JPH0817571B2 - Compression cooling device - Google Patents

Compression cooling device

Info

Publication number
JPH0817571B2
JPH0817571B2 JP63071498A JP7149888A JPH0817571B2 JP H0817571 B2 JPH0817571 B2 JP H0817571B2 JP 63071498 A JP63071498 A JP 63071498A JP 7149888 A JP7149888 A JP 7149888A JP H0817571 B2 JPH0817571 B2 JP H0817571B2
Authority
JP
Japan
Prior art keywords
grounding capacitor
voltage
cooling device
capacitor
compressor motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63071498A
Other languages
Japanese (ja)
Other versions
JPH01243843A (en
Inventor
善宏 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63071498A priority Critical patent/JPH0817571B2/en
Publication of JPH01243843A publication Critical patent/JPH01243843A/en
Publication of JPH0817571B2 publication Critical patent/JPH0817571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明はインバータ装置を搭載した圧縮式冷却装置
に係り、特にその漏洩電流低減に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a compression type cooling device equipped with an inverter device, and more particularly to reduction of leakage current thereof.

〔従来の技術〕[Conventional technology]

第5図は例えば特開昭60−59978号公報に開示された
従来のインバータ装置を搭載した圧縮式冷却装置の電気
回路図であり,図において(1)は交流電源,(2)は
この交流電源(1)に並列に接続されたノイズフイル
タ,(3)はこのノイズフイルタ(2)を構成するコン
デンサ,(4)は同じく接地用コンデンサ,(5)は同
じくインダクタ,(6)は力率改善用リアクタ,(7)
はこの力率改善用リアクタ(6)を介して上記ノイズフ
イルタ(2)に並列に接続された倍電圧整流回路,
(8)はこの倍電圧整流回路(7)に並列に接続された
平滑用コンデンサ,(9)は同じく倍電圧整流回路
(7)に並列接続されたインバータ装置,(10)はこの
インバータ装置(9)に接続された圧縮機モータ,(1
1)はこの圧縮機モータ(10)と大地間の浮遊キヤパシ
タンス,(12)は交流電源(1)に接続されたフアンモ
ータ,(13)はその他の電気部品である。(M)はイン
バータ装置(9)の出力線,(E)は圧縮式冷却装置の
接地部と大地を結ぶアース線である。
FIG. 5 is an electric circuit diagram of a compression type cooling device equipped with a conventional inverter device disclosed in, for example, Japanese Patent Laid-Open No. 60-59978, in which (1) is an AC power supply and (2) is this AC power supply. A noise filter connected in parallel to the power supply (1), (3) a capacitor that constitutes this noise filter (2), (4) a grounding capacitor, (5) an inductor, and (6) a power factor. Reactor for improvement, (7)
Is a voltage doubler rectifier circuit connected in parallel to the noise filter (2) through the power factor improving reactor (6),
(8) is a smoothing capacitor connected in parallel to the voltage doubler rectifier circuit (7), (9) is an inverter device similarly connected in parallel to the voltage doubler rectifier circuit (7), and (10) is this inverter device ( Compressor motor connected to 9), (1
1) is the floating capacitance between this compressor motor (10) and the ground, (12) is the fan motor connected to the AC power supply (1), and (13) is other electrical parts. (M) is an output line of the inverter device (9), and (E) is a ground line connecting the ground part of the compression cooling device and the ground.

従来の圧縮式冷却装置は上記のように構成され,交流
電源(1)の交流を倍電圧整流回路(7)で直流に変換
し,この直流は平滑用コンデンサ(8)で平滑され,イ
ンバータ装置(9)中のスイツチング素子の動作により
直流から三相交流に変換される。この三相交流によつて
圧縮機モータ(10)を駆動する。
The conventional compression cooling device is configured as described above, and converts the alternating current of the alternating current power source (1) into direct current by the voltage doubler rectifier circuit (7), and this direct current is smoothed by the smoothing capacitor (8), and the inverter device By the operation of the switching element in (9), DC is converted to three-phase AC. The compressor motor (10) is driven by this three-phase alternating current.

インバータ装置(9)のスイツチング素子の動作時発
生するノイズと,倍電圧整流回路(7)の転流作用に起
因するノイズはノイズフイルタ(2)で交流電源(1)
への漏洩が軽減される。
The noise generated during the operation of the switching element of the inverter device (9) and the noise caused by the commutation action of the voltage doubler rectifier circuit (7) are converted by the noise filter (2) into the AC power supply (1)
Leakage to

またインバータ装置(9)の出力線(M)における発
生電圧は第6図(a)のような波形になり,その立上
り,立下りの瞬時に第6図(b)に示すような漏洩電流
がアース線(E)に流れる。圧縮機モータ(10)の駆動
時の漏洩電流とノイズフイルタ(2)に設けられた接地
コンデンサ(4)の容量との関係を調べると第7図
(a)のようになる。すなわち漏洩電流は或る容量で最
小となりそれより容量が大きくなると漏洩電流は増加
し,それより容量が小さくなつても漏洩電流は増加す
る。これはインバータ装置(9)で発生する主な周波数
成分であるスイツチングキヤリア周波数成分と交流電源
(1)の周波数成分の漏洩電流が第7図(b)に示すよ
うな特性になることと,両周波数成分にはある程度の相
殺効果があるために,その合成値は第7図(a)のよう
になると考えられる。
The voltage generated in the output line (M) of the inverter device (9) has a waveform as shown in FIG. 6 (a), and the leakage current as shown in FIG. 6 (b) occurs at the rising and falling moments. It flows to the ground wire (E). The relationship between the leakage current when the compressor motor (10) is driven and the capacity of the grounding capacitor (4) provided in the noise filter (2) is examined, and the result is as shown in FIG. 7 (a). That is, the leakage current becomes minimum at a certain capacity, and when the capacity becomes larger than that, the leakage current increases, and even when the capacity becomes smaller, the leakage current increases. This is because the leakage current of the switching carrier frequency component, which is the main frequency component generated in the inverter device (9), and the leakage current of the frequency component of the AC power supply (1) have the characteristics shown in FIG. 7 (b). Since both frequency components have a canceling effect to some extent, the combined value is considered to be as shown in FIG. 7 (a).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の圧縮式冷却装置は以上のように構成されている
ので,圧縮機モータ(10)の駆動時アース線(E)の漏
洩電流が小さくなるようにノイズフイルタ(2)の接地
用コンデンサ(4)の容量を決めると第7図(b)から
解るように,圧縮機モータ(10)を停止した例えばフア
ンモータ(12)のみを駆動する送風運転時に,漏洩電流
が交流電源周波数成分のみとなるので,両成分の相殺効
果が無くなることもあり,漏洩電流が大きくなるという
問題があり,またこの交流電源周波数成分を小さくする
ために,ノイズフイルタ(2)の接地用コンデンサ
(4)の容量を減らすと圧縮機モータの駆動時,スイツ
チングキヤリア周波数成分が大きくなり,漏洩電流が大
きくなるという問題点があつた。
Since the conventional compression cooling device is configured as described above, the grounding capacitor (4) of the noise filter (2) is reduced so that the leakage current of the ground wire (E) during driving of the compressor motor (10) becomes small. When the capacity of) is determined, as can be seen from FIG. 7 (b), the leakage current becomes only the frequency component of the AC power supply during the air blow operation in which only the fan motor (12) is driven with the compressor motor (10) stopped. Therefore, there is a problem that the canceling effect of both components may be lost, and there is a problem that the leakage current increases, and in order to reduce this AC power supply frequency component, the capacitance of the grounding capacitor (4) of the noise filter (2) is increased. If the amount is reduced, the frequency component of the switching carrier increases when the compressor motor is driven, and the leakage current increases.

上記のような問題点は,圧縮機モータ(10)の駆動時
の騒音を小さくするためにスイツチングキヤリア周波数
を高くする場合にはより顕著になる傾向があり,何らか
の解決策が望まれていた。
The above problems tend to become more prominent when the switching carrier frequency is increased in order to reduce noise when driving the compressor motor (10), and some solution has been desired. .

この発明は上記のような問題点を解消するためになさ
れたもので圧縮機モータの駆動時及び停止時のいずれに
おいても漏洩電流を低減できると共に,高スイツチング
キヤリア周波数に対応できる圧縮式冷却装置を得ること
を目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the leakage current both when the compressor motor is driven and when it is stopped, and at the same time, it is a compression type cooling device which can cope with a high switching carrier frequency. Aim to get.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る圧縮式冷却装置は,交流電源に接続さ
れ、インダクタンス、コンデンサ、および第1の接地用
コンデンサで構成されたノイズフィルタと、このノイズ
フィルタと並列に接続され、交流電圧を直流電圧に変換
する電圧整流回路と、この電圧整流回路と並列に接続さ
れ、直流電圧を可変周波数交流に変換するインバータ装
置と、このインバータ装置に接続された圧縮機モータ
と、前記交流電源に接続された各種電気負荷機器と、を
備えた圧縮式冷却装置において、上記ノイズフィルタ内
の第1の接地用コンデンサの回路と並列に接続された第
2の接地用コンデサと、この第2の接地用コンデサと直
列に接続されたスイッチと、上記圧縮機モータの動作結
果に基づいて、上記圧縮機モータの停止時に、上記スイ
ッチをオフさせて接地用コンデサの容量を制御する制御
手段と、を備えたものである。
The compression cooling device according to the present invention is connected to an AC power supply, is connected to an noise filter including an inductance, a capacitor, and a first grounding capacitor, and is connected in parallel with the noise filter to convert an AC voltage into a DC voltage. A voltage rectifier circuit for converting, an inverter device connected in parallel with the voltage rectifier circuit for converting a DC voltage into a variable frequency AC, a compressor motor connected to the inverter device, and various types connected to the AC power supply. In a compression cooling device including an electric load device, a second grounding capacitor connected in parallel with a circuit of the first grounding capacitor in the noise filter, and a series of the second grounding capacitor. When the compressor motor is stopped, the switch is turned off and grounded based on the switch connected to and the operation result of the compressor motor. And control means for controlling the volume of Condesa, those having a.

〔作 用〕[Work]

この発明における圧縮式冷却装置はノイズフィルタ内
の第1の接地用コンデサ回路と並列に接続された第2の
接地用コンデサと、この第2の接地用コンデサと直列に
接続されたスイッチを、圧縮機モータの停止時に、オフ
させて接地用コンデサの容量を制御するので、圧縮機モ
ータ、および各種電気負荷機器であるファンモータ等が
それぞれ駆動される冷・暖房運転時でも、また、サーモ
運転中に圧縮機モータが停止され、各種電気負荷機器の
みが運転される時でも、大地への漏洩電流を最適に維持
する。
The compression-type cooling device according to the present invention compresses a second grounding capacitor connected in parallel with the first grounding capacitor circuit in the noise filter and a switch connected in series with the second grounding capacitor. When the machine motor is stopped, it is turned off to control the capacity of the grounding capacitor, so the compressor motor and various electric load devices such as the fan motor are driven individually during cooling / heating operation and during thermo operation. The leakage current to the ground is optimally maintained even when the compressor motor is stopped and only various electric loads are operated.

〔発明の実施例〕Example of Invention

第1図はこの発明による圧縮式冷却装置の一実施例を
示す電気回路図であり,(1)〜(3),(5)〜(1
3)は上記従来装置と全く同一のものである。(14)は
ノイズフイルタ(2)に設けられた第1接地用コンデン
サ,(15)はこの第1接地用コンデンサ(14)に並列に
接続された第2接地用コンデンサ,(16)はこの第2接
地用コンデンサ(15)を開閉するスイツチ,(17)はこ
のスイツチ(16)を制御するマイクロコンピユータから
なる制御回路であり,スイツチ(16)と制御回路(17)
で制御手段を構成する。
FIG. 1 is an electric circuit diagram showing one embodiment of the compression type cooling device according to the present invention, which is (1) to (3), (5) to (1
3) is exactly the same as the above conventional device. (14) is a first grounding capacitor provided in the noise filter (2), (15) is a second grounding capacitor connected in parallel with the first grounding capacitor (14), and (16) is this second grounding capacitor. 2 A switch for opening and closing the grounding capacitor (15), and (17) is a control circuit composed of a micro computer for controlling the switch (16). The switch (16) and the control circuit (17)
It constitutes the control means.

上記のように構成された圧縮式冷却装置の動作につい
て,第2図のフローチヤート図で説明する。図において
ステツプ(21)で圧縮機モータ(10)が駆動か停止かを
判断し駆動の場合のステツプ(22)でスイツチ(16)を
制御回路(17)によりオンすることにより,第2接地用
コンデンサ(15)が導通し接地用コンデンサの容量が増
し,浮遊キヤパシタンス(11)からの充放電電流を電源
側に戻しアース線(E)に流れる漏洩電流が減少する。
この時の接地用コンデンサの容量と漏洩電流の関係は上
記従来装置と同様第7図(a)のようになる。従つて上
記第2接地用コンデンサ(15)の容量は,第1接地用コ
ンデンサ(14)との和が,第7図(a)で漏洩電流が最
小になる容量に等しくなるように選ぶことにより漏洩電
流を小さくすることができる。第2図においてステツプ
(21)で圧縮機が停止の場合は,ステツプ(23)でスイ
ツチ(16)を制御回路(17)でオフすることにより第2
接地用コンデンサ(15)が不導通となり,接地用コンデ
ンサの容量は減少し,第1接地用コンデンサ(14)の容
量となる。この時の接地コンデンサの容量と漏洩電流の
関係は第7図(b)の交流電源周波数成分の曲線になる
ので,漏洩電流は第1接地用コンデンサ(14)の容量に
相当する小さな値になる。この第1接地用コンデンサ
(14)の容量はインバータ装置(9)及び倍電圧整流回
路(7)で発生するノイズを軽減するという別の目的か
ら決められるものである。
The operation of the compression type cooling device configured as described above will be described with reference to the flow chart of FIG. In the figure, the step (21) determines whether the compressor motor (10) is driven or stopped, and the step (22) in the case of driving turns on the switch (16) by the control circuit (17). The capacitor (15) conducts, the capacity of the grounding capacitor increases, and the charge / discharge current from the floating capacitance (11) is returned to the power supply side and the leakage current flowing through the ground wire (E) decreases.
The relationship between the capacitance of the grounding capacitor and the leakage current at this time is as shown in FIG. 7 (a) as in the conventional device. Therefore, the capacity of the second grounding capacitor (15) is selected so that the sum with the first grounding capacitor (14) is equal to the capacity that minimizes the leakage current in FIG. 7 (a). Leakage current can be reduced. In FIG. 2, when the compressor is stopped at step (21), the switch (16) is turned off by the control circuit (17) at step (23).
The grounding capacitor (15) becomes non-conductive, the capacity of the grounding capacitor decreases, and becomes the capacity of the first grounding capacitor (14). Since the relationship between the capacity of the grounding capacitor and the leakage current at this time is the curve of the frequency component of the AC power supply in FIG. 7 (b), the leakage current has a small value corresponding to the capacity of the first grounding capacitor (14). . The capacity of the first grounding capacitor (14) is determined for another purpose of reducing noise generated in the inverter device (9) and the voltage doubler rectifier circuit (7).

なお,上記実施例ではノイズフイルタ(2)の2次側
に第1接地用コンデンサ(14)及び第2接地用コンデン
サ(15)を設けたものであるが,これらをノイズフイル
タ(2)の1次側に設けた構成でも同様の効果がある。
In the above embodiment, the first grounding capacitor (14) and the second grounding capacitor (15) are provided on the secondary side of the noise filter (2). The same effect can be obtained with the configuration provided on the next side.

第3図はノイズフイルタ(2)の1次側に第1接地用
コンデンサ(14)及び第2接地用コンデンサ(15)を設
けたインバータ装置の他の実施例を示す圧縮式冷却装置
の電気回路図である。符号は第1図の実施例と全く同一
で,作用効果も同一である。
FIG. 3 shows an electric circuit of a compression type cooling device showing another embodiment of the inverter device in which the first grounding capacitor (14) and the second grounding capacitor (15) are provided on the primary side of the noise filter (2). It is a figure. The reference numerals are exactly the same as those of the embodiment shown in FIG.

また,上記二つの実施例は交流電源(1)の交流電圧
を倍電圧整流回路(7)で,直流電圧に変換しているも
のを示したが,整流方式として全波整流を用いるものに
も適用できる。
In the above two embodiments, the AC voltage of the AC power source (1) is converted into the DC voltage by the voltage doubler rectifier circuit (7). However, it is also possible to use full-wave rectification as the rectification method. Applicable.

第4図は全波整流方式を用いた圧縮式冷却装置の他の
実施例を示す電気回路図である。
FIG. 4 is an electric circuit diagram showing another embodiment of the compression-type cooling device using the full-wave rectification method.

図において(18)は交流電源(1)の交流電圧を直流
電圧に変換し,インバータ装置(9)に供給する全波整
流回路である。作用効果については上記第1図の実施例
と同一である。
In the figure, (18) is a full-wave rectifier circuit that converts the AC voltage of the AC power supply (1) into a DC voltage and supplies it to the inverter device (9). The function and effect are the same as those of the embodiment shown in FIG.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり,ノイズフィルタ内の
第1の接地用コンデサ回路と並列に接続された第2の接
地用コンデサと、この第2の接地用コンデサと直列に接
続されたスイッチを、圧縮機モータの停止時に、オフさ
せて接地用コンデサの容量を制御するので、圧縮機モー
タ、および各種電気負荷機器であるファンモータ等がそ
れぞれ駆動される冷・暖房運転時でも、また、サーモ運
転中に圧縮機モータが停止され、各種電気負荷機器のみ
が運転される時でも、大地への漏洩電流を最適に維持す
るため、この漏洩電流に起因して発生する感電事故を防
止した信頼性の高い圧縮式冷却装置が得られる。
As described above, the present invention compresses the second grounding capacitor connected in parallel with the first grounding capacitor circuit in the noise filter and the switch connected in series with the second grounding capacitor. When the machine motor is stopped, it is turned off to control the capacity of the grounding capacitor, so the compressor motor and various electric load devices such as the fan motor are driven individually during cooling / heating operation and during thermo operation. Even when the compressor motor is stopped and only various electric load devices are operated, the leakage current to the ground is optimally maintained, so an electric shock accident caused by this leakage current is prevented and the reliability is high. A compression cooling device is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の圧縮式冷却装置の一実施例の電気回
路図,第2図はこの発明の動作を説明するフローチヤー
ト図,第3図と第4図はこの発明の他の実施例を示す電
気回路図,第5図は従来の圧縮式冷却装置の電気回路
図,第6図は従来の圧縮式冷却装置のインバータ装置の
発生電圧波形と,大地への漏洩電流波形の関係を示す特
性図,第7図は漏洩電流と接地用コンデンサの容量の関
係を示す特性図である。 図において(1)は交流電源,(2)はノイズフイル
タ,(3)はコンデンサ,(5)はインダクタンス,
(7)は整流回路,(9)はインバータ装置,(10)は
圧縮機モータ,(12)はフアンモータ,(13)は電気部
品,(14)は第1接地用コンデンサ,(15)は第2接地
用コンデンサ,(16)はスイツチ,(17)は制御回路で
ある。 なお,各図中同一符号は同一または相当部分を示す。
FIG. 1 is an electric circuit diagram of an embodiment of the compression type cooling device of the present invention, FIG. 2 is a flow chart for explaining the operation of the present invention, and FIGS. 3 and 4 are other embodiments of the present invention. Fig. 5 shows the electric circuit diagram of the conventional compression cooling device, and Fig. 6 shows the relationship between the generated voltage waveform of the inverter device of the conventional compression cooling device and the leakage current waveform to the ground. FIG. 7 is a characteristic diagram showing the relationship between the leakage current and the capacitance of the grounding capacitor. In the figure, (1) is an AC power supply, (2) is a noise filter, (3) is a capacitor, (5) is an inductance,
(7) is a rectifier circuit, (9) is an inverter device, (10) is a compressor motor, (12) is a fan motor, (13) is an electrical component, (14) is a first grounding capacitor, and (15) is The second grounding capacitor, (16) is a switch, and (17) is a control circuit. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】交流電源に接続され、インダクタンス、コ
ンデンサ、および第1の接地用コンデサで構成されたノ
イズフィルタと、このノイズフィルタと並列に接続さ
れ、交流電圧を直流電圧に変換する電圧整流回路と、こ
の電圧整流回路と並列に接続され、直流電圧を可変周波
数交流に変換するインバータ装置と、このインバータ装
置に接続された圧縮機モータと、前記交流電源に接続さ
れた各種電気負荷機器と、を備えた圧縮式冷却装置にお
いて、上記ノイズフィルタ内の第1の接地用コンデサの
回路と並列に接続された第2の接地用コンデサと、この
第2の接地用コンデサと直列に接続されたスイッチと、
上記圧縮機モータの動作結果に基づいて、上記圧縮機モ
ータの停止時に、上記スイッチをオフさせて接地用コン
デサの容量を制御する制御手段と、を備えたことを特徴
とする圧縮式冷却装置。
1. A noise filter comprising an inductance, a capacitor and a first grounding capacitor, which is connected to an AC power supply, and a voltage rectifying circuit which is connected in parallel with the noise filter and converts an AC voltage into a DC voltage. An inverter device that is connected in parallel with the voltage rectifier circuit and that converts a DC voltage into a variable frequency AC, a compressor motor connected to the inverter device, and various electric load devices connected to the AC power supply, In a compression cooling device including a second grounding capacitor connected in parallel with the circuit of the first grounding capacitor in the noise filter, and a switch connected in series with the second grounding capacitor. When,
A compression cooling device comprising: a control unit that controls the capacity of the grounding capacitor by turning off the switch when the compressor motor is stopped based on the operation result of the compressor motor.
JP63071498A 1988-03-25 1988-03-25 Compression cooling device Expired - Fee Related JPH0817571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071498A JPH0817571B2 (en) 1988-03-25 1988-03-25 Compression cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071498A JPH0817571B2 (en) 1988-03-25 1988-03-25 Compression cooling device

