power generation method of fuel cell and method of determining flooding