JPH09135583A - Inverter for photovoltaic power generation - Google Patents

Inverter for photovoltaic power generation

Info

Publication number
JPH09135583A
JPH09135583A JP7314663A JP31466395A JPH09135583A JP H09135583 A JPH09135583 A JP H09135583A JP 7314663 A JP7314663 A JP 7314663A JP 31466395 A JP31466395 A JP 31466395A JP H09135583 A JPH09135583 A JP H09135583A
Authority
JP
Japan
Prior art keywords
inverter
bridge circuit
smoothing
full bridge
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7314663A
Other languages
Japanese (ja)
Inventor
Masahide Yamaguchi
雅英 山口
Yoshihisa Ueda
芳久 上田
Takashi Takuma
隆史 詫間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7314663A priority Critical patent/JPH09135583A/en
Publication of JPH09135583A publication Critical patent/JPH09135583A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PROBLEM TO BE SOLVED: To prevent malfunction in an earth leakage breaker and radio-wave interference without using a transformer, by reducing a flowing-out of high-frequency current. SOLUTION: A DC voltage generated from a solar battery 1 is applied as an input voltage to an inverter, and the output is connected to a power system. The inverter includes a full-bridge circuit 2, in which a smoothing reactor 3 is inserted between all neutral points of arms and the system. A capacitor 4 is connected between each DC positive or negative input of the full-bridge circuit 2 and all smoothing reactors 3 on the system side. Then, malfunction or environmental radio-wave interference caused by a high-frequency current leaking into the DC circuit or the system can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池が発電し
た直流電力を交流電力に変換し、系統に供給する太陽光
発電用インバータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter for photovoltaic power generation, which converts DC power generated by a solar cell into AC power and supplies the AC power to a grid.

【0002】[0002]

【従来の技術】太陽光発電用インバータの主回路構成と
して、従来よりフルブリッジ回路が一般的に使用される
ことが多い。図2はこのようなインバータの構成の一例
を示したもので、1は太陽電池、2はフルブリッジ回
路、3は平滑リアクトル、4は平滑コンデンサ、5は変
圧器、6は系統、7は太陽電池および配線等の直流回路
が大地との間に有する対地容量である。
2. Description of the Related Art As a main circuit configuration of an inverter for photovoltaic power generation, a full-bridge circuit is generally used conventionally. FIG. 2 shows an example of the configuration of such an inverter. 1 is a solar cell, 2 is a full bridge circuit, 3 is a smoothing reactor, 4 is a smoothing capacitor, 5 is a transformer, 6 is a grid, and 7 is a sun. This is the ground capacity that a DC circuit such as a battery and wiring has with the ground.

【0003】図2において、フルブリッジ回路2は太陽
電池1の発電した直流電圧を概略20kHz程度の高周
波でスイッチングし、交流電圧に変換する。フルブリッ
ジ回路2を構成する各アームの中点間には、スイッチン
グにより波高値が直流電圧に相当し、平均値が正弦波状
に変化するパルス列が発生するので、これを平滑リアク
トル3と平滑コンデンサ4によって濾過し、変圧器5を
介して系統6に供給する。したがってスイッチングにと
もなう高周波電流成分は、高周波におけるインピーダン
スの低い平滑コンデンサ4に流れ込み、系統6に流出す
ることはない。
In FIG. 2, a full bridge circuit 2 switches a DC voltage generated by the solar cell 1 at a high frequency of about 20 kHz and converts it into an AC voltage. Between the midpoints of the arms constituting the full bridge circuit 2, a pulse train whose peak value corresponds to a DC voltage and whose average value changes in a sine wave shape is generated by switching. And is supplied to the system 6 via the transformer 5. Therefore, the high-frequency current component accompanying switching flows into the smoothing capacitor 4 having a low impedance at high frequencies, and does not flow out to the system 6.