Publications (2)

Publication Number Publication Date
JPH01243843A JPH01243843A (en) 1989-09-28
JPH0817571B2 true JPH0817571B2 (en) 1996-02-21

Family

ID=13462392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071498A Expired - Fee Related JPH0817571B2 (en) 1988-03-25 1988-03-25 Compression cooling device

Country Status (1)

Country Link
JP (1) JPH0817571B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665059B1 (en) * 2004-12-01 2007-01-09 삼성전자주식회사 Driving apparatus for a motor
JP4992365B2 (en) * 2006-09-28 2012-08-08 ダイキン工業株式会社 Inverter leakage current reduction method
JP2009171841A (en) * 2009-03-16 2009-07-30 Hitachi Ltd Electric motor system
JP2013115904A (en) * 2011-11-28 2013-06-10 Hitachi Automotive Systems Ltd Combined mechano-electric electric driving apparatus
FR2988917B1 (en) 2012-04-03 2014-03-28 Renault Sa METHOD FOR MANAGING THE CHARGE OF A TRACTION BATTERY AND CORRESPONDING DEVICES

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561773A (en) * 1979-06-14 1981-01-09 Toyo Electric Mfg Co Ltd Inverter

Also Published As

Publication number Publication date
JPH01243843A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
JP3422218B2 (en) converter
US5952812A (en) AC-DC power converting device
JPH03226276A (en) Power supply
JP2865194B2 (en) Single-phase input three-phase full-wave rectifier circuit and single-phase input pseudo four-phase full-wave rectifier circuit
KR102362713B1 (en) Power transforming apparatus having thermal protection function
JP4107626B2 (en) Power supply method and apparatus for X-ray apparatus
JP2957104B2 (en) Single-phase input rectifier circuit
JPH0817571B2 (en) Compression cooling device
JPH0479773A (en) Air conditioner
JP4169221B2 (en) Inverter X-ray high voltage device
US6407936B1 (en) Capacitive boost for line harmonic improvement in power converters
JPH0426374A (en) Inverter power unit for air conditioner
JPH0833392A (en) Air conditioner
JP3402031B2 (en) DC power supply
JP2573229B2 (en) Variable voltage and variable frequency power supply
JPH0731153A (en) Power converter
JPH07308070A (en) Noise suppressing circuit of self-exciting type rectifying circuit
JP3733675B2 (en) Inverter device, discharge lamp lighting device and lighting device
JPH10112979A (en) Power supply equipment
KR100283890B1 (en) Motor drive circuit
JP4462390B2 (en) Inverter using current source
KR100279604B1 (en) Soft Switch Single-Phase Active Rectifier with Power Factor Control
JP3494036B2 (en) Power supply
JPH10167593A (en) Inverter control device
JP3291507B2 (en) Inverter device for discharge lamp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees