JPH09157052A - Porous carbon sheet and its production - Google Patents

Porous carbon sheet and its production

Info

Publication number
JPH09157052A
JPH09157052A JP7345261A JP34526195A JPH09157052A JP H09157052 A JPH09157052 A JP H09157052A JP 7345261 A JP7345261 A JP 7345261A JP 34526195 A JP34526195 A JP 34526195A JP H09157052 A JPH09157052 A JP H09157052A
Authority
JP
Japan
Prior art keywords
resin
carbon
base material
thickness direction
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7345261A
Other languages
Japanese (ja)
Other versions
JP4051714B2 (en
Inventor
Mikio Inoue
幹夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP34526195A priority Critical patent/JP4051714B2/en
Publication of JPH09157052A publication Critical patent/JPH09157052A/en
Application granted granted Critical
Publication of JP4051714B2 publication Critical patent/JP4051714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/40Mortars, concrete or artificial stone characterised by specific physical values for gas flow through the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a porous carbon sheet having increased gas permeability in the thickness direction while keeping the mechanical strength relatively high and the specific resistance in the thickness direction relatively high. SOLUTION: Short carbon fibers dispersed in random directions in a practically two-dimensional plane are bonded to one another with carbon to obtain the objective porous carbon sheet having >=14.7MPa bending strength, >=0.49MPa compressive strength in the thickness direction, <=11.8MPa modulus of compressive elasticity in the thickness direction, <=0.01Ωm specific resistance in the thickness direction and >=3,000ml.mm/cm<2> /hr/mmAq gas permeability in the thickness direction in air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば燃料電
池、特に固体高分子型燃料電池の電極を構成するのに好
適な多孔質炭素板とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous carbon plate suitable for constituting an electrode of, for example, a fuel cell, particularly a polymer electrolyte fuel cell, and a method for producing the same.

【0002】[0002]

【従来の技術】固体高分子型燃料電池の電極基材に使用
される多孔質炭素板には、導電性が高いこと、機械的強
度が高いこと、気体透過性が高いこと、耐食性が高いこ
となどリン酸型燃料電池用電極基材と同様の特性が要求
される。
2. Description of the Related Art Porous carbon plates used as electrode base materials for polymer electrolyte fuel cells have high conductivity, high mechanical strength, high gas permeability, and high corrosion resistance. Properties similar to those of the electrode base material for phosphoric acid fuel cells are required.

【0003】なかでも、固体高分子型燃料電池は、電極
の電流密度がリン酸型の4〜20倍と高いので、水素、
酸素の供給量や、反応により生成した水の除去量が多く
なること、また作動温度が100℃前後と低いので、水
によりガス供給路がふさがり、ガス供給路が狭くなる可
能性があることから、特に気体透過性が高いことが要求
される。
Among them, in the polymer electrolyte fuel cell, since the current density of the electrode is as high as 4 to 20 times that of the phosphoric acid type, hydrogen,
Since the amount of oxygen supplied and the amount of water produced by the reaction increased, and the operating temperature is low at around 100 ° C, water may block the gas supply channel and narrow the gas supply channel. In particular, high gas permeability is required.

【0004】導電性についても高い方が望ましいが、多
孔質炭素板をフッ素系樹脂で撥水処理することにより抵
抗が増大するうえ、多孔質炭素板と他の材料との間の接
触抵抗が大きいため、多少多孔質板の抵抗が増大しても
気体透過性を上げることが望まれる。
Higher conductivity is also desirable, but resistance is increased by subjecting the porous carbon plate to a water repellent treatment with a fluorocarbon resin, and the contact resistance between the porous carbon plate and other materials is large. Therefore, it is desired to increase gas permeability even if the resistance of the porous plate increases to some extent.

【0005】曲げ強さも高い方が望ましいが、一般に電
極面積がリン酸型燃料電池より小さいため取り扱いやす
く、多少の強度低下は許容される。
It is desirable that the bending strength is also high, but since the electrode area is generally smaller than that of the phosphoric acid fuel cell, it is easy to handle, and some decrease in strength is allowed.

【0006】このような固体高分子型燃料電池の電極基
材には、従来はリン酸型燃料電池用に作られた材料がそ
のまま用いられた。たとえば、特公昭53−18603
号公報に記載されているように、炭素短繊維とポリビニ
ルアルコール等の有機質バインダーを含む抄造媒体との
混合物を抄造してシート状中間基材を得た後、その中間
基材を加熱すると炭素化する樹脂、たとえば、自己硬化
型のフェノール樹脂を含浸し、さらにフェノール樹脂を
含浸した上記中間基材を加熱してフェノール樹脂を炭素
化し、炭素短繊維同士をフェノール樹脂の炭化物で結着
した基材が用いられた。ところがこのような方法によっ
て製造した基材は、導電性、曲げ強さの面で十分である
とはいえない。
[0006] For the electrode base material of such a polymer electrolyte fuel cell, the material conventionally made for the phosphoric acid fuel cell was used as it is. For example, Japanese Patent Publication 53-18603
As described in the publication, a mixture of short carbon fibers and a paper-making medium containing an organic binder such as polyvinyl alcohol is made into a sheet to obtain a sheet-like intermediate substrate, and the intermediate substrate is heated to carbonize. A resin, for example, a self-curing type phenol resin is impregnated, and the intermediate substrate impregnated with the phenol resin is heated to carbonize the phenol resin, and carbon short fibers are bound to each other by a carbide of the phenol resin. Was used. However, the substrate produced by such a method is not sufficient in terms of conductivity and bending strength.

【0007】また、この問題を解決するために特開平1
−160867号公報には、上記中間基材に含浸する自
己硬化型のフェノール樹脂に変えてレゾール型のフェノ
ール樹脂とノボラック型フェノール樹脂の混合樹脂を用
いる方法が示されている。しかしながら、そこに示され
た条件は固体高分子型燃料電池の電極基材用として十分
な気体透過性を与えるものではなかった。
In order to solve this problem, Japanese Unexamined Patent Publication No.
JP-A-160867 discloses a method of using a mixed resin of a resol type phenol resin and a novolac type phenol resin instead of the self-curing type phenol resin impregnated in the intermediate substrate. However, the conditions shown therein do not give sufficient gas permeability for an electrode substrate of a polymer electrolyte fuel cell.