【0004】一方、スイッチングにともなう高周波電圧
はフルブリッジ回路2の直流入力と各アームの中点の間
にも発生しているが、変圧器5によりフルブリッジ回路
2と系統6が高周波的に絶縁されているので、これによ
る高周波電流も直流回路の対地容量7や系統6に流出す
ることはない。
On the other hand, the high frequency voltage associated with switching is also generated between the DC input of the full bridge circuit 2 and the middle point of each arm, but the transformer 5 insulates the full bridge circuit 2 and the system 6 in terms of high frequency. As a result, the high-frequency current due to this does not flow out to the ground capacity 7 of the DC circuit or the system 6.

【0005】ところがこのようなインバータを一般家庭
に設置した場合、変圧器5が商用周波数の変圧器である
ため、インバータが重く、大きくなるという難点があっ
た。そこで、太陽電池1の直流回路を接地しないという
条件で、変圧器5を省略することがおこなわれている。
However, when such an inverter is installed in a general household, the transformer 5 is a transformer of a commercial frequency, so that the inverter is heavy and large. Therefore, the transformer 5 is omitted under the condition that the DC circuit of the solar cell 1 is not grounded.

【0006】[0006]

【発明が解決しようとする課題】図3は図2に示したイ
ンバータから変圧器を省略したインバータの従来例を示
したもので、符号は図2と共通である。図3において、
フルブリッジ回路2は高周波でスイッチングをおこなう
ので、フルブリッジ回路2の直流入力とフルブリッジ回
路2を構成するアームの中点の間には、図2で述べた変
圧器がある場合と同様に、波高値が直流電圧に相当する
高周波電圧が発生する。この高周波電圧は、太陽電池1
と系統6とを絶縁する変圧器が省略されており、また通
常系統6の一線が接地されているので、大地を通して直
流回路の対地容量7に直接印加されてしまう。その結
果、この対地容量7を充放電する高周波電流が太陽電池
1や系統6に流出し、この高周波電流により系統6に設
置してある漏電遮断器が誤動作したり、周囲に電波障害
が発生するという問題があった。
FIG. 3 shows a conventional example of an inverter in which a transformer is omitted from the inverter shown in FIG. 2, and the reference numerals are the same as those in FIG. In FIG.
Since the full bridge circuit 2 performs switching at a high frequency, between the DC input of the full bridge circuit 2 and the midpoint of the arm forming the full bridge circuit 2, as in the case where the transformer described in FIG. A high-frequency voltage whose peak value corresponds to the DC voltage is generated. This high frequency voltage is applied to the solar cell 1
Since a transformer for isolating the system 6 from the system is omitted and one wire of the system 6 is normally grounded, it is directly applied to the ground capacity 7 of the DC circuit through the ground. As a result, a high-frequency current that charges and discharges the ground capacity 7 flows out to the solar cell 1 and the system 6, and the high-frequency current causes a malfunction of the earth leakage breaker installed in the system 6 or causes a radio disturbance in the surroundings. There was a problem.

【0007】本発明の目的は、このような高周波電流の
流出を抑制することにより、漏電遮断器の誤動作や電波
障害の発生を防止し、かつ変圧器を省略した太陽光発電
用インバータを提供することにある。
An object of the present invention is to provide an inverter for photovoltaic power generation in which malfunction of the earth leakage breaker and occurrence of radio wave interference are prevented by suppressing the outflow of such high frequency current, and a transformer is omitted. Especially.

【0008】[0008]

【課題を解決するための手段】前述の目的を達成するた
め、本発明ではフルブリッジ回路を構成するすべてのア
ームの中点と系統間に平滑リアクトルを挿入し、このす
べての平滑リアクトルの系統側とフルブリッジ回路の直
流正入力または直流負入力との間に平滑コンデンサを接
続することにより、スイッチングにともなう高周波電圧
が直流回路の対地容量に印加されないようにした。
In order to achieve the above-mentioned object, in the present invention, a smoothing reactor is inserted between the midpoints of all the arms constituting the full bridge circuit and the system, and the system side of all the smoothing reactors. By connecting a smoothing capacitor between the DC positive input and the DC negative input of the full bridge circuit, high frequency voltage due to switching is prevented from being applied to the ground capacitance of the DC circuit.

