JP4409211B2 - Method for producing porous electrode substrate for polymer electrolyte fuel cell - Google Patents

Method for producing porous electrode substrate for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4409211B2
JP4409211B2 JP2003161870A JP2003161870A JP4409211B2 JP 4409211 B2 JP4409211 B2 JP 4409211B2 JP 2003161870 A JP2003161870 A JP 2003161870A JP 2003161870 A JP2003161870 A JP 2003161870A JP 4409211 B2 JP4409211 B2 JP 4409211B2
Authority
JP
Japan
Prior art keywords
water
fiber
fibers
split
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003161870A
Other languages
Japanese (ja)
Other versions
JP2004363018A5 (en
JP2004363018A (en
Inventor
誠 中村
茂 田上
英彦 大橋
省治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2003161870A priority Critical patent/JP4409211B2/en
Publication of JP2004363018A publication Critical patent/JP2004363018A/en
Publication of JP2004363018A5 publication Critical patent/JP2004363018A5/ja
Application granted granted Critical
Publication of JP4409211B2 publication Critical patent/JP4409211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子型燃料電池用多孔質電極基材に関する。
【0002】
【従来の技術】
固体高分子型燃料電池用多孔質電極基材は、固体高分子型燃料電池においてセパレーターと触媒層の間に位置するもので、セパレーターと触媒層間の電気伝達体としてのはたらきだけでなく、セパレーターから供給される水素や酸素などの反応ガスを触媒層に分配する機能と触媒層で発生する水を吸収して外部に排出する機能を有するものである。
【0003】
固体高分子型燃料電池用の電極基材には反応ガスの拡散・透過性、耐酸性、電極製造時や電極を組んだときの圧縮に耐える機械的強度が要求され、炭素繊維紙や炭素繊維織物を用いたものが主流となっている。
【0004】
特に炭素繊維紙を用いた電極基材は、炭素繊維織物を用いたものより表面の凹凸が少ない点で優れている。炭素繊維紙においては、炭素短繊維に樹脂を含浸させ、ホットプレスしたのち再焼成して得られるC/Cコンポジットタイプのものが主流であったが、多段階の工程を必要とするためコストが高くなる傾向にある。そのため、炭素繊維紙を再焼成することなく性能を発揮するものが注目されている。
【0005】
再焼成しないタイプの炭素繊維紙においては、炭素短繊維間を結合するバインダーの役割が重要であり、汎用のバインダーを使用すると導電性だけでなく機械強度も低下するため、性能を維持する手段として特に撥水物質を用いることで機械強度だけでなく反応ガス中に含まれる水分の排水性を向上させたものが多く開発されている。その例として特許文献1や特許文献2に記載のものが挙げられる。
【0006】
特許文献1には、フッ素樹脂繊維と導電性繊維からなる電極基材が提案されている。しかしながらフッ素樹脂繊維は、導電性繊維と比較して導電性が極めて低いため、導電性繊維より繊維径が太いものや繊維長が長いものを用いると導電性繊維がフッ素樹脂繊維に分断され、導電性が低下する。
【0007】
特許文献2には、炭素繊維紙などの多孔質炭素基材に粒状フッ素樹脂のディスパージョン液内に含浸させるなどの方法で粒状フッ素樹脂が含浸された基材が提案されている。しかしながらこのような場合、多孔質炭素基材があらかじめ別の方法で炭素繊維を結着したものでないと、フッ素樹脂を付着させる時に繊維の脱落が生じやすくなる。フッ素樹脂の形状が粒状であるため、バインダーとして有効に働く部分が少なく機械強度が低下しやすい。
【0008】
【特許文献1】
特開平11−204114号公報
【特許文献2】
特開2002−352807号公報
【0009】
【発明が解決しようとする課題】
本発明は、少ない工程数で製造でき、機械的強度に優れる燃料電池用電極機材を提供することを目的とする。さらに優れた導電性や撥水性を容易に付与することのできる燃料電池用電極基材を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の要旨は、水に対する接触角が80°以上の撥水性物質と導電性物質と溶媒もしくは分散媒とからなる紡糸原液または水に対する接触角が80°以上の撥水性物質と溶媒もしくは分散媒とからなる紡糸原液を紡糸吐出口に通して混合セル内に吐出すると同時に、水蒸気を紡糸原液の吐出線方向に対して0度以上、90度未満の角度で混合セル内に噴出し、混合セル内で紡糸原液中の繊維原料を剪断流の下で凝固させたのち、形成された凝固体を紡糸原液中の溶媒と水蒸気と共に混合セルから凝固中に排出して、フィブリル部を有する分割繊維を得、この分割繊維と炭素短繊維とを水中に分散し抄紙したのち、加熱加圧して分割繊維によって炭素短繊維間を結着する固体高分子型燃料電池用多孔質電極基材の製造方法にある。
【0011】
前記炭素短繊維がポリアクリロニトリル系炭素繊維であり、その平均繊維長が3mm以上12mm以下であることが好ましい。
【0012】
前記分割繊維が、直径2μm以下のフィブリル部、及び、直径100μm以下の芯部を有する分割繊維であることが好ましい。
【0013】
前記分割繊維と前記炭素短繊維との含有質量比が1/3〜5/1であることが好ましい。
【0014】
前記分割繊維の少なくとも一部が、体積抵抗率が10Ω・cm以下の分割繊維である導電性分割繊維であることが好ましい。
【0015】
前記導電性分割繊維が、炭素微粒子を含有することが好ましい。
【0017】
前記撥水性分割繊維が、非プロトン性溶媒に可溶なポリマーを含有することが好ましい。
【0018】
前記分割繊維の体積抵抗率が10Ω・cm以下であり、かつ該分割繊維が水に対する接触角が80°以上の撥水性物質を含むことが好ましい。
【0019】
前記分割繊維が、炭素微粒子と非プロトン性溶媒に可溶なポリマーとを含有し、該炭素微粒子と該ポリマーとの質量比が1/99〜40/60であることが好ましい。
【0020】
引張強さが10kN/m以上で、かつ30秒間水面上に浮かばせた後の付着水分質量が多孔質電極基材の乾燥質量の2倍以下である多孔質電極基材が好ましい。
【0021】
貫通抵抗が0.8Ω・cm2以下でかつ面比抵抗が1Ω・cm以下である多孔質炭素電極基材が好ましい。
【0022】
上記フィブリル結着多孔質電極基材と、炭素短繊維を基材とする炭素繊維紙とが積層された固体高分子型燃料電池用多孔質電極基材が好ましい。
【0023】
上記フィブリル結着多孔質電極基材が複数積層された固体高分子型燃料電池用多孔質電極基材が好ましい。この電極基材において、複数の多孔質電極基材の分割繊維が、炭素微粒子と非プロトン性溶媒に可溶なポリマーとを含有し、少なくとも1つの多孔質電極基材と、他の少なくとも1つの多孔質電極基材とが、該分割繊維の含有量、該炭素微粒子の含有量および該ポリマーの含有量から選ばれる少なくとも1つにおいて相異なることが好ましい。
【0024】
【発明の実施の形態】
本発明の固体高分子型燃料電池用多孔質電極基材は、実質的に二次元平面内においてランダムな方向に分散した炭素短繊維が、フィブリル部を有する分割繊維で結着した多孔質電極基材である。
【0025】
フィブリル部を有する分割繊維は、水中に均一に分散し、かつ炭素短繊維を結着することができる。炭素短繊維を結着させる方法としては、抄紙時に炭素短繊維と接着性・粘着性の高いバインダーを混合させる方法や、炭素短繊維の表面を接着性の高い材料でコートしたものを分散させる方法があるが、いずれの場合も後加工により撥水性・導電性を付与させることが困難である。そのため、抄紙後撥水性物質や導電性物質を分散させた浴槽に浸漬させコートするなど別の工程にて撥水性材料や導電性材料を含ませる必要があり、コストアップにつながってしまう。フィブリル部を有する分割繊維は、抄紙時に水中でフィブリル部が炭素繊維に絡み着くことができるため、その組成が撥水性物質や導電性物質であっても炭素短繊維とともに分散させた場合結着剤として機能する。本発明においては、ワンステップで撥水性材料や導電性材料を多孔質電極基材に含ませることができる。
【0026】
実質的に二次元平面内においてランダムな方向に分散した炭素短繊維は、面方向から見ると炭素短繊維が、互いに交差しあっているが、厚み方向からみると繊維が平行に並んだ状態になっているものである。炭素繊維紙、炭素繊維不織布も含まれるが、バインダーなどにより形態が保持されていない段階のものも含まれる。
【0027】
フィブリル部を有する分割繊維は、繊維との絡みをよくするフィブリル部とバインダーとしての強度を発現するための芯部から構成されているため、他の繊維と強く結着することができる繊維である。
【0028】
固体高分子型燃料電池は、プロトン移動が固体高分子膜を媒体に行なわれる燃料電池である。稼動温度が低いことから小型化が可能であり、特に最近では自動車の駆動電源として期待されている。
【0029】
多孔質電極基材は、固体高分子型燃料電池で使用される反応ガスおよび発生ガスの触媒層への均一拡散および電子の運搬に必要なキーマテリアルである。
【0030】
<炭素短繊維>
本発明で用いる炭素短繊維の原料である炭素繊維は、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などいずれであって良いが、機械的強度が比較的高いポリアクリロニトリル系炭素繊維が好ましく、特に用いる炭素繊維がポリアクリロニトリル系炭素繊維のみからなることが好ましい。ポリアクリロニトリル系炭素繊維は、原料として、アクリロニトリルを主成分とするポリマーを用いて製造されるものである。
【0031】
ポリアクリロニトリル系炭素繊維は、その前駆体(プレカーサ)であるアク