【0008】また、特開平7−105957号公報に
は、炭素繊維からなる織物やペーパー、フェルトを用い
た電極が示されている。この場合は気体透過性は十分で
あるが比抵抗が高い、平滑性、ハンドリング性が悪いと
いう問題点がある。
Further, Japanese Unexamined Patent Publication No. 7-105957 discloses an electrode using a woven fabric made of carbon fiber, paper or felt. In this case, there are problems that the gas permeability is sufficient but the specific resistance is high, the smoothness and the handling property are poor.

【0009】[0009]

【発明が解決しようとする課題】この発明の目的は、上
記従来技術の問題点を解決し、機械的強度と厚さ方向の
比抵抗を比較的高く保ったまま、厚さ方向の気体透過性
を高くした多孔質炭素板およびその製造方法を提供する
ことにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art and to maintain the gas permeability in the thickness direction while maintaining the mechanical strength and the specific resistance in the thickness direction relatively high. (EN) Provided are a porous carbon plate having a high height and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は下記の構成からなる。
In order to achieve the above object, the present invention has the following constitution.

【0011】(1)実質的に二次元平面内においてラン
ダムな方向に分散せしめられた炭素短繊維を炭素によっ
て互いに結着してなる多孔質炭素板であって、曲げ強さ
が14.7MPa以上、厚さ方向の圧縮強さが0.49
MPa以上、厚さ方向の圧縮弾性率が11.8MPa以
下、厚さ方向の比抵抗が0.01Ωm以下であり、かつ
空気による厚さ方向の気体透過性が3000ml・mm/cm
2 /hr/mmAq以上であることを特徴とする多孔質炭素板。
(1) A porous carbon plate in which short carbon fibers dispersed in a random direction in a substantially two-dimensional plane are bound to each other by carbon and having a bending strength of 14.7 MPa or more. , Compressive strength in the thickness direction is 0.49
MPa or more, the compression modulus in the thickness direction is 11.8 MPa or less, the specific resistance in the thickness direction is 0.01 Ωm or less, and the gas permeability in the thickness direction by air is 3000 ml · mm / cm.
2 / hr / mmAq or more, a porous carbon plate.

【0012】(2)下記の式で定義する結着炭素と炭素
の結着した炭素繊維による表層被覆率が20%以下であ
ることを特徴とする前記(1)に記載の多孔質炭素板。
(2) The porous carbon plate according to the above (1), characterized in that the surface coverage of the binding carbon defined by the following formula and the carbon fiber in which the carbon is bound is 20% or less.

【0013】ただし、RSC=SSC/STotalSC:表層被覆率 SSC:表層を覆っている結着炭素と炭素繊維の結着され
ている部分の面積 STotal :覆われている部分と覆われていない部分をあ
わせた全面積 (3)前記(1)または(2)に記載の多孔質炭素板か
らなることを特徴とする燃料電池の電極基材。
However, R SC = S SC / S Total R SC : Surface layer coverage S SC : Boundary covering the surface layer Area of the part where carbon and carbon fiber are bound S Total : Covered part Total area including uncovered portion (3) An electrode base material for a fuel cell comprising the porous carbon plate according to (1) or (2) above.

【0014】(4)請求項1または2に記載の多孔質炭
素板からなることを特徴とする固体高分子型燃料電池の
電極基材。
(4) An electrode base material for a polymer electrolyte fuel cell, comprising the porous carbon plate according to claim 1 or 2.

【0015】(5)実質的に二次元ランダムな方向に分
散した炭素短繊維集合体に、レゾール型フェノール樹脂
Rとノボラック型フェノール樹脂Nを、R:N=2:1
〜1:3の比率で混合した樹脂を炭素繊維100重量部
に対してフェノール樹脂が40〜75重量部になるよう
に含浸して中間基材を得る工程と、前記混合樹脂が含浸
された前記中間基材を加熱して前記混合樹脂を炭素化す
る工程とを含むことを特徴とする多孔質炭素板の製造方
法。
(5) Resole-type phenol resin R and novolac-type phenol resin N are added to short carbon fiber aggregates dispersed in a substantially two-dimensional random direction, R: N = 2: 1.
A step of impregnating a resin mixed at a ratio of 1 to 3 with 100 parts by weight of carbon fiber so that a phenol resin is 40 to 75 parts by weight to obtain an intermediate base material; A step of heating the intermediate base material to carbonize the mixed resin, and a method for producing a porous carbon plate.

【0016】(6)実質的に二次元ランダムな方向に分
散した炭素短繊維集合体に炭素繊維100重量部に対し
てメラミン樹脂が70〜220重量部になるように含浸
して中間基材を得る工程と、メラミン樹脂が含浸された
前記中間基材とを加熱してメラミン樹脂を炭素化する工
程を含むことを特徴とする多孔質炭素板の製造方法。
(6) An intermediate substrate is obtained by impregnating a short carbon fiber aggregate dispersed in a substantially two-dimensional random direction with 70 to 220 parts by weight of melamine resin per 100 parts by weight of carbon fiber. A method for producing a porous carbon plate, comprising: a step of obtaining and a step of heating the intermediate base material impregnated with a melamine resin to carbonize the melamine resin.

【0017】[0017]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0018】炭素短繊維は、ポリアクリロニトリル(P
AN)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素
繊維等の炭素繊維を用いることができるが、基材の曲げ
強さを高くするために、PAN系炭素繊維またはピッチ
系炭素繊維を用いるのが好ましく、PAN系炭素繊維を
用いることがさらに好ましい。
Short carbon fibers are polyacrylonitrile (P
AN) -based carbon fibers, pitch-based carbon fibers, rayon-based carbon fibers and the like can be used, but PAN-based carbon fibers or pitch-based carbon fibers are used to increase the bending strength of the base material. Is preferable, and it is more preferable to use PAN-based carbon fiber.

【0019】炭素繊維の繊維径は4〜20μm程度とす
ることが好ましく、4〜13μmとすること、特に4〜
10μmとすることが基材強度を高くするためにより好
ましい。偏平な断面の炭素繊維の場合は、長径と短径の
平均を繊維径とする。短繊維の長さは3〜20mm程度と
することが好ましく、5〜15mm程度とするのが製造の
容易さおよび基材の強度を高くするためにさらに好まし
い。
The fiber diameter of the carbon fiber is preferably about 4 to 20 μm, more preferably 4 to 13 μm, and especially 4 to 20 μm.
The thickness of 10 μm is more preferable in order to increase the strength of the base material. In the case of a carbon fiber having a flat cross section, the average of the major axis and the minor axis is the fiber diameter. The length of the short fibers is preferably about 3 to 20 mm, and more preferably about 5 to 15 mm in order to facilitate the production and increase the strength of the base material.

