JPH0746763A - Reactive power regulator - Google Patents

Reactive power regulator

Info

Publication number
JPH0746763A
JPH0746763A JP5181784A JP18178493A JPH0746763A JP H0746763 A JPH0746763 A JP H0746763A JP 5181784 A JP5181784 A JP 5181784A JP 18178493 A JP18178493 A JP 18178493A JP H0746763 A JPH0746763 A JP H0746763A
Authority
JP
Japan
Prior art keywords
power
circuit
current
current transformer
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5181784A
Other languages
Japanese (ja)
Inventor
Tetsuo Murayama
哲雄 村山
Takashi Kato
高司 加藤
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP5181784A priority Critical patent/JPH0746763A/en
Publication of JPH0746763A publication Critical patent/JPH0746763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To realize space savings and accurate control. CONSTITUTION:A receiving circuit is connected to a main bus B through a circuit breaker CB1 and a generator AG circuit is also connected to the main bus B through a circuit beaker CB2. Current transformers CT11 and CT12 are provided in both the circuits individually and the secondary windings of the respective current transformers CT11 and CT12 are individually connected to the primary winding of a total current transformer CT13. The secondary winding of the total current transformer CT13 is connected to an automatic power factor regulator 55 or a reactive power relay 91Q. The number of closing power capacitors is selected by the outputs of the automatic power factor regulator 55 and the reactive power relay 91Q.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は受電回路と自家用発電
機との並列運転において、受電点の力率を調整すると
き、無効電力調整装置によって負荷に無効電力を供給し
て連続的に制御する無効電力調整装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when a power receiving circuit and a private power generator are operated in parallel, adjusts the power factor of a power receiving point by supplying reactive power to a load by a reactive power adjusting device for continuous control. The present invention relates to a reactive power adjustment device.

【0002】[0002]

【従来の技術】通常、電力コンデンサと発電機の力率制
御の分担を明確に分離する回路としては図8に示すもの
が使用されている。図8において、受電回路は遮断器C
B1を介して主母線Bに接続される。また、発電機AG
回路は遮断器CB2を介して受電回路の途中に接続され
て、受電回路と発電機回路は並列運転される。CT1は
受電回路の電流を検出する変流器であり、CT2は発電
機回路の電流を検出する変流器である。CT3は受電回
路と発電機回路の並列運転時の電流を検出する変流器で
ある。
2. Description of the Related Art Normally, a circuit shown in FIG. 8 is used as a circuit for clearly separating the sharing of power factor control between a power capacitor and a generator. In FIG. 8, the power receiving circuit is a circuit breaker C.
It is connected to the main bus B via B1. Also, the generator AG
The circuit is connected in the middle of the power receiving circuit via the circuit breaker CB2, and the power receiving circuit and the generator circuit are operated in parallel. CT1 is a current transformer that detects the current of the power receiving circuit, and CT2 is a current transformer that detects the current of the generator circuit. CT3 is a current transformer that detects a current during parallel operation of the power receiving circuit and the generator circuit.

【0003】前記変流器CT1とCT2は力率制御装置
APFRあるいは無効電力制御装置AQRに接続され、
これにより発電機AG、AVRを介してが制御される。
変流器CT3は自動力率調整器55あるいは無効電力継
電器91Qに接続される。自動力率調整器55あるいは
無効電力継電器91Q及び力率制御装置APFRあるい
は無効電力制御装置AQRには前記主母線Bに接続され
た変圧器PTの2次側が接続される。
The current transformers CT1 and CT2 are connected to a power factor controller APFR or a reactive power controller AQR,
As a result, is controlled via the generators AG and AVR.
The current transformer CT3 is connected to the automatic power factor adjuster 55 or the reactive power relay 91Q. The secondary side of the transformer PT connected to the main bus B is connected to the automatic power factor adjuster 55 or the reactive power relay 91Q and the power factor controller APFR or the reactive power controller AQR.

【0004】主母線Bには遮断器CB3,CB4を介し
て負荷L1,L2が接続されるとともに、開閉装置SW
を介して電力コンデンサCが接続される。開閉装置SW
は自動力率調整器55あるいは無効電力継電器91Qの
出力により制御される。
Loads L1 and L2 are connected to the main bus B via circuit breakers CB3 and CB4, and a switchgear SW is provided.
The power capacitor C is connected via. Switchgear SW
Is controlled by the output of the automatic power factor adjuster 55 or the reactive power relay 91Q.

【0005】上記のように構成された装置において、ま
ず負荷L1,L2の力率は変流器CT3により検出した
電流で自動力率調整器55を動作させ、この調整器55
の出力により開閉装置SWを適宜に選択して電力コンデ
ンサCの投入数を制御して行われる。これとは別に、変
流器CT1を使用して発電機AGで細く受電点の無効電
力制御をAQRで行うか又は力率制御をAPFRで行
う。また、発電点の無効電力又は力率制御は変流器CT
2を使用して行う。このようにして、電力コンデンサに
よる力率または無効電力制御と発電機による上記と同様
の制御が互いに干渉しないようにして実現している。
In the device constructed as described above, first, the power factors of the loads L1 and L2 operate the automatic power factor regulator 55 by the current detected by the current transformer CT3, and the regulator 55 is operated.
The switchgear SW is appropriately selected according to the output of the above-mentioned formula (1) to control the number of power capacitors C to be closed. Separately from this, the current transformer CT1 is used to finely control the reactive power of the power receiving point by the power generator AG by AQR or the power factor control by APFR. In addition, the reactive power or power factor control at the power generation point is controlled by the
Perform using 2. In this way, the power factor or reactive power control by the power capacitor and the control similar to the above by the generator are realized without interfering with each other.