リロニトリル系繊維を紡糸する製糸工程、200〜400℃の空気雰囲気中で該繊維を加熱焼成して酸化繊維に転換する耐炎化工程、窒素、アルゴン、ヘリウム等の不活性雰囲気中でさらに300〜2500℃に加熱して炭化する炭化工程を経て得ることができ、複合材料強化繊維として使用される。バインダーとの接着性を高めるため、炭素繊維の表面積は広いほうが好ましく、断面形状は強度発現と基材の空孔を大きくすると言う観点から円形状のものが好ましい。
【0032】
炭素短繊維の平均繊維長は、繊維同士の結着点の減少を抑え、電極基材の優れた機械的強度を得る観点から3mm以上が好ましく、炭素短繊維の分散を容易にし、電極基材の反応ガス分配性を優れたものにし、燃料電池における反応ガスの供給均一性を優れたものにする観点から12mm以下であることが好ましく、さらに好ましい下限及び上限は、それぞれ4mm及び9mmである。
【0033】
炭素繊維の平均繊維径は、ガス透過性を満足させるという観点から2μm以上が好ましく、4μm以上がより好ましく、機械強度および触媒層との接触性を良くするという観点から9μm以下であることが好ましく、7μm以下がより好ましい。
【0034】
<分割繊維>
フィブリル部を有する分割繊維が、表面フィブリル化繊維を分割して得られる繊維であることが好ましい。表面フィブリル化繊維は、例えば以下の方法で製造できる。分割繊維の原料(例えば撥水性物質および導電性物質)を溶媒に溶解もしくは分散媒に分散させた紡糸原液を紡糸吐出口に通して混合セル内に吐出すると同時に、水蒸気を紡糸原液の吐出線方向に対して0度以上、90度未満の角度で混合セル内に噴出し、混合セル内で分割繊維原料を剪断流速の下で凝固させる。形成された凝固体を前記溶媒もしくは分散媒と水蒸気と共に混合セルから凝固液中に排出することで表面フィブリル化繊維が得られる。凝固液としては水または、水と前記溶媒もしくは分散媒との混合液を用いることができる。
【0035】
このようにして得られた表面フィブリル化繊維は、他の繊維との結着面積を広くすることができる細繊維が集合したフィブリル部と水蒸気にあまり触れることなく凝固した繊維径の太い芯部を有している。表面フィブリル化繊維を分割して得られる分割繊維も繊維との絡みをよくするフィブリル部とバインダーとしての強度を発現するための芯部から構成されているため、他の繊維と強く結着することができる。
【0036】
フィブリル部の直径は混合する炭素繊維との絡みを良好にするため、2μm以下が好ましい。
【0037】
芯部は、多孔質電極基材の均質化の観点から直径100μm以下であることが好ましい。直径が100μm以下とすることにより、分割繊維が偏在することを優れて抑制でき、比較的少量の分割繊維によって炭素短繊維を結着することができる。また、強度を発現する観点から、芯部の直径は10μm以上であることが好ましい。
【0038】
炭素繊維に絡む機能の観点から、一つの芯部に対してフィブリル部が複数存在することが好ましく、一つの芯部に対してフィブリル部が多いほど好ましいと考えられる。
【0039】
一つの分割繊維において、芯部の太さは、一定であるか、あるいは無段階に変化するものが好ましい。上記方法でフィブリルを製造した場合、水蒸気がランダムに飛び散るため太さを一定に保つのは困難な場合が多く、このような場合芯部の太さが変化してしまう。このとき、太さが段階的に変化すると、段差の部分が弱くなり、強度が低下する傾向があるという点で不利である。段階的な変化は、噴射する水蒸気が冷えて粒状になった場合に見られるが、水蒸気の噴出圧および温度を高くするなどの方法で太さが段階的に変化することを防止することができる。
【0040】
<分割繊維と炭素短繊維の混合比率>
フィブリル部を有する分割繊維と炭素短繊維との混合比率(分割繊維質量/炭素短繊維質量)は、電極基材の導電性および強度の観点から1/3〜5/1であることが好ましい。分割繊維と炭素短繊維との混合比率が5/1を超える場合、すなわち分割繊維の混合量が多い場合、導電性・ガス透過性が低くなり電極基材としての機能が低下する傾向があるという点で不利である。一方、分割繊維と炭素短繊維との混合比率が1/3未満である場合、炭素繊維を結着する度合いが低下し、強度が低下する傾向があるという点で不利である。
【0041】
<導電性>
フィブリル部を有する分割繊維の体積抵抗率は、10Ω・cm以下であることが好ましい。体積抵抗率が10Ω・cm以下とすることにより、電極基材の抵抗が高くなってしまい燃料電池の性能が低下してしまうことを優れて防止できる。また、電極基材の抵抗を下げるためにフィブリル部を有する分割繊維の混合量を減らす必要がなく、従って機械的強度に優れた電極基材を得ることができる。(以下、体積抵抗率が10Ω・cm以下の分割繊維を導電性分割繊維という)。
【0042】
ここでの体積抵抗率は、分割繊維を構成する素材をシート状に加工したものの単位体積当たりの抵抗値であり、シート状物の面方向の抵抗を測定することで規定する。
【0043】
フィブリル部を有する分割繊維の導電性が、その内部に含有された炭素微粒子によって発現されることが好ましい。分割繊維さらには電極基材の導電性を保つためには導電性微粒子を含ませるのが好ましいが、導電性微粒子が金属である場合、燃料電池の反応系中で発生する酸により腐食される場合があるが、炭素微粒子は腐食さるおそれがない。炭素微粒子としては、アセチレンブラック、オイルファーネスブラック、ミルドファイバー、カーボンナノファイバーなどが挙げられる。アセチレンブラックは、溶媒への均一分散性の観点から特に好ましい。また、カーボン粒子が触媒担持カーボンの場合も多孔質炭素電極基材からのガスと電気の受け渡しが容易になるという観点から好ましい。炭素微粒子の粒径は5μm以下が好ましく、3μm以下がさらに好ましい。粒径が5μmより大きい場合は、分割繊維を製造する際、吐出口が詰り易くなる、触媒層との接触が悪化するという傾向があるという点で不利である。
【0044】
なお、触媒担持カーボンは、水素の酸化反応および酸素の還元反応を促進する触媒がカーボン粒子やカーボンナノチューブに担持されたもので、電極の触媒層を形成する部材である。
【0045】
<撥水性>
分割繊維が、水に対する接触角が80°以上の撥水性物質を含むことが好ましい。(以下、水に対する接触角が80°以上の撥水性物質を含む分割繊維を撥水性分割繊維という)。
【0046】
水に対する接触角が80°以上の撥水性物質としては、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等の共重合体、ポリフッ化ビニリデン等のフッ素系樹脂;シリコン系樹脂;パラフィン系樹脂、などがあるが、耐久性を付与することができるフッ素系樹脂が好ましい。
【0047】
フィブリル部を有する分割繊維に水に対する接触角が80°以上の上記撥水性物質が含まれていることにより、電極基材の中に燃料電池反応ガス中に含まれている水や発生水を吸収し、この水が電極基材の流路を遮断してしまうことを優れて防止できる。なお、撥水性を表す基準として水に対する接触角を測定するが、この際に用いられる撥水性物質は、分割繊維ではなく撥水性物質が平板に加工されたものを使用する。
【0048】
フィブリル部を有する撥水性分割繊維により炭素短繊維が結着されていることが好ましい。撥水性物質がフィブリル部を有する分割繊維ではなく、粒状のものや繊維状物の場合、強度を保持させるために撥水性が小さいバインダー(水酸基、アミノ基など水分子と水素結合しやすい官能基を多く有する物質から形成されるバインダー)が多く必要となってしまい、結果的に発生水の排出が困難となる。フィブリル部を有する撥水性分割繊維は、電極基材の撥水性だけでなく機械的強度を保持するという観点からも好ましい。
【0049】
フィブリル部を有する撥水性分割繊維と炭素短繊維を水中で分散させて混合する場合、炭素短繊維の分散性が悪くなることがあるが、そのような場合は適宜水中に界面活性剤を混入することで分散性を良好にすることができる。
【0050】
電極基材に撥水性分割繊維と導電性分割繊維が含まれているものが好ましい。電極基材には、撥水性、導電性、形状を保持する機械的強度などが要求され、撥水性分割繊維と導電性分割繊維の両方を混入するとさらなる性能向上につながるため好ましい。また、撥水性分割繊維でありかつ導電性分割繊維である分割繊維を電極基材に用いることも好ましい。導電性物質と撥水性物質の両者を分割繊維に含有させることにより撥水性・導電性両方を有する分割繊維が得られる。
【0051】
フィブリル部を有する分割繊維の撥水性が、その内部に含有された非プロトン性溶媒に可溶なポリマーにより発現していることが好ましい。撥水性のポリマーを非プロトン性溶媒に溶解し、これを水により凝固することが、フィブリル部を有する分割繊維を得るのに極めて好適である。非プロトン性溶媒に可溶なポリマーで撥水性を発現させるものとしては、例えば電極基材の耐久性の観点からポリフッ化ビニリデンが好ましい。その他、ポリマーとしては2,2,2−トリフルオロエチルアクリレート、2,2,3,3−テトラフルオロプロピルアクリレート、2,2,3,3、3−ペンタフルオロプロピルアクリレート、2−(パーフルオロオクチル)エチルアクリレート等が挙げられる。ポリマーの分子量(重量平均)は、機械強度を保持するという観点から、10万以上が好ましく、強度発現のためには高ければ高いほど好ましい。
【0052】
非プロトン性溶媒としては、N,N−ジメチルアセトアミド(DMAc)、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)などその他多く挙げられるが特に限定されるものではない。
【0053】
<導電性物質と撥水性物質の混合比>
分割繊維に導電性物質と撥水性物質を混合する場合、導電性物質として炭素微粒子を用い、撥水性物質として非プロトン性溶媒に可溶なポリマーを用い、これらの混合比率(炭素微粒子の質量/このポリマーの質量)を1/99〜40/60とすることが好ましい。導電性物質がない場合も炭素短繊維をつなぐバインダーとしての機能し、ガス透過性に優れた電極基材として役割を果たす。導電性物質を混合する場合、上記混合比率が1/99より少ないとき、導電性を良好にする効果よりガス透過性を悪化させる効果が大きくなる傾向があるという点で不利である。一方、上記混合比率が40/60を越えると、紡糸原液に分散できない導電性物質が析出し、紡糸原液を吐出する吐出口が詰る傾向があるという点で不利である。また、電極基材からの導電性物質脱落が発生する傾向があるという点で不利である。
【0054】
<引張強さ>
多孔質電極基材の引張強度は、取り扱いの容易さ、例えばロールに巻き取る際の破れにくさの観点から、10kN/m以上であることが好ましく、より好ましくは20kN/m以上である。また、曲げ強度を10MPa以上とすることにより、電極基材を燃料電池に組み込む際、亀裂が入ることを優れて防止できる。なお、分割繊維以外のバインダーを混抄する方法や、炭素短繊維と分割繊維を抄紙した後ホットプレスにより熱圧着する方法などにより、引張強度をより強くすることができる。