【0020】本発明は、実質的に二次元平面内において
ランダムな方向に分散せしめられた上記の炭素短繊維を
炭素によって互いに結着してなる多孔質炭素板である。
The present invention is a porous carbon plate in which carbon short fibers dispersed in random directions in a substantially two-dimensional plane are bonded to each other by carbon.

【0021】炭素短繊維を実質的に二次元ランダムな方
向に分散させる方法としては、液体の媒体中に炭素短繊
維を分散させて抄造する湿式法や、空気中で炭素短繊維
を分散させて降り積もらせる乾式法などが適用できる。
As the method for dispersing the short carbon fibers in a substantially two-dimensional random direction, a wet method in which the short carbon fibers are dispersed in a liquid medium to produce paper, or the short carbon fibers are dispersed in the air A dry method, etc., for accumulating can be applied.

【0022】炭素短繊維を互いに結着させる炭素として
は、たとえば樹脂の加熱による炭素化によって得られ
る。用いられる樹脂としては加熱により炭素化するも
の、たとえばフェノール樹脂、エポキシ樹脂、フラン樹
脂、メラミン樹脂、ピッチなどである。
The carbon for binding the short carbon fibers to each other can be obtained, for example, by heating a resin to carbonize it. The resin used is one that is carbonized by heating, such as phenol resin, epoxy resin, furan resin, melamine resin, pitch and the like.

【0023】炭素短繊維と樹脂の複合体の製造方法とし
ては、炭素短繊維の集合体に樹脂を混合、含浸する方法
や、炭素短繊維と樹脂を一緒に抄造する方法があるが、
樹脂を液状で含浸するか、後の工程で溶融する樹脂を用
いることが基材の強度を高くするため、比抵抗を低くす
るために好ましい。
As a method for producing a composite of short carbon fibers and a resin, there is a method of mixing and impregnating a short carbon fiber aggregate with a resin, or a method of making a paper together with a short carbon fiber and a resin.
It is preferable to impregnate the resin in a liquid state or to use a resin that melts in a later step in order to increase the strength of the substrate and reduce the specific resistance.

【0024】また、含浸時に樹脂を溶媒に溶かし、含浸
後に溶媒を除くこともよく用いられる方法である。炭素
短繊維と樹脂の混合体は、加熱による炭素化の前に加熱
加圧による成形が行なわれることが好ましい。
It is also a frequently used method to dissolve the resin in a solvent during the impregnation and remove the solvent after the impregnation. The mixture of the short carbon fibers and the resin is preferably molded by heating and pressurization before carbonization by heating.

【0025】成形により、炭素短繊維と樹脂との接着性
向上、表面平滑性の向上が達成される。
By the molding, the improvement of the adhesiveness between the short carbon fibers and the resin and the improvement of the surface smoothness are achieved.

【0026】成形時の温度は樹脂により異なるが、圧力
は0.0098〜1.96MPa程度が好ましく、0.
098〜0.98MPaとすることがより好ましい。成
形時の圧力により基材密度を制御できるが、圧力が低す
ぎると接着性が悪くなり、圧力が高すぎると過剰な流れ
を起こし、材料がつぶれてしまうことがある。
Although the temperature at the time of molding depends on the resin, the pressure is preferably about 0.0098 to 1.96 MPa,
It is more preferable that the pressure is 098 to 0.98 MPa. The substrate density can be controlled by the pressure during molding, but if the pressure is too low, the adhesion will deteriorate, and if the pressure is too high, an excessive flow will occur, and the material may collapse.

【0027】炭素短繊維と樹脂との混合体の加熱による
炭素化の温度は、曲げ強さを上げ、比抵抗を低くし、不
純物を減らし、耐食性を高めるために1300℃以上で
あることが好ましく、2000℃以上とすることがさら
に好ましい。
The temperature of carbonization by heating the mixture of short carbon fibers and resin is preferably 1300 ° C. or higher in order to increase bending strength, reduce specific resistance, reduce impurities and enhance corrosion resistance. And more preferably 2000 ° C. or higher.

【0028】本発明は、上記の多孔質炭素板は、曲げ強
さが14.7MPa以上、厚さ方向の圧縮強さが0.4
9MPa以上、厚さ方向の圧縮弾性率が11.8MPa
以下、厚さ方向の比抵抗が0.01Ωm以下であり、か
つ空気による厚さ方向の気体透過性が3000ml・mm/c
m 2 /hr/mmAq以上であることを特徴とする。
According to the present invention, the above-mentioned porous carbon plate has a bending strength of 14.7 MPa or more and a compressive strength in the thickness direction of 0.4.
9 MPa or more, the compression elastic modulus in the thickness direction is 11.8 MPa
Below, the specific resistance in the thickness direction is 0.01 Ωm or less, and the gas permeability in the thickness direction by air is 3000 ml · mm / c.
It is characterized by having m 2 / hr / mmAq or more.

【0029】以下、これらの特性値について説明する。Hereinafter, these characteristic values will be described.

【0030】まず、本発明の多孔質炭素板の曲げ強さは
14.7MPa以上であり、好ましくは19.6MPa
以上、さらに好ましくは24.5MPa以上である。
First, the bending strength of the porous carbon plate of the present invention is 14.7 MPa or more, preferably 19.6 MPa.
Or more, More preferably, it is 24.5 MPa or more.

【0031】曲げ強さが14.7MPaより小さいと、
比抵抗が高くなり、またハンドリング性が悪く、好まし
くない。
When the bending strength is less than 14.7 MPa,
It is not preferable because the specific resistance becomes high and the handleability is poor.

【0032】曲げ強さはJIS K6911に準拠した
3点曲げ試験で測定する。
The bending strength is measured by a three-point bending test according to JIS K6911.

【0033】ただし、試験片の幅(W)は13mm、長
さ(L)は60mm以上とする。支点間距離(Lv)と
試験片の厚さ(h)の関係は次のとおり。
However, the width (W) of the test piece is 13 mm and the length (L) is 60 mm or more. The relationship between the distance between fulcrums (Lv) and the thickness (h) of the test piece is as follows.

【0034】Lv/hは、厚さ約0.1mmのとき、Lv
/hは約200とし、厚さの増加とともにLv/hを小
さくし、厚さ約0.5mmのとき、Lv/hは約100と
する。また支点と加圧くさびのRは3mm、荷重速度は
2mm/minとする。
Lv / h is Lv when the thickness is about 0.1 mm.
/ H is about 200, and Lv / h is reduced as the thickness increases. When the thickness is about 0.5 mm, Lv / h is about 100. Further, R of the fulcrum and the pressure wedge is 3 mm, and the load speed is 2 mm / min.