【0009】[0009]

【発明の実施の形態】本発明による太陽光発電用インバ
ータでは、フルブリッジ回路を構成するすべてのアーム
の中点と系統間に平滑リアクトルを挿入し、このすべて
の平滑リアクトルの系統側とフルブリッジ回路の直流正
入力または直流負入力との間に平滑コンデンサを接続す
る。この様に構成することにより、スイッチングにとも
なう高周波電圧が直流回路の対地容量に印加されなくな
り、漏電遮断器の誤動作や周囲に与える電波障害を防止
できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the inverter for photovoltaic power generation according to the present invention, smoothing reactors are inserted between the midpoints of all the arms constituting the full bridge circuit and the grid, and the grid side and the full bridge of all the smoothing reactors are inserted. Connect a smoothing capacitor between the DC positive input or DC negative input of the circuit. With this configuration, the high frequency voltage associated with switching is not applied to the ground capacitance of the DC circuit, and malfunctions of the earth leakage breaker and electromagnetic interference to the surroundings can be prevented.

【0010】[0010]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明を実施した太陽光発電用インバ
ータの構成で、符号は図2および図3と共通である。図
1においてフルブリッジ回路2は高周波でスイッチング
をおこなうので、フルブリッジ回路2の直流入力とフル
ブリッジ回路2を構成するアームの中点間には従来と同
様、高周波電圧が発生する。この高周波電圧は系統6と
の間に挿入された平滑リアクトル3を介して平滑コンデ
ンサ4に印加されるが、平滑コンデンサ4の高周波イン
ピーダンスが平滑リアクトル3の高周波インピーダンス
に比べてきわめて低いため、平滑コンデンサ4の両端に
高周波電圧はほとんど発生しない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a photovoltaic power generation inverter embodying the present invention, and the reference numerals are the same as those in FIGS. 2 and 3. In FIG. 1, since the full-bridge circuit 2 performs switching at high frequency, a high-frequency voltage is generated between the DC input of the full-bridge circuit 2 and the midpoint of the arm forming the full-bridge circuit 2 as in the conventional case. This high-frequency voltage is applied to the smoothing capacitor 4 through the smoothing reactor 3 inserted between the smoothing capacitor 4 and the system 6, but since the high-frequency impedance of the smoothing capacitor 4 is extremely lower than the high-frequency impedance of the smoothing reactor 3, the smoothing capacitor 4 High frequency voltage is hardly generated at both ends of 4.

【0011】すなわち図1の実施例では、この平滑コン
デンサ4を従来例のように平滑リアクトル3の系統側の
相間ではなく、平滑リアクトル3の系統側の各相とフル
ブリッジ回路2の直流負入力の間に接続しているので、
スイッチングにともなう高周波電圧は平滑コンデンサ4
により短絡され、直流回路の対地容量7に印加されるこ
とはない。その結果、太陽電池1の直流回路および系統
6に流出する高周波電流を大幅に抑制することができ
る。
That is, in the embodiment of FIG. 1, the smoothing capacitor 4 is not provided between the phases on the system side of the smoothing reactor 3 as in the conventional example, but on each phase on the system side of the smoothing reactor 3 and the DC negative input of the full bridge circuit 2. Since it is connected between
High frequency voltage accompanying switching is smoothing capacitor 4
Is short-circuited, and is not applied to the ground capacitance 7 of the DC circuit. As a result, the high frequency current flowing out to the DC circuit of the solar cell 1 and the grid 6 can be significantly suppressed.