【0055】
<吸水度>
電極基材の撥水性の指標として、試験片を30秒間水面上に浮かばせた後の付着水分質量を測定し、水分付着質量の小さいものほど撥水性が強いと判断することができる。撥水性のバインダーを使用して形成した電極基材は、水をほとんど吸収しないため、JIS規格等の吸水度測定法が適用できないことがある。そのため、撥水度を測定する目安として上記方法にて撥水性を測定する。なお、測定に用いる試験片の大きさは、例えば2cm×2cmとすることができる。
【0056】
電極基材は、30秒間水面上に浮かばせた後の付着水分質量が自重(乾燥状態の電極基材の質量)の2倍以下であることが好ましい。更に好ましくは、1.5倍以下である。付着水分質量が自重の2倍以上である場合、付着または吸着した水が細孔の間に貯まり、燃料電池において特に高電流密度で発電させた場合にフラッディング現象を起こす可能性が高くなる傾向があるという点で不利である。
【0057】
<抵抗>
電極基材の貫通抵抗は、0.8Ω・cm2以下でかつ面比抵抗が1Ω・cm以下であることが好ましい。貫通抵抗が0.8Ω・cm2より大きい場合もしくは、面比抵抗が1Ω・cmより大きい場合、燃料電池単セルを組んだときのセル全体の抵抗に影響を及ぼし、起電力低下の原因となる傾向があるという点で不利である。
【0058】
<多層構造>
多孔質電極基材は上記フィブリル結着多孔質電極基材が一枚のみからなるものであってもよいが、フィブリル結着多孔質電極基材を複数積層して電極基材として用いることもできるし、一枚あるいは複数枚のフィブリル結着多孔質電極基材に加えて、別種の多孔質電極基材を積層して電極基材として用いることもできる。
【0059】
例えば、前記導電性分割繊維や撥水性分割繊維で結着した多孔質電極基材と、炭素短繊維を基材とする炭素繊維紙とを積層してなる多層構造の多孔質電極基材が高電流密度領域でも優れた電池性能を維持できるという点で好ましい。
【0060】
フィブリル結着多孔質電極基材を単独で使用した場合でも、少なくとも低電流密度領域では優れた電極の機能を得ることができる。高電流密度領域でもより優れた電極性能を得るためには、電極反応により大量に発生する水分を外部に排出する機能を強化することが有効である。このために、本発明における導電性フィブリルや撥水性フィブリルで結着した多孔質電極基材を、別の炭素短繊維を基材とする炭素繊維紙と積層することができ、これにより厚み方向への水の流れを制御することが可能となり、高電流密度領域で大量に水が発生した場合も電池性能を維持することができる。
【0061】
厚み方向への水の流れを効果的に制御するための方法としては、積層する電極基材の嵩密度の差を大きくする方法が一般的である。セパレータ側に電極基材の嵩密度の小さい層を配備することで反応部へのガスの流れを良くし、一方電極基材の嵩密度の高い層を触媒層と接触させることで電解質膜内部の水や発生する水を内側に保持することが可能となる。積層例としては、上記撥水性分割繊維で結着した多孔質電極基材をより緻密な炭素繊維紙と積層したものや、導電性分割繊維で結着した多孔質電極基材をより多孔質な炭素繊維紙と積層したものなどが挙げられるが、特に限定されるものではない。
【0062】
分割繊維で結着された多孔質電極基材に積層される炭素短繊維を基材とする炭素繊維紙は、特に限定されないが、炭素短繊維同士が導電性や撥水性などの機能有するバインダーで結着されているものが電池性能を維持するという観点から好ましく、導電性分割繊維や撥水性分割繊維で結着した多孔質電極基材を積層したもの同じ観点から好ましい。
【0063】
<積層基材の組成>
フィブリル結着多孔質電極基材を複数枚積層する場合、それぞれのフィブリル結着多孔質電極基材において、分割繊維が導電材料(例えば炭素微粒子)と撥水性材料(例えば、非プロトン性溶媒に可溶なポリマー)とを含有し、かつ、少なくとも1つの多孔質電極基材と、他の少なくとも1つの多孔質電極基材とが、分割繊維の含有量、導電材料の含有量および撥水性材料の含有量から選ばれる少なくとも1つにおいて相異なることが水分管理を効率よくするという観点から好ましい。ここで、分割繊維が導電材料と撥水性材料とを含有するとは、一部の分割繊維が導電材料を含み他の一部の分割繊維が撥水性材料を含む場合も、少なくとも一部の分割繊維が導電材料と撥水性材料との両者を含む場合も、いずれをもいう。
【0064】
分割繊維、導電材料および撥水性材料の含有量がいずれも全く同じものを積層する場合、積層されていないものと電池性能において大きな差は見られない。これらのうちの少なくとも一つが異なるものを組み合わせることにより、層間で撥水性に差が生じる。これにより層間の水の移動がスムーズになり、効率よく水を排出することができる。
【0065】
【実施例】
以下、本発明を実施例により、さらに具体的に説明する。
【0066】
実施例中の各物性値等は以下の方法で測定した。
【0067】
1)厚み、嵩密度
厚み測定装置(ミツトヨ製、商品名:ダイヤルシックネスゲージ7321)を使用し、測定した。なお、このときの測定子の大きさは、直径10mmで測定圧力は1.5kPaで行った。
【0068】
実測した厚み(mm)と坪量(g/m2)を用いて、以下の式により算出した。
【0069】
【数1】

Figure 0004409211
【0070】
2)引張強さ
JIS−P8113に準拠し、電極基材を縦方向及び横方向について幅15mm、長さ25cmに裁断し、テンシロン測定装置を用いて破断時の荷重を測定し、引張強度とした。なお、サンプルがチャックにより損傷するのを防ぐため、サンプルの上下2.5cmに厚紙を両面に貼ってチャックした。
【0071】
3)引張弾性率
JIS−P8113に準拠し、上記同様、テンシロン測定装置を用いて破断するまでに示した最大引っ張りひずみ率を測定し、引張弾性率とした。
【0072】
4)付着水分質量
電極基材の試験片の質量を測定し、あらかじめ用意した水槽の上に試験片を30秒浮かばせ、付着した水分が落ちないよう質量を測定し、試験片の元の質量を引いた値を付着水分質量とした。
【0073】
5)面抵抗
電極基材の片面に2cmの間隔をあけて銅線をのせ、10mA/cm2の電流密度で電流を流した時の抵抗を測定した。
【0074】
6)貫通抵抗の測定
電極基材の厚さ方向の貫通抵抗は試料を銅板にはさみ、銅板の上下から1MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
【0075】
【数2】
Figure 0004409211
【0076】
7)ガス透気度
JIS−P8117に準拠し、ガーレー式デンソメーターを使用し、200mm3の気体が通過する時間を測定し、算出した。
【0077】
8)表面粗さ測定
表面粗さ計(ミツトヨ製、商品名:サーフテストSJ−402)を使用し、触針(針径5μmダイヤモンドチップ)を6cm×6cmの大きさに切ったサンプルの上で縦方向横方向に動かし、その軌跡から輪郭曲線を記載させ、算出される輪郭曲線の算術平均高さRaを読み取り、表面粗さの度合いを確認した。
【0078】
〔実施例1〕
(分割繊維Aの作成)
ポリフッ化ビニリデン(ATOFINA社製、商品名:KYNAR9000)466g、アセチレンブラック(電気化学(株)製、商品名:デンカブラック)200gをN,N−ジメチルアセトアミド4460gに混合し、ポリフッ化ビニリデン9質量%、アセチレンブラック4質量%のジメチルアセトアミド混合液を分割繊維製造用の紡糸原液として調整した。次いで得られた混合液を0.1MPaの窒素加圧下で押し出し、ギアポンプを用いて図1に示したノズルの流路1へ定量供給を行なうと同時に水蒸気を流入口3から水蒸気流路4に供給した。水蒸気供給量は減圧弁により供給圧力を規定することにより行なった。水蒸気量は図1に示すノズルより水蒸気量の増分を求めることにより測定した。直径が0.5mmの溶液吐出口2、直径が2mm、長さが10mmの円筒状の混合セル5、水蒸気流路4がスリット状で開度を390μmに調整し、溶液流路の中心線Aとスリットの中心線Bとのなす角度Cが60度になるように製作したノズルを用い、混合液の供給量を50ml/min、水蒸気の供給圧を3.0kg/cm2(0.29MPa)とし、混合セル出口6から温度30℃の水中へ噴出した。凝固浴中に浮遊したポリフッ化ビニリデンおよびアセチレンブラックの混合凝固体を捕集し、更に60℃の温水で一晩洗浄を行い、40℃の熱風で乾燥し、分割繊維Aを得た。この得られた分割繊維Aを走査型電子顕微鏡を用いて、繊維側面の形態を観察した。得られた分割繊維Aは、太さ0.1〜5μm、長さ数十μm〜数百μmのパルプ状を呈する集合体であった。JIS P8121のパルプ濾水度試験法(1)カナダ標準型で測定したところ、濾水度が390mlの繊維状物であった。
【0079】
(電極基材作成)
平均繊維径が4μmのポリアクリロニトリル(PAN)系炭素繊維の繊維束を切断し、平均繊維長が3mmの短繊維を得た。次にこの短繊維束を水中で解繊し、十分に分散したところに前記分割繊維Aを全質量比(全電極基材材料の合計質量を基準とする。ただし溶剤は除く。以下同じ。)30質量%となるように均一に分散させ、標準角形シートマシンを用いてJIS P−8209法に準拠して抄紙を行った。得られた炭素繊維紙は単位面積当たりの質量が49g/m2であった。
【0080】
得られた炭素繊維紙を離型剤が表面にコートされた紙の間にはさみ、バッチプレス装置にて170℃、15MPaの条件下に5分間置き、ポリフッ化ビニリデンが軟化することで炭素繊維同士の結着を強めた。導電性、撥水性に優れた多孔質電極基材を得た。
【0081】
各実施例、比較例における電極基材の組成を表1に、電極基材の評価結果を表2に示す。
【0082】
〔実施例2〕
(分割繊維Bの作成)
ポリフッ化ビニリデン(ATOFINA社製、商品名:KYNAR9000)600gをN,N−ジメチルアセトアミド3400gに溶解し、ポリフッ化ビニリデン15質量%のジメチルアセトアミド溶液を調整した。次いで得られた溶液を0.1MPaの窒素加圧下で押し出し、ギアポンプを用いて図1に示したノズル部へ定量供給を行なうと同時に水蒸気を供給した。水蒸気供給量は減圧弁により供給圧力を規定することにより行なった。水蒸気量は図1に示すノズルより水蒸気量の増分を求めることにより測定した。直径が0.2mmの溶液吐出口、直径が2mm、長さが10mmの円筒状の混合セル、水蒸気流路がスリット状で開度を390μmに調整し、溶液流路の中心線とスリットの中心線とのなす角度が60度になるように製作したノズルを用い、混合液の供給量を40ml/min、水蒸気の供給圧を3.0kg/cm2(0.29MPa)とし、温度30℃の水中へ噴出した。凝固浴中に浮遊したポリフッ化ビニリデン凝固体を捕集し、更に60℃の温水で一晩洗浄を行い、40℃の熱風で乾燥し、分割繊維Bを得た。この得られた分割繊維Bを走査型電子顕微鏡を用いて、繊維側面の形態を観察した。得られたバインダーBは、太さ0.1〜5μm、長さ数十μm〜数百μmのパルプ状を呈する集合体であった。JIS P8121のパルプ濾水度試験法(1)カナダ標準型で測定したところ、濾水度が790mlの繊維状物であった。
【0083】
(電極基材作成)
前記分割繊維Bを用いた以外は、実施例1と同様の方法にて抄紙、プレスを行い、電極基材を得た。機械強度、撥水性が高い良好なものとなった。
【0084】
〔実施例3〕
(電極基材作成)
抄紙の際に、分割繊維Aが全質量比15質量%、ポリビニルアルコール(PVA)が全質量比15質量%とになるように混合した以外は、実施例1と同様の方法にて抄紙、プレスを行い、電極基材を得た。機械強度が実施例1よりさらに高く、導電性も良好なものとなった。
【0085】
〔実施例4〕
(電極基材作成)
抄紙の際、分割繊維Bが全質量比15質量%、ポリビニルアルコール(PVA)が15質量%とになるように混合した以外は、実施例2と同様の方法にて抄紙、プレスを行い、電極基材を得た。機械強度がさらに高い良好なものとなった。
【0086】
〔実施例5(2層サンプル)〕
(電極基材作成)
炭素短繊維と分割繊維AとPVAの比率が1:3:1で混合されたスラリーを使用して抄紙し、炭素繊維紙Aを実施例1と同様の方法で得た。得られた炭素繊維紙Aの単位面積当たりの質量が15g/m2であった。
【0087】
一方、炭素短繊維と分割繊維Bの比率が1:1で混合されたスラリーを使用して抄紙し、炭素繊維紙Bを実施例2と同様の方法で得た。得られた炭素繊維紙Bの単位面積当たりの質量が45g/m2であった。
【0088】
得られた炭素繊維紙Aと炭素繊維紙Bを積層し、離型剤が表面にコートされた紙の間に挟み,バッチプレス装置にて170℃、15MPaの条件下に5分間ホットプレスした。厚み方向で緻密性・撥水性が異なる電極基材となった。
【0089】
〔比較例1〕
(電極基材作成)
抄紙の際、ポリビニルアルコール(PVA)が炭素繊維比15質量%とになるように混合した以外は、実施例1と同様の方法にて抄紙、プレスを行い、電極基材を得た。大量の水を吸収してしまうものとなった。
【0090】
【表1】
Figure 0004409211
【0091】
【表2】
Figure 0004409211
【0092】
【発明の効果】
本発明によれば、特定形状の分割繊維により炭素短繊維を結着できるため、分割繊維の材料によらず導電性を低下させることなく、少ない工程数で製造でき、機械的強度に優れる電極基材を得ることができる。分割繊維の材料選択に自由度があるため、さらに所望の導電性、撥水性を実現できる材料を分割繊維に用いることができ、導電性、撥水性、機械的強度に優れ、しかも安価な燃料電池用電極基材を提供することができる。
【図面の簡単な説明】
【図1】フィブリル部を有する分割繊維を製造するために用いることのできるノズルの一例を示す断面図である。
【符号の説明】
1:分割繊維製造用紡糸原液の流路
2:分割繊維製造用紡糸原液の吐出口
3:水蒸気の流入口
4:スリット状水蒸気流路
5:混合セル部
6:混合セル部の出口
A:分割繊維製造用紡糸原液の吐出線
B:水蒸気の噴射線
C:AとBのなす角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous electrode substrate for a polymer electrolyte fuel cell.
[0002]
[Prior art]
The porous electrode substrate for a polymer electrolyte fuel cell is located between the separator and the catalyst layer in the polymer electrolyte fuel cell, and serves not only as an electric conductor between the separator and the catalyst layer but also from the separator. It has a function of distributing reaction gas such as hydrogen and oxygen supplied to the catalyst layer and a function of absorbing water generated in the catalyst layer and discharging it to the outside.
[0003]
Electrode base materials for polymer electrolyte fuel cells require diffusion and permeability of reaction gases, acid resistance, and mechanical strength that can withstand compression during electrode manufacturing or when electrodes are assembled. Carbon fiber paper and carbon fiber The mainstream is fabric.
[0004]
In particular, an electrode substrate using carbon fiber paper is superior in that it has less surface irregularities than that using carbon fiber fabric. In the carbon fiber paper, the C / C composite type that is obtained by impregnating short carbon fibers with resin, hot pressing and then re-firing was the mainstream. It tends to be higher. Therefore, what demonstrates performance, without re-baking carbon fiber paper attracts attention.
[0005]
In carbon fiber paper that is not refired, the role of the binder that binds the short carbon fibers is important, and using a general-purpose binder reduces not only electrical conductivity but also mechanical strength, so as a means to maintain performance In particular, many water repellent substances have been developed that improve not only the mechanical strength but also the drainage of moisture contained in the reaction gas. Examples thereof include those described in Patent Document 1 and Patent Document 2.
[0006]
Patent Document 1 proposes an electrode base material made of fluororesin fibers and conductive fibers. However, since the fluororesin fiber has extremely low conductivity compared to the conductive fiber, if a fiber having a fiber diameter larger than that of the conductive fiber or a fiber having a longer fiber length is used, the conductive fiber is divided into fluororesin fibers, and the conductive fiber Sex is reduced.
[0007]
Patent Document 2 proposes a base material in which a granular fluororesin is impregnated by a method of impregnating a porous carbon base material such as carbon fiber paper into a dispersion liquid of the granular fluororesin. However, in such a case, if the porous carbon base material is not obtained by previously binding carbon fibers by another method, the fibers are likely to fall off when the fluororesin is attached. Since the shape of the fluororesin is granular, there are few parts that work effectively as a binder, and the mechanical strength tends to decrease.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-204114
[Patent Document 2]
JP 2002-352807 A
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide an electrode material for a fuel cell that can be manufactured with a small number of steps and is excellent in mechanical strength. Furthermore, it aims at providing the electrode base material for fuel cells which can provide the outstanding electroconductivity and water repellency easily.