【0035】次に、厚さ方向の圧縮強さは、電極基材を
電極に加工するときと燃料電池として使用する際の加圧
力に耐える強さであればよく、0.49MPa以上、好
ましくは0.98MPa以上、さらに好ましくは1.4
7MPa以上である。
Next, the compressive strength in the thickness direction may be such that it can withstand the applied pressure when the electrode base material is processed into an electrode and when it is used as a fuel cell, and is 0.49 MPa or more, preferably. 0.98 MPa or more, more preferably 1.4
It is 7 MPa or more.

【0036】また、厚さ方向の圧縮弾性率は、燃料電池
を積層して組んだ時に重ねられるセパレータ表面の凹凸
や多孔質基材自身の凹凸を吸収して接触抵抗を小さくす
るためには低い方がよいが、あまり低いと加圧が加わっ
た時の変形量が大きくなり、加工が行ないにくくなるた
め、11.8MPa以下とし、好ましくは1.96〜1
1.8MPa、さらに好ましくは3.92〜9.8MP
aである。
Further, the compressive elastic modulus in the thickness direction is low in order to reduce the contact resistance by absorbing the unevenness of the surface of the separator and the unevenness of the porous substrate itself which are stacked when the fuel cells are stacked and assembled. It is better, but if it is too low, the amount of deformation when pressure is applied becomes large and it becomes difficult to process, so it is set to 11.8 MPa or less, preferably 1.96 to 1
1.8 MPa, more preferably 3.92 to 9.8 MP
a.

【0037】厚さ方向の圧縮強さと圧縮弾性率は、荷重
を増やしていくと、図1の様な変位−荷重曲線が得られ
る。これが途中で直線的に変化し、直線からそれ始める
点を破壊点とする。基材の厚さをh、基材の面積をA、
破壊点の荷重をP、破壊点までの変位をΔhとして、次
式により算出する。
With respect to the compressive strength and compressive elastic modulus in the thickness direction, as the load is increased, a displacement-load curve as shown in FIG. 1 is obtained. The point at which this changes linearly on the way and starts from the straight line is the breaking point. The thickness of the substrate is h, the area of the substrate is A,
The load at the breaking point is P, and the displacement up to the breaking point is Δh, which is calculated by the following equation.

【0038】圧縮強さ=P/A 圧縮弾性率=H/A×P/Δh 破壊点を決定するのが難しい場合には基材を何枚か重ね
て測定するとよい。試験前の基材の厚さの測定には通常
市販されているマイクロメータを用い、何枚か重ねて測
定する場合には1枚ずつ測定した厚さの和を基材厚さと
する。
Compressive strength = P / A Compressive elastic modulus = H / A × P / Δh When it is difficult to determine the breaking point, it is advisable to stack several substrates and measure. A commercially available micrometer is used to measure the thickness of the base material before the test, and when several sheets are stacked and measured, the sum of the thicknesses measured one by one is taken as the base material thickness.

【0039】さらに、厚さ方向の比抵抗は0.01Ωm
以下、好ましくは0.005Ωm以下である。
Further, the specific resistance in the thickness direction is 0.01 Ωm.
It is preferably 0.005 Ωm or less.

【0040】厚さ方向の比抵抗は、基材を一定面積の水
銀電極ではさみ、電極間に一定電流を流したときの電圧
降下から次式によって算出する。
The specific resistance in the thickness direction is calculated by the following equation from the voltage drop when a base material is sandwiched between mercury electrodes having a constant area and a constant current is applied between the electrodes.

【0041】比抵抗=(電圧降下×電極面積)/(電流
×基材の厚み) 空気による厚さ方向の気体透過性は、3000ml・mm/c
m 2 /hr/mmAq以上、好ましくは3600ml・mm/cm 2 /h
r/mmAq以上である。
Specific resistance = (voltage drop × electrode area) / (current × base material thickness) Gas permeability in the thickness direction by air is 3000 ml.mm/c
m 2 / hr / mmAq or more, preferably 3600 ml ・ mm / cm 2 / h
r / mmAq or more.

【0042】空気による厚さ方向の気体透過性は次の方
法により測定する。
The gas permeability in the thickness direction by air is measured by the following method.

【0043】すなわち、基材に空気を14ml/cm 2 /sec
(=50400ml/cm 2 /hr )透過させたときの圧力損
失を測定し、次式によって算出する。
That is, 14 ml / cm 2 / sec of air is applied to the base material.
(= 50400 ml / cm 2 / hr) The pressure loss upon permeation is measured and calculated by the following formula.

【0044】 気体透過性=(50400×基材厚さ)/(圧力損失) 次に、本発明における多孔質炭素板の結着炭素と炭素の
結着した炭素繊維による表層被覆率は、気体透過性との
関係から、20%以下であることが好ましく、より好ま
しくは13%以下である。
Gas Permeability = (50400 × Substrate Thickness) / (Pressure Loss) Next, the surface coverage ratio of the binding carbon of the porous carbon plate and the carbon fiber to which the carbon is bound in the present invention is the gas permeability. From the relationship with sex, it is preferably 20% or less, more preferably 13% or less.

【0045】表層被覆率(RSC)を求めるためには、電
子顕微鏡などで基材を200倍以上に拡大して表層を覆
っている結着炭素と炭素繊維のうち炭素に結着されてい
る部分の面積、すなわち、被覆されている部分の面積
(SSC)を求める。たとえば図2の場合、図3の斜線の
範囲が被覆されている部分である。
In order to obtain the surface layer coverage (R SC ), the base material is magnified 200 times or more with an electron microscope or the like, and the binding carbon covering the surface layer is bound to the carbon of the carbon fibers. The area of the part, that is, the area of the covered part (S SC ) is obtained. For example, in the case of FIG. 2, the shaded area in FIG. 3 is the covered portion.

【0046】表層被覆率(RSC)=SSC/STotal で求
める。
Surface coverage (R SC ) = S SC / S Total

【0047】ただし、STotal は、覆われている部分と
覆われていない部分をあわせた全面積である。
However, S Total is the total area of the covered and uncovered areas.

【0048】場所によるバラツキの影響を除くため、S
Total は少なくとも0.5mm2 以上になる様にする。表
層の判断が難しい場合には0.1mm×0.1mmのメッシ
ュに区切り、それぞれのなかで表層から6本目までの炭
素繊維に結着した炭素とその連なった炭素とする。
To eliminate the influence of variations due to location, S
Total should be at least 0.5 mm 2 or more. If it is difficult to determine the surface layer, divide the mesh into 0.1 mm × 0.1 mm meshes, and select the carbon bound to the 6th carbon fiber from the surface layer and the continuous carbon in each mesh.

【0049】次に、本発明の多孔質炭素板の製造方法に
ついて説明する。
Next, the method for producing the porous carbon plate of the present invention will be described.

【0050】本発明の多孔質炭素板の製造方法は、実質
的に二次元ランダムな方向に分散した炭素短繊維集合体
にレゾール型フェノール樹脂Rとノボラック型フェノー
ル樹脂NをR:N=2:1〜1:3の比率で混合した樹
脂を炭素繊維100重量部に対してフェノール樹脂が4
0〜75重量部になるように含浸して中間基材を得る工
程と、前記混合樹脂が含浸された前記中間基材を加熱し
て前記混合樹脂を炭素化する工程とを含むことを特徴と
する。
In the method for producing a porous carbon plate of the present invention, the resole-type phenol resin R and the novolac-type phenol resin N are added to the short carbon fiber aggregates dispersed in a substantially two-dimensional random direction R: N = 2 :. Phenolic resin was added to 100 parts by weight of carbon fiber in a ratio of 1 to 1: 3.
0 to 75 parts by weight to obtain an intermediate base material by impregnation, and heating the intermediate base material impregnated with the mixed resin to carbonize the mixed resin. To do.

【0051】炭素短繊維集合体は、取り扱い性、樹脂含
浸時の形態保持のために有機質バインダを付着させるこ
とができる。有機質バインダとしては、ポリビニルアル
コール、セルロース、ポリエステル、エポキシ樹脂、フ
ェノール樹脂、アクリル樹脂等を用いることができる。
また付着量は1〜30重量%程度でよい。
An organic binder may be attached to the short carbon fiber aggregate for the purpose of handling and maintaining the shape during resin impregnation. As the organic binder, polyvinyl alcohol, cellulose, polyester, epoxy resin, phenol resin, acrylic resin or the like can be used.
Further, the amount of adhesion may be about 1 to 30% by weight.

【0052】レゾール型フェノール樹脂Rとノボラック
型フェノール樹脂Nとの混合比率は、Rが多くなりすぎ
ると曲げ強さが低くなり、厚さ方向の比抵抗が高くなる
こと、Nが多くなりすぎると後の加熱工程において混合
樹脂が十分固くならず扱いにくくなること、また樹脂の
炭素化時に残る炭素分が少なくなってしまうことなどか
ら、R:N=2:1〜1:3とし、好ましくは、R:N
=3:2〜1:2とする。特に本発明のように、炭素短
繊維に比べ樹脂量が少ない場合には、Rの量を抑えるこ
とが曲げ強さ、比抵抗のために重要になる。
As for the mixing ratio of the resol type phenol resin R and the novolac type phenol resin N, if the amount of R is too large, the bending strength becomes low, the specific resistance in the thickness direction becomes high, and if the amount of N becomes too large. In the subsequent heating step, the mixed resin does not become sufficiently hard and becomes difficult to handle, and the carbon content remaining during the carbonization of the resin becomes small. Therefore, R: N = 2: 1 to 1: 3, and preferably R: N = 2: 1 to 1: 3. , R: N
= 3: 2 to 1: 2. Particularly when the amount of resin is smaller than that of short carbon fibers as in the present invention, it is important to suppress the amount of R for bending strength and specific resistance.

【0053】含浸するフェノール樹脂の量は多くし過ぎ
ると基材の密度が高くなり、気体透過性が低くなって固
体高分子型燃料電池の電極基材として適さなくなる。一
方、少なくし過ぎると基材の密度が低くなり過ぎ、曲げ
強さ、圧縮強さと弾性率が低く、比抵抗が高くなってし
まうので、炭素繊維100重量部に対する樹脂の含浸量
は40〜75重量部とし、好ましくは55〜75重量部
とする。
If the amount of the impregnated phenolic resin is too large, the density of the base material becomes high and the gas permeability becomes low, so that it becomes unsuitable as an electrode base material of a polymer electrolyte fuel cell. On the other hand, if the amount is too small, the density of the base material becomes too low, the bending strength, the compression strength and the elastic modulus are low, and the specific resistance becomes high. Therefore, the impregnation amount of the resin with respect to 100 parts by weight of the carbon fiber is 40 to 75. The amount is, by weight, preferably 55 to 75 parts by weight.

【0054】本発明の多孔質炭素板の他の製造方法は、
実質的に二次元ランダムな方向に分散した炭素短繊維集
合体に炭素繊維100重量部に対してメラミン樹脂が7
0〜220重量部になるように含浸して中間基材を得る
工程と、メラミン樹脂が含浸された前記中間基材とを加
熱してメラミン樹脂を炭素化する工程を含むことを特徴
とする。
Another method for producing the porous carbon plate of the present invention is
The melamine resin was added to 100 parts by weight of the carbon fibers in the carbon short fiber aggregate dispersed in the substantially two-dimensional random direction.
It is characterized by including a step of obtaining an intermediate base material by impregnation so as to be 0 to 220 parts by weight, and a step of heating the intermediate base material impregnated with the melamine resin to carbonize the melamine resin.

【0055】上記の工程におけるメラミン樹脂の含浸量
は、炭素繊維100重量部に対して70〜220重量部
であるが、好ましくは100〜200重量部、さらに好
ましくは130〜180重量部であることが気体透過性
と比抵抗のバランス上好ましい。
The amount of the melamine resin impregnated in the above step is 70 to 220 parts by weight, preferably 100 to 200 parts by weight, more preferably 130 to 180 parts by weight, based on 100 parts by weight of the carbon fiber. Is preferable in terms of balance between gas permeability and specific resistance.

【0056】また、残炭率30%以上の樹脂、例えばフ
ェノール樹脂、フラン樹脂、ピッチなどがメラミン樹脂
に混合されてもよい。ただし、混合樹脂中のメラミン樹
脂の比率は60%以上、好ましくは80%以上である。
またメラミン混合樹脂の含浸量は上記メラミン単独の場
合と同じである。
Further, a resin having a residual carbon rate of 30% or more, for example, a phenol resin, a furan resin, pitch or the like may be mixed with the melamine resin. However, the ratio of the melamine resin in the mixed resin is 60% or more, preferably 80% or more.
Further, the impregnated amount of the melamine mixed resin is the same as in the case of the above melamine alone.

【0057】[0057]

【実施例】【Example】

実施例1 東レ株式会社製ポリアクリロニトリル系炭素繊維“トレ
カ”T300(平均短繊維径:7μm、単繊維数:60
00本)を長さ12mmに切断し、よく解繊した後、そ
れが0.04重量%になるように水中に分散させ、金網
上に抄造し、さらにそれをポリビニルアルコールの10
重量%水溶液に浸漬し、引き上げて乾燥し、炭素短繊維
100重量部に対してバインダであるポリビニルアルコ
ールが約30重量%付着したシート状中間基材を得た。
Example 1 Toray Industries, Inc. polyacrylonitrile-based carbon fiber “Torayca” T300 (average short fiber diameter: 7 μm, single fiber number: 60)
(00 pieces) is cut into a length of 12 mm and well defibrated, then dispersed in water so that the content becomes 0.04% by weight, paper-making is performed on the wire mesh, and then 10 pieces of polyvinyl alcohol are added.
The sheet-shaped intermediate base material was obtained by immersing in a weight% aqueous solution, pulling it up and drying it, and about 30 weight% of polyvinyl alcohol as a binder adhered to 100 weight parts of carbon short fibers.

【0058】次に、上記中間基材を、レゾール型フェノ
ール樹脂100重量部に対して同重量部のノボラック型
フェノール樹脂を含む混合樹脂の6重量%メタノール溶
液に浸漬し、引き上げて炭素短繊維100重量部に対し
て混合樹脂を約69重量部付着させ、さらに90℃で3
分間加熱して乾燥した後、2枚重ねて145℃の温度下
に0.69MPaの圧力を15分間加えてレゾール型フ
ェノール樹脂を硬化させた。
Next, the above-mentioned intermediate base material was immersed in a 6 wt% methanol solution of a mixed resin containing the same parts by weight of the novolac type phenol resin with respect to 100 parts by weight of the resol type phenol resin, and the carbon short fiber 100 was pulled up. Approximately 69 parts by weight of the mixed resin is attached to the parts by weight, and further at 90 ° C.
After heating and drying for 2 minutes, two sheets were stacked and a pressure of 0.69 MPa was applied for 15 minutes at a temperature of 145 ° C. to cure the resol-type phenol resin.

【0059】次に、混合樹脂が固くなった中間基材を、
窒素ガス雰囲気中にて2400℃で30分間加熱して混
合樹脂を炭素化し、導電性基材を得た。 実施例2,3 混合樹脂濃度を変えて混合樹脂付着量を49,74重量
部とした以外は実施例1と同様にして導電性基材を得
た。 実施例4 混合樹脂を含浸したシート状中間基材を4枚重ねて加熱
加圧により樹脂を硬化させた以外は、実施例3と同様に
して導電性基材を得た。 比較例1 混合樹脂濃度を上げて混合樹脂付着量を124重量部と
した以外は実施例1と同様にして導電性基材を得た。 比較例2 混合樹脂濃度を上げて混合樹脂付着量を150重量部と
したシート状中間基材を4枚重ねて加熱加圧により樹脂
を硬化させた以外は実施例1と同様にして導電性基材を
得た。 実施例5 混合樹脂のメタノール溶液のかわりにメラミン樹脂の1
0重量%の水とメタノールの混合溶液を用い、樹脂付着
量を180重量部とし、室温24時間で乾燥した以外は
実施例1と同様にして導電性基材を得た。 比較例3 メラミン樹脂濃度を上げてメラミン樹脂付着量を240
重量部とした以外は実施例5と同様にして導電性基材を
得た。
Next, the intermediate base material in which the mixed resin is hard is
The mixed resin was carbonized by heating at 2400 ° C. for 30 minutes in a nitrogen gas atmosphere to obtain a conductive base material. Examples 2 and 3 A conductive base material was obtained in the same manner as in Example 1 except that the mixed resin concentration was changed to 49,74 parts by weight of the mixed resin adhesion amount. Example 4 A conductive base material was obtained in the same manner as in Example 3 except that four sheet-shaped intermediate base materials impregnated with the mixed resin were stacked and the resin was cured by heating and pressing. Comparative Example 1 A conductive base material was obtained in the same manner as in Example 1 except that the concentration of the mixed resin was increased to 124 parts by weight of the mixed resin. Comparative Example 2 A conductive group was prepared in the same manner as in Example 1 except that four sheet-shaped intermediate base materials having a mixed resin concentration increased and a mixed resin adhesion amount of 150 parts by weight were stacked and the resin was cured by heating and pressing. I got the material. Example 5 Instead of the methanol solution of the mixed resin, 1 of the melamine resin was used.
A conductive base material was obtained in the same manner as in Example 1 except that a mixed solution of 0% by weight of water and methanol was used, the amount of resin adhered was 180 parts by weight, and drying was performed at room temperature for 24 hours. Comparative Example 3 The melamine resin concentration was increased to increase the melamine resin adhesion amount to 240.
A conductive base material was obtained in the same manner as in Example 5 except that the parts by weight were used.

【0060】以上の基材の物性を表1にまとめる。★The physical properties of the above base materials are summarized in Table 1. ★

【0061】[0061]

【表1】 ★表1から分かる様に、本発明の多孔質炭素板は比較例
の多孔質炭素板に比べて、曲げ強さ、比抵抗を多少低下
させるが、大幅な気体透過性の改善を実現した。
[Table 1] * As can be seen from Table 1, the porous carbon plate of the present invention slightly lowers bending strength and specific resistance as compared with the porous carbon plate of the comparative example, but realizes a great improvement in gas permeability.

【0062】[0062]

【発明の効果】本発明の多孔質炭素板は、曲げ強さ約1
4.7MPa以上、厚さ方向の比抵抗が0.01Ωm以
下と実用可能なレベルに保ったまま気体透過性を大幅に
改善した基材となり、電流密度が高く、多量の反応ガス
の給排気の必要な固体高分子型燃料電池の電極として非
常に優れた効果を奏する。
The porous carbon plate of the present invention has a bending strength of about 1
It is a base material with greatly improved gas permeability while maintaining a practical level of 4.7 MPa or more and a specific resistance in the thickness direction of 0.01 Ωm or less. It has a high current density and can supply and exhaust a large amount of reaction gas. It has a very excellent effect as a necessary electrode for a polymer electrolyte fuel cell.

【図面の簡単な説明】[Brief description of the drawings]

【図1】厚さ方向の圧縮試験時の変位−荷重曲線FIG. 1 Displacement-load curve during compression test in the thickness direction

【図2】本発明に係る多孔質炭素板の一例を示す電子顕
微鏡写真である。
FIG. 2 is an electron micrograph showing an example of a porous carbon plate according to the present invention.

【図3】図2における表層被覆率(RSC)を求めるため
の、被覆されている部分を示す(斜線部分)を示す電子
顕微鏡写真である。
FIG. 3 is an electron micrograph showing a covered portion (hatched portion) for obtaining the surface layer coverage (R SC ) in FIG.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/96 C04B 35/80 K Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01M 4/96 C04B 35/80 K

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】実質的に二次元平面内においてランダムな
方向に分散せしめられた炭素短繊維を炭素によって互い
に結着してなる多孔質炭素板であって、曲げ強さが1
4.7MPa以上、厚さ方向の圧縮強さが0.49MP
a以上、厚さ方向の圧縮弾性率が11.8MPa以下、
厚さ方向の比抵抗が0.01Ωm以下であり、かつ空気
による厚さ方向の気体透過性が3000ml・mm/cm 2 /h
r/mmAq以上であることを特徴とする多孔質炭素板。
1. A porous carbon plate obtained by binding carbon short fibers dispersed in random directions in a substantially two-dimensional plane to each other with a bending strength of 1
More than 4.7MPa, compressive strength in the thickness direction is 0.49MP
a or more and a compression elastic modulus in the thickness direction of 11.8 MPa or less,
The specific resistance in the thickness direction is 0.01Ωm or less, and the gas permeability in the thickness direction by air is 3000 ml · mm / cm 2 / h.
Porous carbon plate characterized by r / mmAq or more.
【請求項2】下記の式で定義する結着炭素と炭素の結着
した炭素繊維による表層被覆率が20%以下であること
を特徴とする請求項1に記載の多孔質炭素板。 ただし、RSC=SSC/STotalSC:表層被覆率 SSC:表層を覆っている結着炭素と炭素繊維の結着され
ている部分の面積 STotal :覆われている部分と覆われていない部分をあ
わせた全面積
2. The porous carbon plate according to claim 1, wherein the surface coverage of the binding carbon defined by the following formula and the carbon fiber in which the carbon is bound is 20% or less. However, R SC = S SC / S Total R SC : Surface layer coverage S SC : Binder covering the surface layer Area of the part where carbon and carbon fiber are bound S Total : Covered part and covered Total area including unfilled parts
【請求項3】請求項1または2に記載の多孔質炭素板か
らなることを特徴とする燃料電池の電極基材。
3. An electrode base material for a fuel cell, comprising the porous carbon plate according to claim 1 or 2.
【請求項4】請求項1または2に記載の多孔質炭素板か
らなることを特徴とする固体高分子型燃料電池の電極基
材。
4. An electrode base material for a polymer electrolyte fuel cell, comprising the porous carbon plate according to claim 1 or 2.
【請求項5】実質的に二次元ランダムな方向に分散した
炭素短繊維集合体にレゾール型フェノール樹脂Rとノボ
ラック型フェノール樹脂NをR:N=2:1〜1:3の
比率で混合した樹脂を炭素繊維100重量部に対してフ
ェノール樹脂が40〜75重量部になるように含浸して
中間基材を得る工程と、前記混合樹脂が含浸された前記
中間基材を加熱して前記混合樹脂を炭素化する工程とを
含むことを特徴とする多孔質炭素板の製造方法。
5. A resol type phenol resin R and a novolac type phenol resin N are mixed with a carbon short fiber aggregate dispersed in a substantially two-dimensional random direction in a ratio of R: N = 2: 1 to 1: 3. A step of impregnating the resin so that the phenol resin is 40 to 75 parts by weight with respect to 100 parts by weight of carbon fiber to obtain an intermediate base material; and heating the intermediate base material impregnated with the mixed resin to perform the mixing. And a step of carbonizing the resin, the method for producing a porous carbon plate.
【請求項6】実質的に二次元ランダムな方向に分散した
炭素短繊維集合体に炭素繊維100重量部に対してメラ
ミン樹脂が70〜220重量部になるように含浸して中
間基材を得る工程と、メラミン樹脂が含浸された前記中
間基材とを加熱してメラミン樹脂を炭素化する工程を含
むことを特徴とする多孔質炭素板の製造方法。
6. An intermediate base material is obtained by impregnating short carbon fiber aggregates dispersed in a substantially two-dimensional random direction with 70 to 220 parts by weight of melamine resin per 100 parts by weight of carbon fibers. A method for producing a porous carbon plate, comprising: a step of heating the intermediate base material impregnated with the melamine resin to carbonize the melamine resin.
JP34526195A 1995-12-06 1995-12-06 Electrode substrate for polymer electrolyte fuel cell and method for producing the same Expired - Lifetime JP4051714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34526195A JP4051714B2 (en) 1995-12-06 1995-12-06 Electrode substrate for polymer electrolyte fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34526195A JP4051714B2 (en) 1995-12-06 1995-12-06 Electrode substrate for polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09157052A true JPH09157052A (en) 1997-06-17
JP4051714B2 JP4051714B2 (en) 2008-02-27

Family

ID=18375405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34526195A Expired - Lifetime JP4051714B2 (en) 1995-12-06 1995-12-06 Electrode substrate for polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP4051714B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
WO2001056103A1 (en) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP2002302557A (en) * 2001-02-05 2002-10-18 Mitsubishi Rayon Co Ltd Wound body of resin-cured carbonaceous or porous carbonaceous sheet-like material, and method and apparatus for winding the same
JP2003017076A (en) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd Carbon fiber structure
JP2003053759A (en) * 2001-08-14 2003-02-26 Mitsubishi Rayon Co Ltd Heat-curing device for precursor sheet-like object of porous carbon molded product and heat-curing method
WO2004085728A1 (en) * 2003-03-26 2004-10-07 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
JP2004311276A (en) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body and polyelectrolyte fuel cell
JP2005194107A (en) * 2003-12-26 2005-07-21 Tokyo Institute Of Technology Method for forming porous carbon layer
JP2005297547A (en) * 2004-03-17 2005-10-27 Toray Ind Inc Carbon fiber sheet and porous carbon board and its production method
WO2005124907A1 (en) * 2004-06-21 2005-12-29 Mitsubishi Rayon Co., Ltd. Porous electrode base material and process for producing the same
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method
JP2006143478A (en) * 2003-09-26 2006-06-08 Toray Ind Inc Porous carbon base material, gas-diffusing material using the same, film-electrode jointed article and fuel cell
WO2007037084A1 (en) 2005-09-29 2007-04-05 Toray Industries, Inc. Porous carbon sheet and process for production thereof
JP2009238748A (en) * 2008-03-05 2009-10-15 Mitsubishi Rayon Co Ltd Porous carbon electrode base material, membrane-electrode assembly and solid polymer fuel cell using the same
JP2010132515A (en) * 2008-12-08 2010-06-17 Mitsubishi Rayon Co Ltd Method for manufacturing porous electrode substrate
JP2010257748A (en) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd Porous electrode base material and method of manufacturing the same
JP2011195374A (en) * 2010-03-19 2011-10-06 Toray Ind Inc Porous carbon sheet and method for producing the same
JP2016532274A (en) * 2013-09-06 2016-10-13 エスジーエル・カーボン・エスイー Carbon fiber electrode substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149554B1 (en) * 2009-02-18 2012-05-30 슐레머 게엠베하 A connection apparatus for a corrugated tube

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062134A1 (en) * 1998-05-27 1999-12-02 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
EP1009048A1 (en) * 1998-05-27 2000-06-14 Toray Industries, Inc. Carbon fiber paper for solid polymer fuel cells
EP1009048A4 (en) * 1998-05-27 2002-09-04 Toray Industries Carbon fiber paper for solid polymer fuel cells
WO2001056103A1 (en) 2000-01-27 2001-08-02 Mitsubishi Rayon Co., Ltd. Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
EP1942536A1 (en) 2000-01-27 2008-07-09 Mitsubishi Rayon Co., Ltd. Porous carbon electrode substrate and its production method and carbon fiber paper
JP2002302557A (en) * 2001-02-05 2002-10-18 Mitsubishi Rayon Co Ltd Wound body of resin-cured carbonaceous or porous carbonaceous sheet-like material, and method and apparatus for winding the same
JP2003017076A (en) * 2001-06-27 2003-01-17 Toho Tenax Co Ltd Carbon fiber structure
JP2003053759A (en) * 2001-08-14 2003-02-26 Mitsubishi Rayon Co Ltd Heat-curing device for precursor sheet-like object of porous carbon molded product and heat-curing method
JP4728528B2 (en) * 2001-08-14 2011-07-20 三菱レイヨン株式会社 Thermosetting device and thermosetting method for porous carbon-based molded product precursor sheet
WO2004085728A1 (en) * 2003-03-26 2004-10-07 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
US7410719B2 (en) 2003-03-26 2008-08-12 Toray Industries, Inc. Porous carbon base material, method for preparation thereof, gas-diffusing material film-electrode jointed article, and fuel cell
JP2004311431A (en) * 2003-03-27 2004-11-04 Toray Ind Inc Porous carbon board and its manufacturing method
JP2004311276A (en) * 2003-04-09 2004-11-04 Matsushita Electric Ind Co Ltd Polymer membrane electrode jointed body and polyelectrolyte fuel cell
JP2006143478A (en) * 2003-09-26 2006-06-08 Toray Ind Inc Porous carbon base material, gas-diffusing material using the same, film-electrode jointed article and fuel cell
JP2005194107A (en) * 2003-12-26 2005-07-21 Tokyo Institute Of Technology Method for forming porous carbon layer
JP2005297547A (en) * 2004-03-17 2005-10-27 Toray Ind Inc Carbon fiber sheet and porous carbon board and its production method
JP4591128B2 (en) * 2004-03-17 2010-12-01 東レ株式会社 Method for producing porous carbon plate
WO2005124907A1 (en) * 2004-06-21 2005-12-29 Mitsubishi Rayon Co., Ltd. Porous electrode base material and process for producing the same
JP2006004858A (en) * 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Porous electrode base material and its manufacturing method
WO2007037084A1 (en) 2005-09-29 2007-04-05 Toray Industries, Inc. Porous carbon sheet and process for production thereof
JP2009238748A (en) * 2008-03-05 2009-10-15 Mitsubishi Rayon Co Ltd Porous carbon electrode base material, membrane-electrode assembly and solid polymer fuel cell using the same
JP2010132515A (en) * 2008-12-08 2010-06-17 Mitsubishi Rayon Co Ltd Method for manufacturing porous electrode substrate
JP2010257748A (en) * 2009-04-24 2010-11-11 Mitsubishi Rayon Co Ltd Porous electrode base material and method of manufacturing the same
JP2011195374A (en) * 2010-03-19 2011-10-06 Toray Ind Inc Porous carbon sheet and method for producing the same
JP2016532274A (en) * 2013-09-06 2016-10-13 エスジーエル・カーボン・エスイー Carbon fiber electrode substrate
US10629893B2 (en) 2013-09-06 2020-04-21 Sgl Carbon Se Method of producing an electrode substrate made of carbon fibers

Also Published As

Publication number Publication date
JP4051714B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
JPH09157052A (en) Porous carbon sheet and its production
JPS63254669A (en) Electrode substrate for fuel cell
WO2001056103A1 (en) Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper
JP3521619B2 (en) Carbon fiber paper and porous carbon plate
WO2004085728A1 (en) Porous carbon base material, method for preparation thereof, gas-diffusing material, film-electrode jointed article, and fuel cell
KR101392227B1 (en) Carbon fiber web comprising polymer nanofiber
JP7136252B2 (en) Electrodes for redox flow batteries and redox flow batteries
EP3902039A1 (en) Graphitized carbon substrate and gas diffusion layer employing same
JP2007184224A (en) Porous carbon electrode base material and method for preparing it
JPWO2004031465A1 (en) Acrylic flame resistant fiber nonwoven fabric, carbon fiber nonwoven fabric, and production method thereof
JP5847865B2 (en) Gas diffusion substrate
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2003183994A (en) Carbon fiber paper, and porous carbon electrode material for fuel battery using the same
JPH076775A (en) Electrolyte holding plate and manufacture thereof
JP2004311431A (en) Porous carbon board and its manufacturing method
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP2004259711A (en) Carbon fiber paper and porous carbon electrode base material for fuel cells
JP2002358981A (en) Current collector for fuel cell and its manufacturing method
CN113882186B (en) Carbon fiber paper and preparation method and application thereof
JP2004027435A (en) Carbon fiber sheet and method for producing the same
JP2003286085A (en) Porous carbon plate and manufacturing method thereof
JPH01160867A (en) Production of electrically conductive material
KR102388815B1 (en) High density gas diffusion layer, preparing method thereof, electrode, membrane-electrode assembly, and fuel cell emplying the same
JP2003192439A (en) Porous carbon plate comprising hollow carbon fiber and method for manufacturing the same
JP2006004858A5 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

EXPY Cancellation because of completion of term