【0006】図9は電力コンデンサを受電でのみ使用す
る回路で、図9において、受電回路は遮断器CB1を介
して主母線Bに接続される。また、発電機AG回路は遮
断器CB2を介して受電回路の途中に接続されて、受電
回路と発電機回路は並列運転される。CT1は受電回路
の電流を検出する変流器であり、CT2は発電機回路の
電流を検出する変流器である。CT3は受電回路と発電
機回路の並列運転時の電流を検出する変流器である。
FIG. 9 shows a circuit which uses a power capacitor only for receiving power. In FIG. 9, the power receiving circuit is connected to the main bus B through a circuit breaker CB1. The generator AG circuit is connected in the middle of the power receiving circuit via the circuit breaker CB2, and the power receiving circuit and the generator circuit are operated in parallel. CT1 is a current transformer that detects the current of the power receiving circuit, and CT2 is a current transformer that detects the current of the generator circuit. CT3 is a current transformer that detects the current during parallel operation of the power receiving circuit and the generator circuit.

【0007】前記変流器CT1には自動無効電力調整装
置55Rが接続され、変流器CT2とCT3はAPFR
あるいはAQRに接続されるとともに、APFRあるい
はAQRには前記主母線Bに接続された変圧器PTの2
次側および55Rの出力側が接続される。
An automatic reactive power adjusting device 55R is connected to the current transformer CT1, and the current transformers CT2 and CT3 are APFR.
Alternatively, two transformers PT connected to the main bus B are connected to AQR and APFR or AQR.
The secondary side and the output side of 55R are connected.

【0008】なお、主母線Bには遮断器CB3を介して
負荷L1が接続され、さらに開閉装置SWと電力コンデ
ンサCが直列接続される。開閉装置SWは55Rの出力
により投入数が制御される。
A load L1 is connected to the main bus B via a circuit breaker CB3, and a switchgear SW and a power capacitor C are connected in series. The opening / closing device SW controls the number of inputs by the output of 55R.

【0009】図9の回路において、55Rの性能は電力
コンデンサ単機分の無効電力が流入するとき、電力コン
デンサを1台分自動投入しまた若干のヒステリシスをも
って電力コンデンサの切り離しを行うものである。な
お、AGによる力率調整は負荷の無効分または力率を検
出してこれをAGで補償する。
In the circuit of FIG. 9, the performance of 55R is such that when reactive power for a single power capacitor flows in, one power capacitor is automatically turned on and the power capacitor is disconnected with some hysteresis. Note that the power factor adjustment by the AG detects the reactive component of the load or the power factor and compensates it by the AG.

【0010】図10において、受電回路は遮断器CB1
を介して主母線Bに接続される。また、発電機AG回路
も遮断器CB2を介して主母線Bに接続される。CT1
は受電回路の電流を検出する変流器であり、CT2は発
電機回路の電流を検出する変流器である。変流器CT1
とCT2には無効電力制御装置AQRあるいは力率制御
装置APFR1、2がそれぞれ接続される。AQRある
いはAPFR1,2には設定器S1,S2および主母線
Bに接続される変圧器PTの2次側が接続される。AQ
RあるいはAPFR1,2の出力は自動電圧調整装置A
VRに供給される。また、主母線Bには遮断器CB3、
CB4を介して負荷L1、L2が接続される上記のよう
に構成された図10の回路において、受電のときは受電
回路に設置したCT1によってAQRあるいはAPFR
1を駆動してAGを制御し、逆潮流のときは発電回路に
設置したCT2によってAQRあるいはAPFR2を駆
動してAGを制御する。なお、この回路で受電(受電電
力と発電電力の和が負荷側に流れる場合)か逆潮流(こ
の場合は発電電力が受電側と負荷側の両方に流れる)か
は潮流継電器又は電力検出器(図示省略)によって検出
し、制御装置を切り換えている。
In FIG. 10, the power receiving circuit is a circuit breaker CB1.
Is connected to the main bus B via. The generator AG circuit is also connected to the main bus B via the circuit breaker CB2. CT1
Is a current transformer that detects the current of the power receiving circuit, and CT2 is a current transformer that detects the current of the generator circuit. Current transformer CT1
And CT2 are connected to a reactive power control device AQR or power factor control devices APFR1 and APFR2, respectively. The secondary side of the transformer PT connected to the setters S1 and S2 and the main bus B is connected to the AQR or APFR1 and 2. AQ
The output of R or APFR1,2 is the automatic voltage regulator A
Supplied to VR. The main bus B has a circuit breaker CB3,
In the circuit of FIG. 10 configured as described above in which the loads L1 and L2 are connected via the CB4, when power is received, AQR or APFR is set by the CT1 installed in the power receiving circuit.
1 is driven to control AG, and in the case of reverse power flow, CT2 installed in the power generation circuit drives AQR or APFR2 to control AG. In this circuit, whether the power is received (when the sum of the received power and the generated power flows to the load side) or the reverse power flow (in this case, the generated power flows to both the power receiving side and the load side), a power relay or power detector ( (Not shown), the control device is switched.

【0011】[0011]

【発明が解決しようとする課題】図8に示した装置は電
気的特性の点では良好で問題はない。しかし、受電回路
の主回路と発電機の主回路を一括接続した後、変流器C
T3を設ける構成となっているため、前記主回路の接続
手段が複雑で、最悪の場合には、変流器CT3を収納す
るために配電盤を1個必要とする問題がある。
The device shown in FIG. 8 is good in electrical characteristics and has no problem. However, after connecting the main circuit of the power receiving circuit and the main circuit of the generator together, the current transformer C
Since T3 is provided, the connection means of the main circuit is complicated, and in the worst case, there is a problem that one switchboard is required to house the current transformer CT3.

【0012】一方図9の回路は図8の問題点の他に負荷
の要求する無効電力が発電機の能力以下であれば発電機
によって自動無効電力制御又は自動力率制御を行うこと
は何ら問題はない。しかし、このような制御を行うと発
電機が低力率運転になる問題があり、また、負荷の要求
する無効電力が発電機の能力を超えると制御が出来なく
なる問題がある。
On the other hand, in the circuit of FIG. 9, in addition to the problem of FIG. 8, there is no problem in performing automatic reactive power control or automatic power factor control by the generator if the reactive power required by the load is less than the capacity of the generator. There is no. However, when such control is performed, there is a problem that the generator is in a low power factor operation, and when reactive power required by the load exceeds the capacity of the generator, there is a problem that control cannot be performed.

【0013】また、図10の回路は発電量と負荷の電力
量がほぼ等しいとき、受電点の電流は発電機電流と負荷
電流の差となるため、その値が小さくなるとともに電力
の向き(電流の力率)が受電から逆潮流と変化する。す
なわち、小さな電流を制御するために大きな発電機を制
御することとなり、精度の高い制御が困難となる。ま
た、電力の向きが受電から逆潮流と変化するため、方向
性のある制御装置(AQR,APFR)では片側方向し
か検出できない。さらに、2つの制御装置で受電と逆潮
流を制御しようとすると、潮流を検出して装置を切り換
える必要があるが、ハンチングを防止するため、切り換
えにヒステリシスを持たせると同一電流に対して異なる
制御方式となる部分が出来、正確な制御が困難となるな
る問題がある。
Further, in the circuit of FIG. 10, when the amount of power generation and the amount of power of the load are substantially equal, the current at the power receiving point becomes the difference between the generator current and the load current. Power factor) changes from receiving power to reverse power flow. That is, since a large generator is controlled to control a small current, it is difficult to control with high accuracy. Further, since the direction of the electric power changes from the power reception to the reverse flow, the directional control device (AQR, APFR) can detect only one direction. Furthermore, when trying to control power reception and reverse power flow with two control devices, it is necessary to detect the power flow and switch the device. However, in order to prevent hunting, if switching is provided with hysteresis, different control is performed for the same current. There is a problem that the system part is created and it becomes difficult to control accurately.

【0014】この発明は上記の事情に鑑みてなされたも
ので、省スペース化及び正確な制御を図る無効電力調整
装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reactive power adjusting device which saves space and achieves accurate control.

【0015】[0015]

【課題を解決するための手段】この発明は上記の目的を
達成するために、第1発明は、受電回路と発電機回路を
並列運転して、負荷の力率、無効電力を制御する装置に
おいて、受電回路の変流器2次側と発電機回路の変流器
2次側をトータル変流器に接続して、両変流器から合成
電流を発生させ、この電流によって負荷の力率、無効電
力を調整するようにしたことを特徴とするものである。
In order to achieve the above object, the present invention provides a device for controlling a load power factor and reactive power by operating a power receiving circuit and a generator circuit in parallel. , The current transformer secondary side of the power receiving circuit and the current transformer secondary side of the generator circuit are connected to a total current transformer to generate a combined current from both current transformers, and this current causes the power factor of the load to It is characterized in that the reactive power is adjusted.

【0016】第2発明は、受電回路と発電機回路を並列
接続してから主回路に接続し、受電回路と発電機回路に
第1および第2の変流器を設けるとともに主回路に第3
の変流器を設け、第1および第2の変流器の2次側に自
動無効電力調整装置を設けてその出力および第3の変流
器の出力を無効電力あるいは力率制御装置に供給すると
共に、この無効電力あるいは力率制御装置に主回路に接
続された変圧器の2次出力電圧を与え、前記無効電力あ
るいは力率制御装置の出力で発電機の自動電圧調整装置
を制御するとともに前記自動無効電力調整装置の出力で
力率改善用電力コンデンサの投入数を制御するようにし
たことを特徴とする。
According to a second aspect of the present invention, the power receiving circuit and the generator circuit are connected in parallel and then connected to the main circuit, the power receiving circuit and the generator circuit are provided with the first and second current transformers, and the third circuit is provided in the main circuit.
Current transformer is provided, an automatic reactive power adjusting device is provided on the secondary side of the first and second current transformers, and its output and the output of the third current transformer are supplied to the reactive power or the power factor control device. In addition, the secondary output voltage of the transformer connected to the main circuit is given to the reactive power or power factor control device, and the automatic voltage regulator of the generator is controlled by the output of the reactive power or power factor control device. It is characterized in that the output of the automatic reactive power adjusting device controls the number of power capacitors for power factor improvement.

【0017】第3発明は、受電回路と発電機回路を主回
路に接続して並列運転させるとともに受電回路と発電機
回路にそれぞれ変流器を設け、その変流器の2次側には
自動無効電力調整装置を設けてその調整装置の出力をト
ータル変流器に供給して合成電流を発生させ、その合成
電流を無効電力あるいは力率制御装置に供給するととも
にその制御装置に主回路に接続された変圧器の2次出力
電圧および発電機回路に設けた前記変流器とは別の変流
器で検出した電流を供給し、前記無効電力あるいは力率
制御装置の出力で発電機の自動電圧調整装置を制御する
とともに前記自動無効電力調整装置の出力で力率改善用
電力コンデンサの投入数を制御するようにしたことを特
徴とする。
According to a third aspect of the invention, a power receiving circuit and a generator circuit are connected to a main circuit for parallel operation, and a current transformer is provided in each of the power receiving circuit and the generator circuit, and an automatic transformer is provided on the secondary side of the current transformer. Providing a reactive power adjusting device, supplying the output of the adjusting device to the total current transformer to generate a combined current, supplying the combined current to the reactive power or power factor control device and connecting it to the main circuit The secondary output voltage of the transformer and the current detected by a current transformer different from the current transformer provided in the generator circuit are supplied, and the generator is automatically controlled by the reactive power or the output of the power factor controller. The present invention is characterized in that the voltage regulator is controlled, and the number of power factor correction power capacitors to be controlled is controlled by the output of the automatic reactive power regulator.

【0018】第4発明は、受電回路と発電機回路を主回
路に接続して並列運転させるとともに受電回路と発電機
回路にそれぞれ変流器を設けてその変流器の出力をトー
タル変流器に供給して合成電流を発生させ、その合成電
流を無効電力あるいは力率制御装置に供給するとともに
その制御装置に主回路に接続された変圧器の2次出力電
圧および発電機回路に設けた前記変流器とは別の変流器
で検出した電流を供給し、前記無効電力あるいは力率制
御装置の出力で発電機の自動電圧調整装置を制御するよ
うにしたことを特徴とする。
In a fourth aspect of the present invention, a power receiving circuit and a generator circuit are connected to a main circuit for parallel operation, and a current transformer is provided in each of the power receiving circuit and the generator circuit, and the output of the current transformer is a total current transformer. To generate a combined current, supply the combined current to the reactive power or the power factor control device, and to provide the secondary output voltage of the transformer connected to the main circuit to the control device and the generator circuit. A current detected by a current transformer other than the current transformer is supplied, and the reactive power or the output of the power factor controller controls the automatic voltage regulator of the generator.

【0019】[0019]

【作用】主回路および発電機回路に流れる電流および変
圧器からの電圧を無効電力あるいは力率制御装置で制御
し、この制御出力を自動電圧調整装置に供給して負荷の
無効分又は力率を発電機で補償する。これによって受電
部の電流の大小、受電部の潮流の方向に関係なく、無効
分又は力率制御ができる。また、検出点は負荷電流であ
るから負荷が変わらない限り、大きな変化はなく受電点
のように極端に電流が小さくなることもないため、正確
な検出ができるようになる。さらに、潮流の方向が変わ
らないので、方向性のある制御装置が使用できる。この
他、自動無効電力調整装置の出力で力率改善用電力コン
デンサの投入数を制御する際、電力コンデンサ単成分以
上の無効電流で行うが。これを比較的小さめに設定する
と、発電機の運転力率が悪くなる前に電力コンデンサで
負荷力率そのものが改善される。
[Function] The current flowing in the main circuit and the generator circuit and the voltage from the transformer are controlled by the reactive power or the power factor control device, and this control output is supplied to the automatic voltage regulator to determine the reactive component or the power factor of the load. Compensate with the generator. Thereby, the reactive component or the power factor control can be performed regardless of the magnitude of the current of the power receiving unit and the direction of the power flow of the power receiving unit. Further, since the detection point is the load current, as long as the load does not change, there is no large change and the current does not become extremely small unlike the power receiving point, so that accurate detection can be performed. Further, since the direction of the tidal current does not change, a directional control device can be used. In addition to this, when controlling the number of power factor correction power capacitors to be supplied by the output of the automatic reactive power regulator, the reactive current is equal to or more than a single component of the power capacitor. If this is set to be relatively small, the load power factor itself is improved by the power capacitor before the operating power factor of the generator deteriorates.

【0020】[0020]

【実施例】以下この第1発明の実施例を図面に基づいて
説明するにあたり、図8と同一部分は同一符号を付して
述べる。図1において、受電回路と発電機回路は直接、
それぞれ主母線Bに接続される。CT11は受電回路を
流れる電流を検出する変流器、CT12は発電機回路を
流れる電流を検出する変流器で、両変流器CT11,C
T12の2次側はトータル変流器CT13の2つ巻線の
1次側の一端にそれぞれ接続される。トータル変流器C
T13の1次側の他端は力率制御装置APFRあるいは
無効電力制御装置AQRに接続される。トータル変流器
CT13の2次側は自動力率調整器55あるいは無効電
力継電器91Qに接続される。
BEST MODE FOR CARRYING OUT THE INVENTION In the following description of the first embodiment of the present invention with reference to the drawings, the same parts as those in FIG. In Fig. 1, the power receiving circuit and the generator circuit are directly
Each is connected to the main bus B. CT11 is a current transformer that detects the current flowing through the power receiving circuit, CT12 is a current transformer that detects the current flowing through the generator circuit, and both current transformers CT11, C
The secondary side of T12 is connected to the primary side ends of the two windings of the total current transformer CT13. Total current transformer C
The other end of the primary side of T13 is connected to the power factor control device APFR or the reactive power control device AQR. The secondary side of the total current transformer CT13 is connected to the automatic power factor adjuster 55 or the reactive power relay 91Q.

【0021】上記実施例のように構成すると、変流器C
T11とCT12の合成電流がトータル変流器CT13
の2次側に発生する。このとき、変流器CT11とCT
11の変流比が異なる場合、トータル変流器CT13の
巻数比を変えてCT13の2次側に正しくCT11とC
T12の合成電流が発生するようにする。これにより、
トータル変流器CT13の2次側には図8に示した変流
器CT3の2次側と同じ電流が流れるために、この電流
によって開閉装置SWを開閉して電力コンデンサCの投
入数を制御すれば図8の場合と同一の制御ができる。
The current transformer C is constructed as in the above embodiment.
The combined current of T11 and CT12 is the total current transformer CT13.
Occurs on the secondary side of. At this time, the current transformers CT11 and CT
If the current ratio of 11 is different, the turns ratio of the total current transformer CT13 is changed so that CT11 and C are correctly placed on the secondary side of CT13.
The combined current of T12 is generated. This allows
Since the same current as the secondary side of the current transformer CT3 shown in FIG. 8 flows through the secondary side of the total current transformer CT13, this current causes the switchgear SW to be opened and closed to control the number of power capacitors C to be turned on. If so, the same control as in the case of FIG. 8 can be performed.

【0022】なお、発電機AGによる受電点又は発電機
端子での力率または無効電力制御は変流器CT11とC
T12の検出電流によってAPFRまたはAQRにより
行う。また、前記受電回路の電流を検出する変流器と発
電機回路電流を検出する変流器の変流比が同一の場合に
各変流器の2次側を図6のように直接並列接続し、自動
力率調整器55あるいは無効電力継電器91Qに接続し
ても前記トータル変流器CT13の場合と同等の制御が
行えるものである。さらに、前記各変流器の変流比が異
なる場合には、図7に示すように、一方又は両方の変流
器の2次側に補助変流器CT14,CT15を設けて、
実質的に変流比を適合させるようにしても同等の制御が
得られる。
The power factor or reactive power control at the power receiving point or the generator terminal by the generator AG is performed by the current transformers CT11 and C.
It is performed by APFR or AQR according to the detection current of T12. Further, when the current transformer for detecting the current of the power receiving circuit and the current transformer for detecting the generator circuit current have the same current ratio, the secondary side of each current transformer is directly connected in parallel as shown in FIG. However, even if connected to the automatic power factor adjuster 55 or the reactive power relay 91Q, the same control as in the case of the total current transformer CT13 can be performed. Further, when the current transformers have different current ratios, auxiliary current transformers CT14 and CT15 are provided on the secondary side of one or both current transformers, as shown in FIG.
Equivalent control is obtained even if the current ratio is substantially adapted.

【0023】図2は第2発明の実施例を示す結線図で、
図9に示した変流器CT2に自動無効電力調整装置55
Gを設け、この55Gの出力をAQRあるいはAPFR
に入力するとともに、55Rの出力とオア回路ORを介
して電力コンデンサCの投入数を制御するようにしたも
のである。第2発明の実施例のように構成すると55G
でも電力コンデンサCを制御するので負荷側の要求する
無効電力によって発電機が低力率運転や制御不能になる
以前に発電機出力電流を検出することで55Gの指令に
より電力コンデンサCを制御することで無効電力を制御
することができる。55Gの設定は電力コンデンサ単機
分以上の無効電流が流出するとき電力コンデンサCを1
台分自動投入し、又は若干のヒステリシスを以て電力コ
ンデンサCの切り離しを行うが、発電機AGからの進み
電流の供給を避けるために、電力コンデンサCの切り離
し点も発電機AGからの供給電流が遅れの範囲で行うこ
とができる。なお、発電機AGの制御については、CT
3は検出用であり、CT2は制御用である。
FIG. 2 is a connection diagram showing an embodiment of the second invention.
In the current transformer CT2 shown in FIG.
G is provided and the output of this 55G is AQR or APFR.
In addition, the number of power capacitors C is controlled via the output of 55R and the OR circuit OR. 55G when constructed as in the embodiment of the second invention
However, since the power capacitor C is controlled, the power capacitor C is controlled by the command of 55G by detecting the generator output current before the power generator operates in a low power factor or cannot be controlled due to the reactive power required by the load side. The reactive power can be controlled with. The setting of 55G is to set the power capacitor C to 1 when the reactive current of more than one power capacitor unit flows out.
Although the power capacitor C is automatically turned on for the number of cars or with some hysteresis, the supply current from the generator AG is delayed at the disconnection point of the power capacitor C in order to avoid the supply of the advance current from the generator AG. Can be performed in the range of. Regarding the control of the generator AG, CT
3 is for detection, and CT2 is for control.

【0024】図3は第3発明の実施例を示す結線図で、
図2と同一部分は同一符号を付して述べる。図3におい
て、受電回路と発電機回路は直接それぞれ主母線Bに接
続される。CT1,CT2の2次側が55R、55Gに
それぞれ接続されるとともにトータル変流器CT13の
2つの巻線の1次側の一端のそれぞれに接続される。ト
ータル変流器CT13の2次側はAQRあるいはAPF
Rに接続され、このAQRあるいはAPFRの出力で、
AVRを介して発電機を制御する。このように構成する
ことで、第2発明の実施例と同様に制御できる。
FIG. 3 is a connection diagram showing an embodiment of the third invention.
The same parts as those in FIG. 2 are described with the same reference numerals. In FIG. 3, the power receiving circuit and the generator circuit are directly connected to the main bus B, respectively. The secondary sides of CT1 and CT2 are connected to 55R and 55G, respectively, and at the same time, they are connected to the primary side ends of the two windings of the total current transformer CT13. Secondary side of total current transformer CT13 is AQR or APF
It is connected to R and the output of this AQR or APFR
Control the generator via AVR. With this configuration, control can be performed in the same manner as in the second embodiment.

【0025】なお、図3の実施例において、変流器CT
1,CT2の変流比が異なるときにはトータル変流器C
T13の巻線比を変えて合成電流が発生するようにして
も良い。また、トータル変流器CT13の代わりに変流
器CT1とCT2の変流比が同一であれば図6のよう
に、これら変流器CT1,CT2の2次回路を直接並列
接続しても良く、また、変流比が異なるときには、その
片方又は両方に図7のように補助変流器CT14,CT
15を使用しても、この動作制御は同一にできるもので
ある。
In the embodiment of FIG. 3, the current transformer CT
When the current ratio of CT1 and CT2 are different, total current transformer C
The winding ratio of T13 may be changed to generate a synthetic current. If the current transformers CT1 and CT2 have the same current transformer ratio instead of the total current transformer CT13, secondary circuits of these current transformers CT1 and CT2 may be directly connected in parallel as shown in FIG. Further, when the current transformer ratio is different, one or both of the auxiliary current transformers CT14 and CT as shown in FIG.
Even if 15 is used, this operation control can be made the same.

【0026】図4は第4発明の実施例を示す結線図で、
図4において、受電回路と発電機回路は遮断器CB1,
CB2を介して直接それぞれ主母線Bに接続される。C
T1,CT2をいわゆるトータル変流器CT13の1次
側にそれぞれ接続し、CT13の2次側をAQRあるい
はAPFRに接続する。AQRあるいはAPFRには変
圧器PTの2次側及び発電機回路に設けた変流器CT5
の2次側も接続される。なお、AQRあるいはAPFR
の出力はAVRを介して発電機を制御する。また、主母
線Bには遮断器CB3,CB4を介して負荷L1,L2
が接続される。
FIG. 4 is a connection diagram showing an embodiment of the fourth invention.
In FIG. 4, the power receiving circuit and the generator circuit are circuit breakers CB1,
Each is directly connected to the main bus B via CB2. C
T1 and CT2 are respectively connected to the primary side of a so-called total current transformer CT13, and the secondary side of CT13 is connected to AQR or APFR. AQR or APFR has a current transformer CT5 provided in the secondary side of the transformer PT and the generator circuit.
The secondary side of is also connected. AQR or APFR
Output controls the generator via AVR. In addition, loads L1 and L2 are applied to the main bus B through circuit breakers CB3 and CB4.
Are connected.

【0027】第4発明の実施例のように構成すると、C
T1,CT2の合成電流がトータル変流器CT13の2
次回路に発生する。2次回路に得られた合成電流はAQ
RあるいはAPFRに入力されるので、負荷と発電量の
大小関係が変化しても、検出量は受電電力と発電電力の
合成電力のため、変化は連続的であり、電流の大きさは
変化しなく、負荷側のみの一方向であり、一つの制御装
置(AQRまたはAPFR)で制御できる。
When constructed as in the fourth embodiment of the invention, C
The combined current of T1 and CT2 is 2 of the total current transformer CT13.
It occurs in the next circuit. The combined current obtained in the secondary circuit is AQ
Since it is input to R or APFR, even if the magnitude relationship between the load and the generated power changes, the detected amount is a combined power of the received power and the generated power, so the change is continuous and the magnitude of the current changes. However, it is unidirectional only on the load side, and can be controlled by one controller (AQR or APFR).

【0028】図5は第4発明の他の実施例を示す結線図
で、図4において、受電回路はCB1を介して主母線B
に接続され、発電機回路はCB2を介して受電回路の途
中に接続され、受電回路と発電機回路は並列接続して主
回路形成されている。主回路には変流器CT3を設け、
CT3はAQRあるいはAPFRに接続される。発電機
回路にはCT4を設け、このCT4の出力はAQRある
いはAPFRに供給される。図5のように構成すると、
負荷L1,L2の無効分又は負荷の力率をCT3で検出
してAQRあるいはAPFRに供給するので第4発明の
実施例と同様な制御ができる。
FIG. 5 is a wiring diagram showing another embodiment of the fourth aspect of the invention. In FIG. 4, the power receiving circuit has a main bus B through CB1.
The generator circuit is connected to the middle of the power receiving circuit via CB2, and the power receiving circuit and the generator circuit are connected in parallel to form a main circuit. The current transformer CT3 is installed in the main circuit,
CT3 is connected to AQR or APFR. The generator circuit is provided with CT4, and the output of this CT4 is supplied to AQR or APFR. When configured as shown in FIG.
Since the reactive component of the loads L1 and L2 or the power factor of the load is detected by CT3 and supplied to AQR or APFR, the same control as that of the fourth embodiment can be performed.

【0029】[0029]

【発明の効果】以上述べたように、この発明によれば、
受電回路、発電機回路に変流器を設けて、負荷の力率ま
たは無効分を検出して補償するようにしたので、以下の
効果が得られる。
As described above, according to the present invention,
Since the current transformer is provided in the power receiving circuit and the generator circuit to detect and compensate the power factor or reactive component of the load, the following effects can be obtained.

【0030】(1)受電回路と発電機回路に変流器で検
出した電流を合成電流として負荷の力率、むこうでんり
ょくを調整することと、回路の簡素化および配電盤の構
成を単純化することができる。
(1) Adjusting the power factor of the load and the overcurrent by using the current detected by the current transformer in the power receiving circuit and the generator circuit as a combined current, simplifying the circuit, and configuring the switchboard. Can be simplified.

【0031】(2)電力コンデンサの自動制御を発電機
回路に追加したので、発電機の運転効率が改善できる。
このことはコンデンサ投入を電力コンデンサ単機分以上
の無効電流で行うが、これを比較的小さめに設定すると
発電機のの運転力率が悪くなる前に電力コンデンサで負
荷力率そのものが改善できる。
(2) Since the automatic control of the power capacitor is added to the generator circuit, the operating efficiency of the generator can be improved.
This is done by using a reactive current equal to or more than that of a single power capacitor, but if this is set relatively small, the load power factor itself can be improved by the power capacitor before the operating power factor of the generator deteriorates.

【0032】(3)発電機の運転を発電機の可能曲線内
に止めることができる。これはコンデンサ投入、切り離
しの容量を可能曲線内で行うように設定できる。
(3) The operation of the generator can be stopped within the possible curve of the generator. It can be set so that the capacity of making and disconnecting the capacitor is performed within the possible curve.

【0033】(4)上述した調整が自動無効電力調整装
置55Gを用いることにより全て自動的に行われる。
(4) All the above adjustments are automatically performed by using the automatic reactive power adjusting device 55G.

【0034】(5)検出点は負荷電流であるから負荷が
かからない限り、大きな変化はなく受電点のように極端
に電流が小さくなることもないため、正確な検出ができ
る。
(5) Since the detection point is a load current, unless the load is applied, there is no great change and the current does not become extremely small unlike the power receiving point, so that accurate detection can be performed.

【0035】(6)受電部の電流の大小、受電部の潮流
の方向に関係なく、連続的に一つの制御装置を使用して
無効分または力率制御ができる。
(6) Regardless of the magnitude of the current in the power receiving unit and the direction of the power flow in the power receiving unit, the reactive component or power factor control can be continuously performed by using one controller.

【0036】(7)潮流の方向が変わらないので、一方
向性の制御装置が使用できる。
(7) Since the direction of the tidal current does not change, a unidirectional control device can be used.

【0037】(8)システム全体の無効電力調整能力が
向上する。
(8) The reactive power adjustment capability of the entire system is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1発明の実施例を示す単線結線図である。FIG. 1 is a single wire connection diagram showing an embodiment of the first invention.

【図2】第2発明の実施例を示す単線結線図である。FIG. 2 is a single wire connection diagram showing an embodiment of the second invention.

【図3】第3発明の実施例を示す単線結線図である。FIG. 3 is a single wire connection diagram showing an embodiment of the third invention.

【図4】第4発明の実施例を示す単線結線図である。FIG. 4 is a single wire connection diagram showing an embodiment of the fourth invention.

【図5】第4発明の他の実施例を示す単線結線図であ
る。
FIG. 5 is a single wire connection diagram showing another embodiment of the fourth invention.

【図6】変流器を直接並列接続した結線図である。FIG. 6 is a connection diagram in which current transformers are directly connected in parallel.

【図7】補助変流器を使用したときの結線図である。FIG. 7 is a connection diagram when an auxiliary current transformer is used.

【図8】従来例を示す単線結線図である。FIG. 8 is a single-line connection diagram showing a conventional example.

【図9】従来例を示す単線結線図である。FIG. 9 is a single line connection diagram showing a conventional example.

【図10】従来例を示す単線結線図である。FIG. 10 is a single line connection diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

CT1〜CT5,CT11,CT12…変流器 CT13…トータル変流器 CT14,CT15…補助変流器 B…主母線 SW…開閉装置 C…電力コンデンサ 55…自動力率調整器 91Q…無効電力継電器 APFR…力率制御装置 AQR…無効電力制御装置 CT1-CT5, CT11, CT12 ... Current transformer CT13 ... Total current transformer CT14, CT15 ... Auxiliary current transformer B ... Main bus SW ... Switchgear C ... Power capacitor 55 ... Automatic power factor regulator 91Q ... Reactive power relay APFR … Power factor control device AQR… Reactive power control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 受電回路と発電機回路を並列運転して無
効電力を調整する装置において、 受電回路の変流器2次側と発電機回路の変流器2次側を
並列接続して、両変流器から合成電流を発生させ、この
電流によって負荷の力率、無効電力を調整するようにし
たことを特徴とする無効電力調整装置。
1. A device for adjusting reactive power by operating a power receiving circuit and a generator circuit in parallel, wherein a current transformer secondary side of the power receiving circuit and a current transformer secondary side of the generator circuit are connected in parallel, A reactive power adjusting device characterized in that a combined current is generated from both current transformers, and the power factor and reactive power of a load are adjusted by this current.
【請求項2】 受電回路と発電機回路を並列接続してか
ら主回路に接続し、受電回路と発電機回路に第1および
第2の変流器を設けるとともに主回路に第3の変流器を
設け、第1および第2の変流器の2次側に自動無効電力
調整装置を設けてその出力および第3の変流器の出力を
無効電力あるいは力率制御装置に供給すると共に、この
無効電力あるいは力率制御装置に主回路に接続された変
圧器の2次出力電圧を与え、前記無効電力あるいは力率
制御装置の出力で発電機の自動電圧調整装置を制御する
とともに前記自動無効電力調整装置の出力で力率改善用
電力コンデンサの投入数を制御するようにしたことを特
徴とする無効電力調整装置。
2. A power receiving circuit and a generator circuit are connected in parallel and then connected to a main circuit, first and second current transformers are provided in the power receiving circuit and the generator circuit, and a third current transformer is provided in the main circuit. And an automatic reactive power adjusting device is provided on the secondary side of the first and second current transformers to supply its output and the output of the third current transformer to the reactive power or the power factor control device, The secondary output voltage of the transformer connected to the main circuit is given to the reactive power or the power factor control device, and the automatic power regulator of the generator is controlled by the reactive power or the output of the power factor control device and the automatic reactive power is controlled. A reactive power adjusting device characterized in that the number of thrown power factor improving power capacitors is controlled by the output of the power adjusting device.
【請求項3】 受電回路と発電機回路を主回路に接続し
て並列運転させるとともに受電回路と発電機回路にそれ
ぞれ変流器を設け、その変流器の2次側には自動無効電
力調整装置を設けてその調整装置の出力をトータル変流
器に供給して合成電流を発生させ、その合成電流を無効
電力あるいは力率制御装置に供給するとともにその制御
装置に主回路に接続された変圧器の2次出力電圧および
発電機回路に設けた前記変流器とは別の変流器で検出し
た電流を供給し、前記無効電力あるいは力率制御装置の
出力で発電機の自動電圧調整装置を制御するとともに前
記自動無効電力調整装置の出力で力率改善用電力コンデ
ンサの投入数を制御するようにしたことを特徴とする無
効電力調整装置。
3. A power receiving circuit and a generator circuit are connected to a main circuit for parallel operation, and a current transformer is provided in each of the power receiving circuit and the generator circuit, and automatic reactive power adjustment is provided on the secondary side of the current transformer. A device is provided and the output of the adjusting device is supplied to the total current transformer to generate a combined current, and the combined current is supplied to the reactive power or the power factor control device and the transformer connected to the main circuit to the control device. A secondary output voltage of the generator and a current detected by a current transformer different from the current transformer provided in the generator circuit are supplied, and an automatic voltage regulator for the generator is generated by the reactive power or the output of the power factor controller. And controlling the number of power factor correction power capacitors to be turned on by the output of the automatic reactive power adjustment device.
【請求項4】 受電回路と発電機回路を主回路に接続し
て並列運転させるとともに受電回路と発電機回路にそれ
ぞれ変流器を設けてその変流器の出力をトータル変流器
に供給して合成電流を発生させ、その合成電流を無効電
力あるいは力率制御装置に供給するとともにその制御装
置に主回路に接続された変圧器の2次出力電圧および発
電機回路に設けた前記変流器とは別の変流器で検出した
電流を供給し、前記無効電力あるいは力率制御装置の出
力で発電機の自動電圧調整装置を制御するようにしたこ
とを特徴とする無効電力調整装置。
4. A power receiving circuit and a generator circuit are connected to a main circuit for parallel operation, and a current transformer is provided in each of the power receiving circuit and the generator circuit to supply the output of the current transformer to the total current transformer. Generating a combined current, supplying the combined current to the reactive power or the power factor control device, and the secondary output voltage of the transformer connected to the main circuit to the control device and the current transformer provided in the generator circuit. A reactive power adjusting device characterized in that a current detected by a current transformer different from the above is supplied to control the automatic voltage adjusting device of the generator by the reactive power or the output of the power factor control device.
JP5181784A 1993-05-26 1993-07-23 Reactive power regulator Pending JPH0746763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5181784A JPH0746763A (en) 1993-05-26 1993-07-23 Reactive power regulator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12301193 1993-05-26
JP5-123011 1993-05-26
JP5181784A JPH0746763A (en) 1993-05-26 1993-07-23 Reactive power regulator

Publications (1)

Publication Number Publication Date
JPH0746763A true JPH0746763A (en) 1995-02-14

Family

ID=26460031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5181784A Pending JPH0746763A (en) 1993-05-26 1993-07-23 Reactive power regulator

Country Status (1)

Country Link
JP (1) JPH0746763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440680C (en) * 2006-02-17 2008-12-03 江苏现代电力电容器有限公司 Switching low-voltage comprehensive switch of electric power capacitor
JP2015008610A (en) * 2013-06-26 2015-01-15 株式会社日立製作所 Voltage regulating device
JP2015177734A (en) * 2014-03-17 2015-10-05 株式会社トーエネック Automatic power factor control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100440680C (en) * 2006-02-17 2008-12-03 江苏现代电力电容器有限公司 Switching low-voltage comprehensive switch of electric power capacitor
JP2015008610A (en) * 2013-06-26 2015-01-15 株式会社日立製作所 Voltage regulating device
JP2015177734A (en) * 2014-03-17 2015-10-05 株式会社トーエネック Automatic power factor control apparatus

Similar Documents

Publication Publication Date Title
US7239045B2 (en) Power distribution system and control system for same
JP4125601B2 (en) A system that supplies reliable power to important loads
US20060028069A1 (en) Retrofit kit for converting a transfer switch to a switch for soft-load transfer, and soft-load power distribution system and method
JP2000060142A (en) Method and apparatus for drive with high output in breakdown mode
US6239511B1 (en) Power station having a generator which is driven by a turbine, as well as a method for operating such a power station
US7019989B2 (en) Uninterruptible power supply system
JP4476980B2 (en) Non-instantaneous switching device
RU2656372C1 (en) Dynamic voltage compensator
US7786717B2 (en) Transforming apparatus for automatically adjusting three-phase power supply voltage
JP2001047894A (en) Alternate current feeding device and control method for the same
JPH0746763A (en) Reactive power regulator
WO1997002518A1 (en) Voltage regulator
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
KR102105812B1 (en) Apparatus for replacing transformer with uninterruptiable power supply and method
JP2001275255A (en) Voltage compensating device
RU182064U1 (en) A device for balancing voltage in a three-wire high-voltage network
JP2001005541A (en) Automatic voltage adjusting device
JP2001258179A (en) Power supply switch
JP2001045663A (en) Series compensating device
JP4127543B2 (en) Voltage fluctuation compensation device
SU744840A1 (en) Device for automatic regulation of voltage in networks with double-side power supply
JPH08314557A (en) Controller for reactive power compensator
KR20230128789A (en) Grid uninterruptible power supply apparatus and method when replacing transforemer
JP2024031469A (en) Power system and power system control method
JP2000148267A (en) Alternating-current power unit