【0012】なお、図1の実施例では平滑コンデンサ4
をフルブリッジ回路2の直流負入力との間に接続した
が、通常フルブリッジ回路の直流入力の相間には大容量
のコンデンサが接続されているので、直流入力の相間の
高周波インピーダンスはきわめて低く、平滑コンデンサ
4を直流正入力との間に接続しても同様の結果を得るこ
とができる。
In the embodiment of FIG. 1, the smoothing capacitor 4
Was connected to the DC negative input of the full bridge circuit 2, but since a large-capacity capacitor is usually connected between the DC input phases of the full bridge circuit, the high frequency impedance between the DC input phases is extremely low. The same result can be obtained by connecting the smoothing capacitor 4 to the DC positive input.

【0013】[0013]

【発明の効果】以上のように本発明によれば、フルブリ
ッジ回路を構成するすべてのアームの中点と系統間に平
滑リアクトルを挿入し、このすべての平滑リアクトルの
系統側とフルブリッジ回路の直流正入力または直流負入
力との間に平滑コンデンサを接続したので、スイッチン
グにともなう高周波電圧が太陽電池の直流回路の対地容
量に印加されなくなり、直流回路や系統に流出する高周
波電流による漏電遮断器の誤動作や周囲に与える電波障
害を防止できるという効果がある。
As described above, according to the present invention, the smoothing reactors are inserted between the midpoints of all the arms constituting the full bridge circuit and the system, and the system side of all the smoothing reactors and the full bridge circuit are connected. Since a smoothing capacitor is connected between the DC positive input or DC negative input, the high frequency voltage associated with switching is not applied to the ground capacitance of the DC circuit of the solar cell, and the earth leakage breaker is caused by the high frequency current flowing out to the DC circuit or grid. There is an effect that it is possible to prevent the malfunction of and the electromagnetic interference given to the surroundings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施した太陽光発電用インバータの構
成図
FIG. 1 is a configuration diagram of an inverter for photovoltaic power generation according to the present invention.

【図2】従来の太陽光発電用インバータの構成図FIG. 2 is a block diagram of a conventional inverter for photovoltaic power generation.

【図3】従来の変圧器を省略した太陽光発電用インバー
タの構成図
FIG. 3 is a block diagram of a photovoltaic power generation inverter in which a conventional transformer is omitted.

【符号の説明】[Explanation of symbols]

1 太陽電池 2 フルブリッジ回路 3 平滑リアクトル 4 平滑コンデンサ 5 変圧器 6 系統 7 直流回路の対地容量 1 Solar cell 2 Full bridge circuit 3 Smoothing reactor 4 Smoothing capacitor 5 Transformer 6 System 7 DC capacity to ground

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池が発電した直流電圧を入力電圧
とし、出力を系統に接続した太陽光発電用インバータで
あって、このインバータはフルブリッジ回路にて構成さ
れ、このフルブリッジ回路を構成するすべてのアームの
中点と系統間に平滑リアクトルを挿入し、このすべての
平滑リアクトルの系統側と前記フルブリッジ回路の直流
正入力または直流負入力との間に平滑コンデンサを接続
したことを特徴とする太陽光発電用インバータ。
1. An inverter for photovoltaic power generation in which a DC voltage generated by a solar cell is used as an input voltage and an output is connected to a grid, and the inverter is configured by a full bridge circuit, which constitutes the full bridge circuit. A smoothing reactor is inserted between the midpoint of all the arms and the system, and a smoothing capacitor is connected between the system side of all the smoothing reactors and the DC positive input or DC negative input of the full bridge circuit. Inverter for solar power generation.
JP7314663A 1995-11-07 1995-11-07 Inverter for photovoltaic power generation Pending JPH09135583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7314663A JPH09135583A (en) 1995-11-07 1995-11-07 Inverter for photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7314663A JPH09135583A (en) 1995-11-07 1995-11-07 Inverter for photovoltaic power generation

Publications (1)

Publication Number Publication Date
JPH09135583A true JPH09135583A (en) 1997-05-20

Family

ID=18056049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7314663A Pending JPH09135583A (en) 1995-11-07 1995-11-07 Inverter for photovoltaic power generation

Country Status (1)

Country Link
JP (1) JPH09135583A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
KR20030037374A (en) * 2001-11-03 2003-05-14 헥스파워시스템(주) A Grid-Connected Inverter Using Transformer Unit Having Reactor Therein
CN102130623A (en) * 2011-04-12 2011-07-20 江苏斯达工业科技有限公司 Improved main circuit structure of photovoltaic synchronization inverter
CN106787873A (en) * 2017-03-01 2017-05-31 华东交通大学 A kind of power decoupling circuit of AC coupling
JP2017205003A (en) * 2016-05-09 2017-11-16 陽光電源股▲ふん▼有限公司 Ac-dc photovoltaic device
WO2023005489A1 (en) * 2021-07-27 2023-02-02 广东志成冠军集团有限公司 Switch power amplifier, control method therefor and control system thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188875A (en) * 1998-10-15 2000-07-04 Canon Inc Photovoltaic power generation device and method for controlling the same
KR20030037374A (en) * 2001-11-03 2003-05-14 헥스파워시스템(주) A Grid-Connected Inverter Using Transformer Unit Having Reactor Therein
CN102130623A (en) * 2011-04-12 2011-07-20 江苏斯达工业科技有限公司 Improved main circuit structure of photovoltaic synchronization inverter
JP2017205003A (en) * 2016-05-09 2017-11-16 陽光電源股▲ふん▼有限公司 Ac-dc photovoltaic device
US10389132B2 (en) 2016-05-09 2019-08-20 Sungrow Power Supply Co., Ltd. AC-DC photovoltaic device
CN106787873A (en) * 2017-03-01 2017-05-31 华东交通大学 A kind of power decoupling circuit of AC coupling
CN106787873B (en) * 2017-03-01 2023-06-30 华东交通大学 Alternating current side coupled power decoupling circuit
WO2023005489A1 (en) * 2021-07-27 2023-02-02 广东志成冠军集团有限公司 Switch power amplifier, control method therefor and control system thereof

Similar Documents

Publication Publication Date Title
US8994216B2 (en) Power conversion apparatus
US8508957B2 (en) Power conversion device for converting DC power to AC power
CN203405559U (en) Electronic load of electric energy feedback type
CN109412166A (en) Dynamic voltage recovery system based on double-bus crossfeed
CN104052079A (en) Electric energy feedback type electronic load
JP4494562B2 (en) Power converter for photovoltaic power generation
CN110943469B (en) Single-stage energy storage converter and control method thereof
CN104578886A (en) Pulse width modulation method for three-level photovoltaic inverter and modulator
CN105244910A (en) Control method for improving power quality of alternating current buses of micro-grid
CN105743378A (en) T-type three-level inverter parallel system and decoupling control method thereof
Jarwar et al. High dynamic performance power quality conditioner for AC microgrids
CN104269841B (en) A kind of direct current network rectification harmonic suppression apparatus
JP2002218656A (en) System linkage inverter
CN203278632U (en) Uninterrupted power supply (UPS)
JPH09135583A (en) Inverter for photovoltaic power generation
JP3005804B2 (en) Power converter and uninterruptible power supply
CN102983753B (en) A kind of high voltage converter with UPS
JPH0898539A (en) Pwm inverter
JP3818831B2 (en) Grid-connected inverter device
CN106921175B (en) Single-phase non-isolated current source photovoltaic grid-connected inverter and control method
CN114844384A (en) Five-level grid-connected inverter structure, inverter and photovoltaic power system
JP2580118Y2 (en) Electric water heater
Vineeth et al. Modified H-bridge multilevel inverter for grid integration with voltage balancing circuit
CN112838778A (en) Non-isolated current type grid-connected inverter without overlapping time and control method and system thereof
Su et al. A novel topology for single phase UPS systems