[0010]
[Means for Solving the Problems]
The gist of the present invention is a spinning stock solution comprising a water repellent material having a contact angle with water of 80 ° or more, a conductive material, and a solvent or dispersion medium, or a water repellent material having a contact angle with water of 80 ° or more and a solvent or dispersion medium. The spinning stock solution consisting of the above is discharged into the mixing cell through the spinning discharge port, and at the same time, water vapor is ejected into the mixing cell at an angle of not less than 90 degrees and less than 90 degrees with respect to the direction of the spinning line of the spinning solution. After the fiber raw material in the spinning dope is solidified under a shear flow, the formed solidified body is solidified from the mixing cell together with the solvent and water vapor in the spinning dope. bath To obtain a split fiber having a fibril portion. After the split fiber and short carbon fiber are dispersed in water and made into paper, heat and pressure are applied. By splitting fiber Carbon short fiber Between It exists in the manufacturing method of the porous electrode base material for polymer electrolyte fuel cells to bind.
[0011]
The short carbon fibers are polyacrylonitrile-based carbon fibers, and the average fiber length is preferably 3 mm or more and 12 mm or less.
[0012]
The split fibers are preferably split fibers having a fibril portion having a diameter of 2 μm or less and a core portion having a diameter of 100 μm or less.
[0013]
It is preferable that the mass ratio of the split fibers and the short carbon fibers is 1/3 to 5/1.
[0014]
It is preferable that at least a part of the split fibers are conductive split fibers that are split fibers having a volume resistivity of 10 Ω · cm or less.
[0015]
It is preferable that the conductive divided fiber contains carbon fine particles.
[0017]
It is preferable that the water-repellent split fibers contain a polymer that is soluble in an aprotic solvent.
[0018]
It is preferable that the divided fibers have a volume resistivity of 10 Ω · cm or less and that the divided fibers contain a water-repellent substance having a contact angle with water of 80 ° or more.
[0019]
It is preferable that the split fiber contains carbon fine particles and a polymer soluble in an aprotic solvent, and the mass ratio of the carbon fine particles to the polymer is 1/99 to 40/60.
[0020]
A porous electrode substrate having a tensile strength of 10 kN / m or more and an attached moisture mass after floating on the water surface for 30 seconds is twice or less the dry mass of the porous electrode substrate.
[0021]
Penetration resistance is 0.8 Ω · cm 2 A porous carbon electrode substrate having a surface resistivity of 1 Ω · cm or less is preferred.
[0022]
A porous electrode substrate for a polymer electrolyte fuel cell in which the fibril-bound porous electrode substrate and carbon fiber paper based on carbon short fibers are laminated is preferable.
[0023]
A porous electrode substrate for a polymer electrolyte fuel cell in which a plurality of the fibril-bound porous electrode substrates are laminated is preferable. In this electrode substrate, the split fibers of the plurality of porous electrode substrates contain carbon fine particles and a polymer soluble in an aprotic solvent, and at least one porous electrode substrate and at least one other It is preferable that the porous electrode base material is different in at least one selected from the content of the split fibers, the content of the carbon fine particles, and the content of the polymer.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The porous electrode substrate for a polymer electrolyte fuel cell of the present invention is a porous electrode substrate in which short carbon fibers dispersed in a random direction in a substantially two-dimensional plane are bound by split fibers having fibril parts. It is a material.
[0025]
The split fibers having a fibril part can be uniformly dispersed in water and bind short carbon fibers. As a method for binding short carbon fibers, a method of mixing carbon short fibers and a highly adhesive / tacky binder at the time of paper making, or a method of dispersing the carbon short fiber surface coated with a highly adhesive material. However, in any case, it is difficult to impart water repellency and conductivity by post-processing. Therefore, it is necessary to include a water-repellent material or a conductive material in another process such as immersing and coating in a bathtub in which a water-repellent material or a conductive material is dispersed after paper making, leading to an increase in cost. The split fiber having a fibril part can be entangled with carbon fiber in water during paper making. Therefore, even when the composition is a water-repellent substance or a conductive substance, the binder is used when dispersed together with the short carbon fiber. Function as. In the present invention, the water-repellent material and the conductive material can be included in the porous electrode substrate in one step.
[0026]
Carbon short fibers dispersed in a random direction in a substantially two-dimensional plane are crossed with each other when viewed from the plane direction, but the fibers are aligned in parallel when viewed from the thickness direction. It is what has become. Carbon fiber paper and carbon fiber non-woven fabric are also included, but also include those in which the form is not retained by a binder or the like.
[0027]
A split fiber having a fibril part is a fiber that can be strongly bound to other fibers because it is composed of a fibril part that improves the entanglement with the fiber and a core part for expressing the strength as a binder. .
[0028]
The solid polymer fuel cell is a fuel cell in which proton transfer is performed using a solid polymer membrane as a medium. Since the operating temperature is low, it is possible to reduce the size, and recently, it is expected as a driving power source for automobiles.
[0029]
The porous electrode base material is a key material necessary for uniform diffusion of reaction gas and generated gas used in the polymer electrolyte fuel cell to the catalyst layer and transport of electrons.
[0030]
<Short carbon fiber>
The carbon fiber that is a raw material of the short carbon fiber used in the present invention may be any of polyacrylonitrile-based carbon fiber, pitch-based carbon fiber, rayon-based carbon fiber, etc., but polyacrylonitrile-based carbon fiber having relatively high mechanical strength. In particular, it is preferable that the carbon fiber to be used is composed only of polyacrylonitrile-based carbon fiber. The polyacrylonitrile-based carbon fiber is manufactured using a polymer mainly composed of acrylonitrile as a raw material.
[0031]
Polyacrylonitrile-based carbon fiber is an precursor that is an precursor.
A spinning process for spinning rilonitrile-based fibers, a flameproofing process for heating and firing the fibers in an air atmosphere at 200 to 400 ° C. to convert them to oxidized fibers, and further 300 to 2500 in an inert atmosphere such as nitrogen, argon, and helium. It can be obtained through a carbonization process in which it is heated to carbon and carbonized and used as a composite material reinforcing fiber. In order to enhance the adhesion to the binder, the carbon fiber preferably has a large surface area, and the cross-sectional shape is preferably a circular shape from the viewpoint of increasing the strength and increasing the pores of the substrate.
[0032]
The average fiber length of the short carbon fibers is preferably 3 mm or more from the viewpoint of suppressing the reduction of the binding point between the fibers and obtaining the excellent mechanical strength of the electrode base material. From the viewpoint of improving the reaction gas distribution property of the fuel cell and improving the supply uniformity of the reaction gas in the fuel cell, it is preferably 12 mm or less, and more preferably the lower limit and the upper limit are 4 mm and 9 mm, respectively.
[0033]
The average fiber diameter of the carbon fibers is preferably 2 μm or more from the viewpoint of satisfying gas permeability, more preferably 4 μm or more, and preferably 9 μm or less from the viewpoint of improving mechanical strength and contact with the catalyst layer. 7 μm or less is more preferable.
[0034]
<Divided fiber>
It is preferable that the divided fiber having a fibril portion is a fiber obtained by dividing the surface fibrillated fiber. The surface fibrillated fiber can be produced, for example, by the following method. A spinning stock solution in which a raw material of split fibers (for example, a water-repellent material and a conductive material) is dissolved in a solvent or dispersed in a dispersion medium is discharged into a mixing cell through a spinning discharge port, and at the same time, water vapor is discharged into the spinning solution In the mixing cell, the split fiber raw material is solidified under a shearing flow rate at an angle of 0 ° or more and less than 90 °. The formed solidified body is discharged into the coagulating liquid from the mixing cell together with the solvent or dispersion medium and water vapor to obtain surface fibrillated fibers. As the coagulation liquid, water or a mixed liquid of water and the above-mentioned solvent or dispersion medium can be used.
[0035]
The surface fibrillated fiber thus obtained has a fibril part in which fine fibers capable of widening the binding area with other fibers and a core part with a thick fiber diameter solidified without much contact with water vapor. Have. The split fiber obtained by splitting the surface fibrillated fiber is also composed of a fibril part that improves the entanglement with the fiber and a core part for expressing the strength as a binder, so it binds strongly with other fibers. Can do.
[0036]
The diameter of the fibril part is preferably 2 μm or less in order to improve the entanglement with the carbon fiber to be mixed.
[0037]
The core part preferably has a diameter of 100 μm or less from the viewpoint of homogenization of the porous electrode substrate. By setting the diameter to 100 μm or less, the uneven distribution of the divided fibers can be excellently suppressed, and the short carbon fibers can be bound by a relatively small amount of the divided fibers. Moreover, it is preferable that the diameter of a core part is 10 micrometers or more from a viewpoint of expressing intensity | strength.
[0038]
From the viewpoint of the function associated with the carbon fiber, it is preferable that a plurality of fibril parts exist with respect to one core part, and it is considered that the more fibril parts with respect to one core part, the more preferable.
[0039]
In one split fiber, it is preferable that the thickness of the core is constant or changes steplessly. When fibrils are produced by the above-described method, it is often difficult to keep the thickness constant because water vapor randomly scatters. In such a case, the thickness of the core part changes. At this time, if the thickness changes stepwise, it is disadvantageous in that the stepped portion becomes weak and the strength tends to decrease. A stepwise change is seen when the water vapor to be sprayed is cooled and granulated, but the thickness can be prevented from changing stepwise by increasing the water vapor pressure and temperature. .
[0040]
<Mixing ratio of split fiber and short carbon fiber>
The mixing ratio (divided fiber mass / carbon short fiber mass) of the divided fiber having a fibril part and the short carbon fiber is preferably 1/3 to 5/1 from the viewpoint of the conductivity and strength of the electrode substrate. When the mixing ratio of the split fibers and short carbon fibers exceeds 5/1, that is, when the mixing amount of the split fibers is large, the conductivity / gas permeability tends to be low and the function as an electrode substrate tends to be reduced. It is disadvantageous in terms. On the other hand, when the mixing ratio of the split fibers and the short carbon fibers is less than 1/3, it is disadvantageous in that the degree of binding of the carbon fibers decreases and the strength tends to decrease.
[0041]
<Conductivity>
The volume resistivity of the split fiber having a fibril part is preferably 10 Ω · cm or less. By setting the volume resistivity to 10 Ω · cm or less, it is possible to excellently prevent the resistance of the electrode base material from being increased and the performance of the fuel cell from being deteriorated. Moreover, it is not necessary to reduce the mixing amount of the split fibers having a fibril portion in order to reduce the resistance of the electrode base material, and thus an electrode base material having excellent mechanical strength can be obtained. (Hereinafter, a split fiber having a volume resistivity of 10 Ω · cm or less is referred to as a conductive split fiber).
[0042]
Here, the volume resistivity is a resistance value per unit volume of the material constituting the split fibers processed into a sheet shape, and is defined by measuring the resistance in the surface direction of the sheet material.
[0043]
It is preferable that the conductivity of the split fiber having a fibril portion is expressed by the carbon fine particles contained therein. In order to maintain the conductivity of the split fibers and the electrode substrate, it is preferable to include conductive fine particles. However, when the conductive fine particles are metal, they are corroded by the acid generated in the reaction system of the fuel cell. However, the carbon fine particles are not likely to corrode. Examples of the carbon fine particles include acetylene black, oil furnace black, milled fiber, and carbon nanofiber. Acetylene black is particularly preferable from the viewpoint of uniform dispersibility in a solvent. Further, the case where the carbon particles are catalyst-supported carbon is also preferable from the viewpoint of easy transfer of gas and electricity from the porous carbon electrode substrate. The particle size of the carbon fine particles is preferably 5 μm or less, and more preferably 3 μm or less. When the particle diameter is larger than 5 μm, it is disadvantageous in that when the split fiber is produced, the discharge port tends to be clogged and the contact with the catalyst layer tends to deteriorate.
[0044]
The catalyst-supporting carbon is a member that forms a catalyst layer of an electrode, in which a catalyst that promotes a hydrogen oxidation reaction and an oxygen reduction reaction is supported on carbon particles or carbon nanotubes.
[0045]
<Water repellency>
It is preferable that the split fibers include a water-repellent substance having a contact angle with water of 80 ° or more. (Hereinafter, a split fiber containing a water-repellent substance having a contact angle with water of 80 ° or more is referred to as a water-repellent split fiber).
[0046]
Examples of water-repellent substances having a contact angle with water of 80 ° or more include copolymers such as polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, and polyfluoride. Fluorine-based resins such as vinylidene; silicon-based resins; paraffin-based resins, and the like, and fluorine-based resins that can impart durability are preferable.
[0047]
Absorbs water and generated water contained in the fuel cell reaction gas in the electrode base by containing the above water-repellent substance having a contact angle with water of 80 ° or more in the split fiber having the fibril part. And it can prevent excellently that this water interrupts the channel of an electrode substrate. Note that the contact angle with water is measured as a reference for water repellency, and the water repellent material used in this case is not a split fiber but a water repellent material processed into a flat plate.
[0048]
It is preferable that the short carbon fiber is bound by the water-repellent split fiber having a fibril part. When the water-repellent substance is not a split fiber having a fibril part but a granular or fibrous material, a binder with low water repellency (functional group that is easy to hydrogen bond with water molecules such as hydroxyl group and amino group) to maintain strength. A large amount of binder formed from a substance having a large amount is required, and as a result, it becomes difficult to discharge generated water. The water-repellent split fiber having a fibril part is preferable from the viewpoint of maintaining mechanical strength as well as water repellency of the electrode substrate.
[0049]
When the water-repellent split fibers having fibril parts and the short carbon fibers are dispersed and mixed in water, the dispersibility of the short carbon fibers may deteriorate. In such a case, a surfactant is appropriately mixed in the water. Thus, dispersibility can be improved.
[0050]
It is preferable that the electrode base material contains water-repellent split fibers and conductive split fibers. The electrode base material is required to have water repellency, electrical conductivity, mechanical strength to maintain its shape, and mixing both the water-repellent split fibers and the conductive split fibers is preferable because it leads to further performance improvement. It is also preferable to use a split fiber that is a water-repellent split fiber and a conductive split fiber for the electrode substrate. By containing both a conductive substance and a water-repellent substance in the split fibers, split fibers having both water repellency and conductivity can be obtained.
[0051]
It is preferable that the water repellency of the split fiber having a fibril part is expressed by a polymer soluble in an aprotic solvent contained therein. It is extremely preferable to obtain a split fiber having a fibril part by dissolving a water-repellent polymer in an aprotic solvent and coagulating it with water. As a polymer that is soluble in an aprotic solvent and exhibits water repellency, for example, polyvinylidene fluoride is preferable from the viewpoint of durability of the electrode substrate. Other polymers include 2,2,2-trifluoroethyl acrylate, 2,2,3,3-tetrafluoropropyl acrylate, 2,2,3,3, 3-pentafluoropropyl acrylate, 2- (perfluorooctyl) ) Ethyl acrylate and the like. The molecular weight (weight average) of the polymer is preferably 100,000 or more from the viewpoint of maintaining the mechanical strength, and is preferably as high as possible for strength development.
[0052]
Examples of the aprotic solvent include, but are not limited to, N, N-dimethylacetamide (DMAc), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and many others.
[0053]
<Mixing ratio of conductive material and water repellent material>
When a conductive material and a water-repellent material are mixed in the split fiber, carbon fine particles are used as the conductive material, and a polymer soluble in an aprotic solvent is used as the water-repellent material, and the mixing ratio (mass of carbon fine particles / The mass of the polymer is preferably 1/99 to 40/60. Even when there is no conductive substance, it functions as a binder for connecting the short carbon fibers and plays a role as an electrode substrate having excellent gas permeability. When mixing conductive substances, if the mixing ratio is less than 1/99, it is disadvantageous in that the effect of deteriorating gas permeability tends to be greater than the effect of improving the conductivity. On the other hand, if the mixing ratio exceeds 40/60, a conductive substance that cannot be dispersed in the spinning dope is deposited, which is disadvantageous in that the discharge port for discharging the spinning dope tends to be clogged. Moreover, it is disadvantageous in that the conductive material tends to fall off from the electrode substrate.
[0054]
<Tensile strength>
The tensile strength of the porous electrode substrate is preferably 10 kN / m or more, more preferably 20 kN / m or more, from the viewpoint of ease of handling, for example, resistance to tearing when wound on a roll. Moreover, when the bending strength is 10 MPa or more, cracks can be excellently prevented when the electrode base material is incorporated into a fuel cell. The tensile strength can be further increased by a method of blending a binder other than the split fibers, a method of papermaking the short carbon fibers and the split fibers, and then hot pressing with a hot press.
[0055]
<Water absorption>
As an indicator of the water repellency of the electrode base material, the adhering water mass after the test piece is floated on the water surface for 30 seconds is measured, and the smaller the water adhering mass, the stronger the water repellency can be determined. Since an electrode substrate formed using a water-repellent binder hardly absorbs water, a water absorption measurement method such as JIS standard may not be applied. Therefore, the water repellency is measured by the above method as a measure for measuring the water repellency. In addition, the magnitude | size of the test piece used for a measurement can be 2 cm x 2 cm, for example.
[0056]
The electrode base material preferably has a mass of adhering water after floating on the water surface for 30 seconds less than or equal to twice its own weight (the mass of the electrode base material in a dry state). More preferably, it is 1.5 times or less. When the adhering water mass is more than twice the dead weight, the adhering or adsorbing water accumulates between the pores, and there is a tendency to increase the possibility of flooding when fuel cells generate power, especially at high current densities. It is disadvantageous in that there is.
[0057]
<Resistance>
The penetration resistance of the electrode substrate is 0.8 Ω · cm 2 The surface resistivity is preferably 1 Ω · cm or less. Penetration resistance is 0.8 Ω · cm 2 If it is larger or the surface specific resistance is larger than 1 Ω · cm, it affects the resistance of the entire cell when a single fuel cell is assembled, which is disadvantageous in that it tends to cause a reduction in electromotive force. .
[0058]
<Multilayer structure>
The porous electrode base material may be composed of only one fibril-bound porous electrode base material, but a plurality of fibril-bound porous electrode base materials may be laminated and used as an electrode base material. In addition to one or a plurality of fibril-bound porous electrode substrates, another kind of porous electrode substrate can be laminated and used as an electrode substrate.
[0059]
For example, a porous electrode base material having a multilayer structure in which a porous electrode base material bound with the conductive split fibers or the water-repellent split fibers and a carbon fiber paper based on carbon short fibers is laminated is high. This is preferable in that excellent battery performance can be maintained even in the current density region.
[0060]
Even when the fibril-bound porous electrode substrate is used alone, an excellent electrode function can be obtained at least in the low current density region. In order to obtain better electrode performance even in a high current density region, it is effective to enhance the function of discharging moisture generated in large quantities due to electrode reaction to the outside. For this purpose, the porous electrode substrate bound with the conductive fibrils and water-repellent fibrils in the present invention can be laminated with another carbon fiber paper based on short carbon fibers, thereby increasing the thickness direction. It is possible to control the flow of water, and the battery performance can be maintained even when a large amount of water is generated in a high current density region.
[0061]
As a method for effectively controlling the flow of water in the thickness direction, a method of increasing the difference in bulk density of the electrode base material to be laminated is generally used. By providing a layer with a low bulk density of the electrode substrate on the separator side, the gas flow to the reaction part is improved, while by contacting a layer with a high bulk density of the electrode substrate with the catalyst layer, the inside of the electrolyte membrane It becomes possible to hold water or generated water inside. Examples of lamination include a porous electrode substrate bonded with the above water-repellent divided fibers laminated with a denser carbon fiber paper, or a porous electrode substrate bonded with conductive divided fibers. Although what was laminated | stacked with carbon fiber paper etc. is mentioned, it is not specifically limited.
[0062]
The carbon fiber paper based on the short carbon fibers laminated on the porous electrode base material bound with the split fibers is not particularly limited, but the carbon short fibers are binders having functions such as conductivity and water repellency. What is bound is preferable from the viewpoint of maintaining battery performance, and is preferable from the same viewpoint in which a porous electrode base material bound by conductive split fibers or water-repellent split fibers is laminated.
[0063]
<Composition of laminated substrate>
When a plurality of fibrillated porous electrode base materials are laminated, in each of the fibrillated porous electrode base materials, the divided fibers can be used as a conductive material (for example, carbon fine particles) and a water repellent material (for example, an aprotic solvent). Soluble polymer), and at least one porous electrode base material and at least one other porous electrode base material are divided fiber content, conductive material content and water repellent material A difference in at least one selected from the contents is preferable from the viewpoint of efficient moisture management. Here, the fact that the split fibers contain a conductive material and a water repellent material means that even if some of the split fibers contain a conductive material and the other part of the split fibers contains a water repellent material, at least some of the split fibers When both include both a conductive material and a water-repellent material, they are both referred to.
[0064]
When layers having the same contents of the split fibers, the conductive material, and the water repellent material are laminated, there is no significant difference in battery performance from those not laminated. By combining at least one of these, a difference in water repellency occurs between the layers. Thereby, the movement of water between layers becomes smooth, and water can be discharged efficiently.
[0065]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0066]
Each physical property value in the examples was measured by the following method.
[0067]
1) Thickness and bulk density
The thickness was measured using a thickness measuring device (trade name: Dial Thickness Gauge 7321, manufactured by Mitutoyo Corporation). Note that the size of the probe at this time was 10 mm in diameter and the measurement pressure was 1.5 kPa.
[0068]
Measured thickness (mm) and basis weight (g / m 2 ) Using the following formula:
[0069]
[Expression 1]
Figure 0004409211
[0070]
2) Tensile strength
In accordance with JIS-P8113, the electrode base material was cut into a width of 15 mm and a length of 25 cm in the vertical and horizontal directions, the load at break was measured using a Tensilon measuring device, and the tensile strength was obtained. In order to prevent the sample from being damaged by the chuck, the paper was chucked by sticking cardboard on both sides 2.5 cm above and below the sample.
[0071]
3) Tensile modulus
Based on JIS-P8113, the maximum tensile strain rate shown until it broke using the Tensilon measuring apparatus was measured as above, and it was set as the tensile elasticity modulus.
[0072]
4) Adhered moisture mass
Measure the mass of the electrode substrate test piece, float the test piece for 30 seconds on the water tank prepared in advance, measure the mass so that the attached water does not fall, and subtract the original mass of the test piece. It was set as the moisture content attached.
[0073]
5) Sheet resistance
Place a copper wire on one side of the electrode substrate with a spacing of 2 cm and 10 mA / cm 2 The resistance when a current was passed at a current density of was measured.
[0074]
6) Measurement of penetration resistance
The penetration resistance in the thickness direction of the electrode base material is 10 mA / cm when a sample is sandwiched between copper plates and pressed from above and below the copper plate at 1 MPa. 2 The resistance value when a current was passed at a current density of was measured from the following equation.
[0075]
[Expression 2]
Figure 0004409211
[0076]
7) Gas permeability
According to JIS-P8117, Gurley type densometer is used, 200mm Three The time required for the gas to pass through was measured and calculated.
[0077]
8) Surface roughness measurement
Using a surface roughness meter (Mitutoyo, trade name: Surf Test SJ-402), move the stylus (diameter 5 μm diamond tip) vertically and horizontally on the sample cut to a size of 6 cm × 6 cm. The contour curve was described from the locus, and the arithmetic average height Ra of the calculated contour curve was read to confirm the degree of surface roughness.
[0078]
[Example 1]
(Creation of split fiber A)
466 g of polyvinylidene fluoride (manufactured by ATOFINA, trade name: KYNAR9000) and 200 g of acetylene black (trade name: Denka black, manufactured by Denki Kagaku Co., Ltd.) are mixed with 4460 g of N, N-dimethylacetamide, and 9% by mass of polyvinylidene fluoride A dimethylacetamide mixed solution of 4% by mass of acetylene black was prepared as a spinning dope for producing split fibers. Next, the obtained mixed liquid is extruded under nitrogen pressure of 0.1 MPa, and a fixed amount is supplied to the nozzle channel 1 shown in FIG. 1 using a gear pump, and at the same time, water vapor is supplied from the inlet 3 to the water vapor channel 4. did. The amount of steam supplied was determined by regulating the supply pressure with a pressure reducing valve. The amount of water vapor was measured by determining the increment of the water vapor amount from the nozzle shown in FIG. A solution discharge port 2 having a diameter of 0.5 mm, a cylindrical mixing cell 5 having a diameter of 2 mm and a length of 10 mm, a water vapor channel 4 having a slit shape, and an opening degree of which is adjusted to 390 μm. And a nozzle manufactured so that an angle C between the slit and the center line B of the slit is 60 degrees, the supply amount of the mixed liquid is 50 ml / min, and the supply pressure of the water vapor is 3.0 kg / cm 2 (0.29 MPa) and jetted from the mixing cell outlet 6 into water at a temperature of 30 ° C. A mixed coagulated product of polyvinylidene fluoride and acetylene black suspended in the coagulation bath was collected, further washed with hot water at 60 ° C. overnight, and dried with hot air at 40 ° C. to obtain split fibers A. The obtained split fiber A was observed for the shape of the fiber side surface using a scanning electron microscope. The obtained split fiber A was an aggregate exhibiting a pulp shape having a thickness of 0.1 to 5 μm and a length of several tens of μm to several hundreds of μm. Pulp freeness test method of JIS P8121 (1) When measured with a Canadian standard type, it was a fibrous material having a freeness of 390 ml.
[0079]
(Create electrode base material)
A fiber bundle of polyacrylonitrile (PAN) -based carbon fibers having an average fiber diameter of 4 μm was cut to obtain short fibers having an average fiber length of 3 mm. Next, the short fiber bundle is defibrated in water, and when the fiber is sufficiently dispersed, the split fiber A is in a total mass ratio (based on the total mass of all electrode base material, except for the solvent, the same applies hereinafter). The paper was uniformly dispersed so as to be 30% by mass, and papermaking was performed using a standard square sheet machine in accordance with JIS P-8209 method. The obtained carbon fiber paper has a mass per unit area of 49 g / m. 2 Met.
[0080]
The obtained carbon fiber paper is sandwiched between papers with a release agent coated on the surface, and placed in a batch press machine at 170 ° C. and 15 MPa for 5 minutes, so that the polyvinylidene fluoride is softened so that the carbon fibers are Strengthened the binding. A porous electrode substrate excellent in conductivity and water repellency was obtained.
[0081]
The composition of the electrode base material in each example and comparative example is shown in Table 1, and the evaluation result of the electrode base material is shown in Table 2.
[0082]
[Example 2]
(Creation of split fiber B)
600 g of polyvinylidene fluoride (manufactured by ATOFINA, trade name: KYNAR9000) was dissolved in 3400 g of N, N-dimethylacetamide to prepare a 15% by mass dimethylacetamide solution of polyvinylidene fluoride. Next, the obtained solution was extruded under a pressure of 0.1 MPa of nitrogen, and a constant amount was supplied to the nozzle portion shown in FIG. The amount of steam supplied was determined by regulating the supply pressure with a pressure reducing valve. The amount of water vapor was measured by determining the increment of the water vapor amount from the nozzle shown in FIG. Solution outlet with a diameter of 0.2 mm, cylindrical mixing cell with a diameter of 2 mm and a length of 10 mm, a steam channel with a slit shape and an opening degree of 390 μm adjusted, the center line of the solution channel and the center of the slit Using a nozzle manufactured so that the angle formed with the line is 60 degrees, the supply amount of the mixed solution is 40 ml / min, and the supply pressure of water vapor is 3.0 kg / cm 2 (0.29 MPa) and jetted into water at a temperature of 30 ° C. The polyvinylidene fluoride coagulation suspended in the coagulation bath was collected, washed with 60 ° C. warm water overnight, and dried with hot air at 40 ° C. to obtain split fibers B. The resulting split fiber B was observed for the shape of the fiber side surface using a scanning electron microscope. The obtained binder B was an aggregate exhibiting a pulp shape having a thickness of 0.1 to 5 μm and a length of several tens to several hundreds of μm. JIS P8121 Pulp Freeness Test Method (1) When measured with a Canadian standard type, it was a fibrous material having a freeness of 790 ml.
[0083]
(Create electrode base material)
Except for using the split fiber B, paper making and pressing were performed in the same manner as in Example 1 to obtain an electrode substrate. Good mechanical strength and water repellency were obtained.
[0084]
Example 3
(Create electrode base material)
Papermaking and pressing were performed in the same manner as in Example 1 except that the split fibers A were mixed so that the total mass ratio was 15% by mass and the polyvinyl alcohol (PVA) was 15% by mass in the total mass ratio. To obtain an electrode base material. The mechanical strength was higher than that of Example 1 and the conductivity was good.
[0085]
Example 4
(Create electrode base material)
In the papermaking, papermaking and pressing were performed in the same manner as in Example 2 except that the mixed fibers B were mixed so that the total mass ratio was 15 mass% and the polyvinyl alcohol (PVA) was 15 mass%. A substrate was obtained. Good mechanical strength was obtained.
[0086]
[Example 5 (two-layer sample)]
(Create electrode base material)
Paper making was performed using a slurry in which the ratio of short carbon fibers, split fibers A, and PVA was 1: 3: 1, and carbon fiber paper A was obtained in the same manner as in Example 1. The mass per unit area of the obtained carbon fiber paper A is 15 g / m. 2 Met.
[0087]
On the other hand, paper was made using a slurry in which the ratio of short carbon fibers and split fibers B was 1: 1, and carbon fiber paper B was obtained in the same manner as in Example 2. The mass per unit area of the obtained carbon fiber paper B is 45 g / m. 2 Met.
[0088]
The obtained carbon fiber paper A and carbon fiber paper B were laminated, sandwiched between papers coated with a release agent on the surface, and hot pressed under conditions of 170 ° C. and 15 MPa for 5 minutes with a batch press apparatus. It became an electrode base material with different denseness and water repellency in the thickness direction.
[0089]
[Comparative Example 1]
(Create electrode base material)
Paper making and pressing were carried out in the same manner as in Example 1 except that polyvinyl alcohol (PVA) was mixed so that the carbon fiber ratio was 15% by mass at the time of paper making to obtain an electrode substrate. Absorbed a lot of water.
[0090]
[Table 1]
Figure 0004409211
[0091]
[Table 2]
Figure 0004409211
[0092]
【The invention's effect】
According to the present invention, since short carbon fibers can be bound by split fibers having a specific shape, the electrode base can be manufactured with a small number of steps without lowering the conductivity regardless of the material of the split fibers, and has excellent mechanical strength. A material can be obtained. Since there is a degree of freedom in selecting the material of the split fiber, a material that can achieve the desired conductivity and water repellency can be used for the split fiber, and the fuel cell has excellent conductivity, water repellency, mechanical strength, and is inexpensive. An electrode substrate can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a nozzle that can be used to produce a split fiber having a fibril part.
[Explanation of symbols]
1: Flow path for spinning dope for split fiber production
2: Discharge port for spinning dope for split fiber production
3: Steam inlet
4: Slit water vapor flow path
5: Mixing cell part
6: Mixing cell outlet
A: Discharge line for spinning dope for split fiber production
B: Steam spray line
C: Angle between A and B

Claims (1)

水に対する接触角が80°以上の撥水性物質と導電性物質と溶媒もしくは分散媒とからなる紡糸原液または水に対する接触角が80°以上の撥水性物質と溶媒もしくは分散媒とからなる紡糸原液を紡糸吐出口に通して混合セル内に吐出すると同時に、水蒸気を紡糸原液の吐出線方向に対して0度以上、90度未満の角度で混合セル内に噴出し、混合セル内で紡糸原液中の繊維原料を剪断流の下で凝固させたのち、形成された凝固体を紡糸原液中の溶媒と水蒸気と共に混合セルから凝固中に排出して、フィブリル部を有する分割繊維を得、この分割繊維と炭素短繊維とを水中に分散し抄紙したのち、加熱加圧して分割繊維によって炭素短繊維を結着する固体高分子型燃料電池用多孔質電極基材の製造方法。A spinning stock solution comprising a water repellent material having a contact angle with water of 80 ° or more, a conductive material, and a solvent or dispersion medium, or a spinning stock solution comprising a water repellent material having a contact angle with water of 80 ° or more and a solvent or dispersion medium. At the same time as discharging into the mixing cell through the spinning discharge port, water vapor is ejected into the mixing cell at an angle of not less than 0 degrees and less than 90 degrees with respect to the discharge line direction of the spinning dope. After solidifying the fiber raw material under shear flow, the formed solidified body is discharged from the mixing cell together with the solvent and water vapor in the spinning dope into the coagulation bath to obtain a split fiber having a fibril part, and this split fiber and After papermaking dispersed and short carbon fibers in water, a method for manufacturing a solid-state polymer type fuel cell porous electrode substrate for binding between short carbon fibers by splitting the fibers by heating and pressing.
JP2003161870A 2003-06-06 2003-06-06 Method for producing porous electrode substrate for polymer electrolyte fuel cell Expired - Fee Related JP4409211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161870A JP4409211B2 (en) 2003-06-06 2003-06-06 Method for producing porous electrode substrate for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161870A JP4409211B2 (en) 2003-06-06 2003-06-06 Method for producing porous electrode substrate for polymer electrolyte fuel cell

Publications (3)

Publication Number Publication Date
JP2004363018A JP2004363018A (en) 2004-12-24
JP2004363018A5 JP2004363018A5 (en) 2006-07-20
JP4409211B2 true JP4409211B2 (en) 2010-02-03

Family

ID=34054174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161870A Expired - Fee Related JP4409211B2 (en) 2003-06-06 2003-06-06 Method for producing porous electrode substrate for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4409211B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099036A1 (en) 2011-01-21 2012-07-26 三菱レイヨン株式会社 Porous electrode base material, method for manufacturing same, membrane-electrode assembly, solid polymer fuel cell, precursor sheet, and fibrillar fibers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635362B (en) 2008-07-25 2012-03-28 清华大学 Membrane electrode and fuel cell adopting same
CN101425584B (en) * 2007-11-02 2011-05-04 清华大学 Fuel cell membrane electrode and preparation thereof
CN101752568B (en) 2008-12-17 2012-06-20 清华大学 Membrane electrode and biological fuel cell thereof
US9077042B2 (en) 2008-07-25 2015-07-07 Tsinghua University Membrane electrode assembly and biofuel cell using the same
CN101752567B (en) 2008-12-17 2012-09-19 清华大学 Membrane electrode and fuel cell thereof
WO2011065349A1 (en) * 2009-11-24 2011-06-03 三菱レイヨン株式会社 Porous electrode base material and process for production thereof
JP6053251B2 (en) * 2010-03-17 2016-12-27 日本ゴア株式会社 Solid polymer fuel cell gas diffusion layer
EP2876714B1 (en) 2012-07-20 2017-08-30 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane-electrode assembly, and solid-polymer fuel cell
JP6166235B2 (en) 2014-08-26 2017-07-19 大日精化工業株式会社 Coating liquid, coating film, and composite material
JP2016173966A (en) * 2015-03-18 2016-09-29 三菱レイヨン株式会社 Porous electrode base material and method for producing the same
EP4131519A1 (en) 2020-03-30 2023-02-08 Toray Industries, Inc. Method for producing gas diffusion electrode substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168651A (en) * 1996-12-05 1998-06-23 Mitsubishi Rayon Co Ltd Surface fibrillated fiber, fibril-containing split fiber obtained therefrom and production thereof
CA2347432C (en) * 2000-01-27 2007-08-21 Mitsubishi Rayon Co., Ltd. Porous carbon electrode substrate and its production method and carbon fiber paper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012099036A1 (en) 2011-01-21 2012-07-26 三菱レイヨン株式会社 Porous electrode base material, method for manufacturing same, membrane-electrode assembly, solid polymer fuel cell, precursor sheet, and fibrillar fibers
EP3222778A1 (en) 2011-01-21 2017-09-27 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
US9786923B2 (en) 2011-01-21 2017-10-10 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers
US9871257B2 (en) 2011-01-21 2018-01-16 Mitsubishi Chemical Corporation Porous electrode substrate, method for manufacturing same, membrane electrode assembly, polymer electrolyte fuel cell, precursor sheet, and fibrillar fibers

Also Published As

Publication number Publication date
JP2004363018A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP5561171B2 (en) Porous electrode substrate, process for producing the same, precursor sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
US9716278B2 (en) Porous electrode base material, method for manufacturing same, and precursor sheet
JP5585450B2 (en) Porous electrode substrate and method for producing the same
JP5753469B2 (en) Conductive sheet and manufacturing method thereof
JP2000299113A (en) Conductive sheet and electrode base material for fuel cell using it
JP5702218B2 (en) Porous electrode substrate for polymer electrolyte fuel cell
JP4051714B2 (en) Electrode substrate for polymer electrolyte fuel cell and method for producing the same
JP5664791B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP4409211B2 (en) Method for producing porous electrode substrate for polymer electrolyte fuel cell
JP5433147B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP5356540B2 (en) Porous electrode substrate, method for producing the same, porous electrode substrate precursor sheet, membrane-electrode assembly, and solid polymer fuel cell
JPWO2018016626A1 (en) Porous substrate, porous electrode, carbon fiber paper, method for producing carbon fiber paper, method for producing porous substrate
JP6855843B2 (en) Electrodes for redox flow batteries and their manufacturing methods, and redox flow batteries
JP2009283259A (en) Porous carbon electrode base material
WO2014181771A1 (en) Porous electrode substrate, method for manufacturing same, and solid polymer fuel cell
JP2007080742A (en) Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP2004027435A (en) Carbon fiber sheet and method for producing the same
JP2013020842A (en) Porous electrode substrate
JP5590419B2 (en) Porous electrode substrate precursor sheet manufacturing method, porous electrode substrate manufacturing method, porous electrode substrate, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6183065B2 (en) Porous carbon electrode and manufacturing method thereof
JP2018014275A (en) Porous electrode substrate
JP5501332B2 (en) Porous electrode substrate precursor sheet, method for producing the same, porous electrode substrate, membrane-electrode assembly, and solid polymer fuel cell
JP6115756B2 (en) Porous electrode substrate precursor sheet, method for producing the same, porous electrode substrate, membrane-electrode assembly, and solid polymer fuel cell
JP5433146B2 (en) Porous electrode substrate, method for producing the same, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2020087826A (en) Gas diffusion layer substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees