JP2004208345A - Three-phase unbalanced voltage restraining apparatus - Google Patents

Three-phase unbalanced voltage restraining apparatus Download PDF

Info

Publication number
JP2004208345A
JP2004208345A JP2002371279A JP2002371279A JP2004208345A JP 2004208345 A JP2004208345 A JP 2004208345A JP 2002371279 A JP2002371279 A JP 2002371279A JP 2002371279 A JP2002371279 A JP 2002371279A JP 2004208345 A JP2004208345 A JP 2004208345A
Authority
JP
Japan
Prior art keywords
phase
voltage
signal
circuit
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002371279A
Other languages
Japanese (ja)
Inventor
Satoshi Yamamoto
聡 山本
Ichiro Urano
一郎 浦野
Kazuo Suekane
和男 末包
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2002371279A priority Critical patent/JP2004208345A/en
Publication of JP2004208345A publication Critical patent/JP2004208345A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus which restrains three-phase voltage unbalanced state caused by heavy load of single phase in a three-phase distribution system. <P>SOLUTION: This three-phase unbalanced voltage restraining apparatus supplies a current to compensate each phase from the output of an inverter connected to a distribution line. The apparatus has a PWM signal generating means which is composed of a reverse phase current command signal generating unit possessing a three-phase two-phase converting circuit, a rotational coordinate reverse phase converting circuit, a reverse phase voltage zero control circuit, and a two-phase three-phase converting circuit; and a PWM drive pulse generating unit for controlling the output waveform of an inverter, as an inverter control signal generating means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,三相配電系統において単相重負荷の接続の為に生じる配電線路の電圧変動,三相電圧のバランスが崩れるのを抑制する装置に関する。
【0002】
【従来の技術】
例えば数100kW規模の三相受電設備と負荷を有する工場の構内では,受電端から負荷端への配電線路が長く,線路のインピーダンスと負荷電流変動により負荷端における電圧変動が大きい。とくに重い単相負荷が接続されると三相電圧のバランスが崩れ三相不平衡電圧が配電線路に現れることになる。これに対処して,図5に示すような従来の装置があったが,単相負荷側の電圧調整することは出来たが受電端には不平衡電流の影響を及ぼすものであった。
【0003】
図5に示した従来の装置は,配電線路インピーダンス2と負荷電流とによって生じた電圧降下分を補うように負荷端3の電圧を上昇させるように構成された自動昇圧器である。自動昇圧器は昇圧タップを一次巻線61に設けた変圧器の二次巻線62が配電線路に直列に接続され,この接続点の電圧を検出する電圧検出駆動手段20,21,22が内蔵されていて,所定電圧以下になったとき変圧器の一次巻線61のタップを自動的に切換えて二次側に電圧を加えるように構成されている。負荷に近い位置に自動昇圧器が接続され検出電圧が所定電圧以下になったとき該昇圧器の一次巻線61のタップを自動的に切換えて昇圧し,検出電圧が所定電圧を超えたとき該昇圧器の一次巻線61のタップを自動的に元の位置に戻して電圧を下げるように作用する。
【0004】
上記タップの切替えを無接点スイッチで行う方式のものや,昇圧タップに通電する電流と降圧タップに通電する電流の比率を無接点スイッチの導通位相を変化させる事によって調整する方式の装置も試みられた。これらは何れも三相不平衡電圧の原因となっている逆相電流を是正する効能が無いので配電系統の変電所における変圧器利用率が低下する欠点があった。
【0005】
【発明が解決しようとする課題】
前記の欠点を改良した,三相不平衡電圧の発生原因そのものに着眼して対応する作用を発揮させて,電圧の変動とともに三相不平衡を抑制する装置を提供しようとすることが本発明の目的である。
【0006】
【課題を解決するための手段】
三相不平衡電圧をその発生原因となっている逆相電流を検出し,この逆相電流成分に相当するものを各相に対して,インバータで直流を電源として位相及び電圧値を生成して,負荷に対し直列接続された変圧器の二次巻線に注入し補償しようとするのが解決の道筋である。三相不平衡の信号を直流成分に変換し基準ゼロ(三相平衡の状態)と比較して逆相電圧を取り出し処理する第1段階,この第1段階の為に用いられる三相二相変換回路,及び回転座標逆相変換回路は公知の手段である。上記直流成分の該逆相電圧信号を交流に変換する第2段階,この第2段階の為に用いられる逆相電圧ゼロ制御回路,二相三相変換回路は公知の手段である。これら公知の手段を用いて,時々刻々変化する逆相電流値から生成される指令信号値を抽出しつつ,自動制御の基準信号値に置き換えて該指令信号値を用い,前記インバータをフィードバック制御させるようにした着想が,この発明による実施形態を実現させ,PWM駆動パルス生成ユニットと,逆相電流指令信号値生成ユニットとを組み合わせて新しい機能を生み出した。
【0007】
請求項1に関しては,三相受電系統の受電端と負荷端との間に直列に二次巻線が接続された直列変圧器の一次巻線にPWMインバータによって負荷不平衡の原因となっている電流を給電する考え方に着眼して構成した。該インバータの入力側に接続された整流回路,該整流回路の入力側に二次巻線,上記受電端に一次巻線が接続された分路変圧器とによって主回路が形成された三相不平衡電圧抑制装置とした。前記PWMインバータを駆動させるために,不平衡状態の三相電圧を検出し,三相電圧を二相に変換する三相二相変換回路,二相交流信号を直流信号に変換する回転座標逆相変換回路,三相が平衡していることを示している逆相電圧ゼロと前記受電系統電圧の検出逆相電圧との誤差信号を取り出す逆相電圧ゼロ制御回路,直流信号を交流信号に変換する二相三相変換回路とを具備し生成される逆相電流指令信号値を基準信号値としたPWM信号生成手段を有することを特徴とする三相不平衡電圧抑制装置とした。
【0008】
請求項2に関しては,前記直列変圧器が一次巻線に並列接続される短絡手段を具備する直列変圧器とし,該短絡手段が,インバータ出力回路遮断手段と連動して作動する短絡手段であって,インバータ出力回路の閉路状態と短絡手段の閉路状態が同時に起こることを防止し,作動する短絡手段である三相不平衡電圧抑制装置とした。
【0009】
請求項3に関しては,三相受電系統の受電端と負荷端との間に負荷に並列に出力側が接続されるPWMインバータによって主回路が形成された三相不平衡電圧抑制装置とした。前記PWMインバータを駆動させるために,不平衡状態の三相電圧を検出し,三相電圧を二相に変換する三相二相変換回路,二相交流信号を直流信号に変換する回転座標逆相変換回路,三相が平衡していることを示している逆相電圧ゼロと前記受電系統電圧の検出逆相電圧との誤差信号を取り出す逆相電圧ゼロ制御回路,直流信号を交流信号に変換する二相三相変換回路とを具備し生成される逆相電流指令信号値を基準信号値としたPWM信号生成手段を有することを特徴とする三相不平衡電圧抑制装置とした。
【0010】
【発明の実施の形態】
以下に,本発明による実施の形態を説明する。図1の本発明による実施形態における全体構成を示す回路図において,1の受電端で三相電力を受けて,2の線路インピーダンスを通電した電力が3の負荷端の供給される配電系統において,例えば単相の大電流負荷など種々の負荷が接続される。4の直列変圧器は,その一次巻線41と二次巻線42および短絡手段43から構成される。
【0011】
5は分路変圧器であり該分路変圧器の一次巻線51及び分路変圧器の二次巻線52で構成される。該二次巻線に整流回路6が接続され三相交流が直流電力に変換される。該直流電力は,PWMインバータ7の入力側に接続されて三相交流電力に変換されて直列変圧器4の一次巻線41に接続される。PWMインバータ7を形成しているスイッチング素子の制御極にはPWM信号発生手段8からPWM駆動パルスが供給されて配電系統に対し補償するよう各相毎に調整された電力がPWMインバータ7から直列変圧器4の一次巻線41に供給され三相平衡電圧を抑制する。
【0012】
PWM信号発生手段8はPWM駆動パルス生成ユニット9と逆相電流基準信号値生成ユニット10とで構成される。電流検出器11が配電系統の負荷電流を検出し,PWM信号発生手段8にフィードバックされて三相不平衡の原因である不平衡電流がゼロに近づく方向に,PWMインバータ7が出力するように制御される。
【0013】
PWM駆動パルス生成ユニット9は,電流波形制御回路91とPWM制御回路92とで形成される。該PWM駆動パルス生成ユニット9は,基準電圧信号が所定の基準値であるならば公知の考え方そのものであるが,この基準電圧信号に置き替わって,配電系統の時々刻々変化する逆相電流値から生成される指令信号値が逆相電流指令信号値生成ユニット10から供給されるようにした着想が,この発明による実施形態を実現させた。PWM駆動パルス生成ユニット9に対して,逆相電流指令信号値生成ユニット10を組み合わせて新しい機能を生み出した。
【0014】
逆相電流指令信号値生成ユニット10は,受電端から負荷に至る間の線路インピ−ダンスと負荷電流で生じた時々刻々の三相不平衡電圧を下記の変換処理で直流信号を得て,三相平衡状態であることを意味する直流ゼロと比較した後,下記の変換処理で交流信号を得て,別に検出した逆相電流値と比較しインバータで作り出す補償電流値を指令する指令信号値を作るように動作する。詳細は以下に述べる。
【0015】
三相検出電圧が公知の三相二相変換回路101で二相交流に変換された出力信号は,公知の回転座標逆相変換回路102で変換されて,この変換出力である直流信号として抽出される。
【0016】
抽出された該直流信号は直流ゼロ電圧(三相が平衡した状態)と比較され逆相電圧ゼロ制御回路103の出力として三相不平衡分を補償するための補償電流信号が直流信号で得られる。
【0017】
該直流出力信号を公知の二相三相変換回路104で変換して得られる交流信号を電流指令信号値として取り出す。該電流指令信号値と,PWMインバータ7の出力電流の電流検出器11が得た逆相電流値とを比較して,この出力信号を前記PWM駆動パルス生成ユニット9へ供給する。
【0018】
PWM駆動パルス生成ユニット9は,従来から一般的に用いられた公知のインバータ波形制御で出力電力を調整する電流波形制御回路91とPWM制御信号回路92とから形成されているが,相違点は,例えば図6に示した公知の定電圧制御(説明は後述する)などの基準となる基準電圧信号VSに対して,変動している検出電圧VDとの誤差信号をゼロにするフィードバック制御でPWMインバータ出力を定電圧制御していたが,この基準電圧信号VSを用いないで本発明の着眼点は刻々と変動する三相不平衡の原因をなす逆相電圧値から,生成される電流指令信号値を用いる点である。該電流指令信号値とPWMインバ−タ出力電流から検出した逆相電流値との誤差をゼロに近づけるようにフィードバック制御することが新規なポイントである。
【0019】
図6の従来例は定電圧制御PWMインバータにより定電圧の電源を得る装置を構成する回路図である。図6では,受電端1に接続された変圧器Tの二次側に整流器6を接続し交流電力を直流に変換する,この直流を定電圧制御しながら交流に変換するのがPWMインバータ7であり,そのスイッチング素子の制御極に供給されるPWM駆動パルスが電流波形制御回路91とPWM制御回路92とによって生成される。定電圧基準電圧信号VSに対して,変動している検出電圧VDとの誤差信号をゼロにするフィードバック制御でPWMインバータ出力を定電圧制御していた。
【0020】
図1に示した直列変圧器の一次巻線41に並列接続される短絡手段作動の時系列について図1と図2を用いて説明する。インバータ出力回路遮断手段44の開閉スイッチR2がPWMインバータ7と直列変圧器4との間に挿入されていて前記短絡手段43の開閉スイッチR1が閉路するT2の時点はその直前T1の時点から開閉スイッチR2は開いていることが条件1である。次に,開閉スイッチR1が開いたT3時点の直後T4時点に開閉スイッチR2を閉路する,即ち,開閉スイッチR1とR2が同時に閉路であることは禁止,これが条件2である。以上の条件で高速に開閉することが益々要求されてきた為,図1に示したスイッチは動作の理解を容易にする為に可動接点で示したが,無接点スイッチング素子で構成される。
【0021】
実用の装置における一例を示すと,図1の直列変圧器4は系統電圧6600Vに於いて使用する場合,一次巻線41に対して略500Vのとき,二次巻線42に略600Vに巻線比が設定されていて負荷端で検出電圧が6000Vで三相が平衡している条件のとき,インバータ出力が500Vに調節され二次電圧600Vが直列に印加されて配電線路電圧6600Vに出力調整される。インバータ出力に異常が生じても配電線路には停電という最悪の事態を避ける為に,前記短絡手段43の開閉スイッチR1が閉路して二次巻線42の短絡と等価回路となるので,配電線路には電圧6000Vが給電される。
【0022】
図3に示した本発明の第2の実施例について説明すると,1の受電端で三相電力を受けて,2の線路インピーダンスを通電した電力が3の負荷端に供給される配電系統において,単相の重い負荷が接続されたとき三相不平衡電圧を生じるので不平衡電流分を補償する電流をインバータから配電線路に加えるとき,請求項1に述べた直列変圧器の二次巻線を接続する部分を削除して,負荷に並列にインバータの出力側を接続点Pで直接接続することによって目的が達成された。
【0023】
図4に本発明による第3の実施例に於いて,三相インバータの出力を配電線路に接続する部分を詳細に示した。三相電力の受電端1から線路インピーダンス2を有する負荷端3で単相重負荷による三相不平衡が生じた電圧を電圧検出器VKによって検出し,既に説明した逆相電流指令信号値生成ユニット10で電流指令値を抽出し,該電流指令値とPWMインバータの出力電流検出器11の逆相電流値とを比較して,この信号を前記PWM駆動パルス生成ユニット9へ供給し,図1における場合と同様に制御回路が作用し補償電流分をインバータ出力端UVWから電線路との接続点Pを通じて電線路に戻すようにし不平衡を抑制する。この場合にはインバータ7の直流電源としては配電線路との接続点Pから取込んだ交流がダイオードD1〜D6によって整流されコンデンサCの端子間電圧として貯えられる直流電力を用いる。コンデンサCとリアクトルLによって平滑された直流をコンデンサCに貯えている,図4の実施例では,分路変圧器と直列変圧器を省いて省資源型の経済的な装置として提供できる。
【0024】
このようにして図3,図4に示した実施例では,変圧器の設置空間を節約できるばかりでなく,インバータを構成する半導体スイッチング素子技術の進歩が,配電線路に電気絶縁を介せず直接接続を可能にしたので,変圧器の部材と製作の工数が削除出来た。
【発明の効果】
本発明によれば従来に於けるトランスタップ切替え式の場合のようなステップ電圧が発生することに起因する瞬時電圧変動が生じない。不平衡電圧抑制の機能を有するので,三相配電系統に重い単相負荷が接続されたとき,変電所側の機器の利用率を低下させないようにして電圧の大きい変動を与えない装置が提供できるので工業的価値が大きい。さらに直列変圧器の削除を可能とした実施例では,より安価に本装置を提供できる経済効果も大きくした。
【図面の簡単な説明】
【図1】本発明による実施形態における全体構成を示す回路図。
【図2】本発明による実施形態における短絡手段作動の時系列図。
【図3】本発明による第2の実施形態における全体構成を示す回路図。
【図4】本発明による第3の実施形態における要部を示す回路図。
【図5】従来の装置回路図。
【図6】従来の定電圧制御PWMインバータの構成回路図。
【符号の説明】
1 受電端
2 線路インピーダンス
3 負荷端
30 出力端
31,32,33 負荷
4 直列変圧器
41 直列変圧器の一次巻線
42 直列変圧器の二次巻線
43 短絡手段
44 インバータ出力回路遮断手段
5 分路変圧器
51 分路変圧器の一次巻線
52 分路変圧器の二次巻線
6 整流回路
7 PWMインバータ
8 PWM信号生成手段
9 PWM駆動パルス生成ユニット
10 逆相電流指令信号値生成ユニット
11 電流検出器
91 電流波形制御回路
92 PWM制御回路
101 三相二相変換回路
102 回転座標逆相変換回路
103 逆相電圧ゼロ制御回路
104 二相三相変換回路
C コンデンサ
D ダイオード
L リアクトル
Q1〜Q6 半導体スイッチング素子
P インバータ出力と電線路との接続点
R1,R2 開閉スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for suppressing a voltage fluctuation of a distribution line and a three-phase voltage from being unbalanced due to connection of a single-phase heavy load in a three-phase distribution system.
[0002]
[Prior art]
For example, in a factory premises having a three-phase power receiving facility and a load of several hundred kW, the distribution line from the power receiving end to the load end is long, and the voltage fluctuation at the load end is large due to the line impedance and the load current fluctuation. When a heavy single-phase load is connected, the three-phase voltage balance is lost and a three-phase unbalanced voltage appears on the distribution line. To cope with this, there was a conventional device as shown in FIG. 5, but the voltage could be adjusted on the single-phase load side, but the unbalanced current had an effect on the receiving end.
[0003]
The conventional device shown in FIG. 5 is an automatic booster configured to increase the voltage at the load terminal 3 so as to compensate for the voltage drop caused by the distribution line impedance 2 and the load current. The automatic booster has a secondary winding 62 of a transformer in which a boost tap is provided on a primary winding 61, is connected in series to a distribution line, and includes voltage detection driving means 20, 21, 22 for detecting a voltage at this connection point. When the voltage falls below a predetermined voltage, the tap of the primary winding 61 of the transformer is automatically switched to apply a voltage to the secondary side. An automatic booster is connected to a position close to the load, and when the detected voltage falls below a predetermined voltage, the tap of the primary winding 61 of the booster is automatically switched to boost the voltage. When the detected voltage exceeds the predetermined voltage, the booster is boosted. The tap of the primary winding 61 of the booster is automatically returned to the original position, thereby acting to lower the voltage.
[0004]
Devices that switch the above taps using a non-contact switch and devices that control the ratio of the current flowing through the boosting tap to the current flowing through the buck tap by changing the conduction phase of the non-contact switch have also been attempted. Was. None of these has the effect of correcting the negative-sequence current that causes the three-phase unbalanced voltage, and thus has the disadvantage that the transformer utilization at the substation in the distribution system is reduced.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to improve the above disadvantages and to provide a device which suppresses the three-phase imbalance as the voltage fluctuates by exerting a corresponding action by focusing on the cause of the three-phase imbalance voltage itself. Is the purpose.
[0006]
[Means for Solving the Problems]
The three-phase unbalanced voltage is detected by detecting the negative-sequence current which is the cause of the generation, and the one corresponding to this negative-sequence current component is generated for each phase by using an inverter as a DC power source to generate the phase and voltage values The solution is to inject into the secondary winding of the transformer connected in series to the load and try to compensate. The first stage in which a three-phase unbalanced signal is converted into a DC component, compared with a reference zero (three-phase balanced state), and a reverse phase voltage is extracted and processed. Three-phase two-phase conversion used for the first stage The circuit and the rotation coordinate reverse phase conversion circuit are known means. A second stage for converting the negative-phase voltage signal of the DC component into an alternating current, a negative-phase voltage zero control circuit and a two-phase to three-phase conversion circuit used for the second stage are known means. Using these known means, while extracting the command signal value generated from the negative-phase current value that changes every moment, the inverter is feedback-controlled by using the command signal value instead of the reference signal value for automatic control. Such an idea realizes the embodiment according to the present invention, and creates a new function by combining the PWM drive pulse generation unit and the negative-phase current command signal value generation unit.
[0007]
According to claim 1, a PWM inverter causes load imbalance in a primary winding of a series transformer in which a secondary winding is connected in series between a power receiving end and a load end of a three-phase power receiving system. The configuration is based on the concept of supplying current. A rectifier circuit connected to the input side of the inverter, a secondary winding on the input side of the rectifier circuit, and a shunt transformer with a primary winding connected to the power receiving end form a three-phase transformer. An equilibrium voltage suppressor was used. In order to drive the PWM inverter, a three-phase to two-phase conversion circuit for detecting an unbalanced three-phase voltage and converting the three-phase voltage to two phases, and a rotating coordinate reverse phase for converting a two-phase AC signal to a DC signal. A conversion circuit, a negative-phase voltage zero control circuit for extracting an error signal between the negative-phase voltage zero indicating that the three phases are balanced and the detected negative-phase voltage of the power receiving system voltage, and converting a DC signal into an AC signal A three-phase unbalanced voltage suppression device characterized by having a PWM signal generating means including a two-phase to three-phase conversion circuit and using the generated negative-phase current command signal value as a reference signal value.
[0008]
According to claim 2, the series transformer is a series transformer including short-circuit means connected in parallel to a primary winding, and the short-circuit means is operated in conjunction with inverter output circuit cut-off means. The three-phase unbalanced voltage suppression device is a short-circuiting means that prevents the closed state of the inverter output circuit and the short-circuiting means from occurring at the same time.
[0009]
A third aspect of the present invention is a three-phase unbalanced voltage suppression device in which a main circuit is formed by a PWM inverter whose output side is connected in parallel with a load between a power receiving end and a load end of a three-phase power receiving system. In order to drive the PWM inverter, a three-phase to two-phase conversion circuit for detecting an unbalanced three-phase voltage and converting the three-phase voltage to two phases, and a rotating coordinate reverse phase for converting a two-phase AC signal to a DC signal. A conversion circuit, a negative-phase voltage zero control circuit for extracting an error signal between the negative-phase voltage zero indicating that the three phases are balanced and the detected negative-phase voltage of the power receiving system voltage, and converting a DC signal into an AC signal A three-phase unbalanced voltage suppression device characterized by having a PWM signal generating means including a two-phase to three-phase conversion circuit and using the generated negative-phase current command signal value as a reference signal value.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment according to the present invention will be described below. FIG. 1 is a circuit diagram showing the overall configuration of the embodiment according to the present invention. In a distribution system in which three-phase power is received at a receiving end of 1 and power supplied to a line impedance of 2 is supplied to a load end of 3, For example, various loads such as a single-phase large current load are connected. The series transformer 4 includes a primary winding 41, a secondary winding 42, and short-circuit means 43.
[0011]
Reference numeral 5 denotes a shunt transformer, which includes a primary winding 51 of the shunt transformer and a secondary winding 52 of the shunt transformer. A rectifier circuit 6 is connected to the secondary winding, and three-phase AC is converted into DC power. The DC power is connected to the input side of the PWM inverter 7, converted into three-phase AC power, and connected to the primary winding 41 of the series transformer 4. A PWM drive pulse is supplied from the PWM signal generation means 8 to the control pole of the switching element forming the PWM inverter 7, and the power adjusted for each phase so as to compensate the power distribution system is converted from the PWM inverter 7 to the series voltage. The three-phase balanced voltage supplied to the primary winding 41 of the switch 4 is suppressed.
[0012]
The PWM signal generating means 8 includes a PWM driving pulse generating unit 9 and a negative-phase current reference signal value generating unit 10. The current detector 11 detects the load current of the power distribution system, and is fed back to the PWM signal generating means 8 to control the PWM inverter 7 to output the unbalanced current, which causes the three-phase unbalance, to approach zero. Is done.
[0013]
The PWM drive pulse generation unit 9 is formed by a current waveform control circuit 91 and a PWM control circuit 92. If the reference voltage signal is a predetermined reference value, the PWM drive pulse generation unit 9 is based on the well-known concept itself, but replaces the reference voltage signal with a negative-phase current value that changes momentarily in the distribution system. The idea that the generated command signal value is supplied from the negative-phase current command signal value generation unit 10 has realized the embodiment according to the present invention. A new function is created by combining the PWM drive pulse generation unit 9 with the negative-phase current command signal value generation unit 10.
[0014]
The negative-phase current command signal generation unit 10 obtains a DC signal from the instantaneous three-phase unbalanced voltage generated by the line impedance from the receiving end to the load and the load current by the following conversion processing. After comparing with the DC zero which means that the phase is in the equilibrium state, an AC signal is obtained by the following conversion process, and it is compared with the separately detected negative phase current value and the command signal value for commanding the compensation current value generated by the inverter is obtained. Works to make. Details are described below.
[0015]
An output signal obtained by converting the three-phase detection voltage into a two-phase alternating current by a known three-phase to two-phase conversion circuit 101 is converted by a known rotation coordinate anti-phase conversion circuit 102 and extracted as a DC signal as a converted output. You.
[0016]
The extracted DC signal is compared with a DC zero voltage (in a state where three phases are balanced), and a compensation current signal for compensating for a three-phase unbalance component is obtained as a DC signal as an output of the anti-phase voltage zero control circuit 103. .
[0017]
An AC signal obtained by converting the DC output signal by a known two-phase / three-phase conversion circuit 104 is extracted as a current command signal value. The current command signal value is compared with the negative phase current value of the output current of the PWM inverter 7 obtained by the current detector 11, and the output signal is supplied to the PWM drive pulse generation unit 9.
[0018]
The PWM drive pulse generation unit 9 is formed of a current waveform control circuit 91 for adjusting output power by a well-known inverter waveform control generally used in the past and a PWM control signal circuit 92. For example, a PWM inverter is implemented by feedback control for reducing an error signal from a fluctuating detection voltage VD to a reference voltage signal VS serving as a reference such as a known constant voltage control (described later) shown in FIG. Although the output was controlled by a constant voltage, the point of the present invention without using this reference voltage signal VS is that a current command signal value generated from a negative-phase voltage value that causes a three-phase imbalance that fluctuates every moment. The point is to use. It is a novel point that feedback control is performed so that the error between the current command signal value and the negative-phase current value detected from the PWM inverter output current approaches zero.
[0019]
The conventional example of FIG. 6 is a circuit diagram of a device for obtaining a constant voltage power supply by a constant voltage control PWM inverter. In FIG. 6, a rectifier 6 is connected to the secondary side of a transformer T connected to the power receiving end 1 to convert AC power to DC. The PWM inverter 7 converts this DC to AC while controlling it at a constant voltage. In addition, the PWM drive pulse supplied to the control pole of the switching element is generated by the current waveform control circuit 91 and the PWM control circuit 92. The PWM inverter output is controlled at a constant voltage by feedback control to make the error signal between the constant voltage reference voltage signal VS and the fluctuating detection voltage VD zero.
[0020]
The time series of the operation of the short-circuit means connected in parallel to the primary winding 41 of the series transformer shown in FIG. 1 will be described with reference to FIGS. The on / off switch R2 of the inverter output circuit interrupting means 44 is inserted between the PWM inverter 7 and the series transformer 4 and the on / off switch R1 of the short-circuit means 43 is closed at T2 from the immediately preceding T1. Condition 1 is that R2 is open. Next, it is prohibited to close the open / close switch R2 at the time T4 immediately after the time T3 when the open / close switch R1 is opened, that is, it is prohibited that the open / close switches R1 and R2 are closed at the same time. The switch shown in FIG. 1 is shown as a movable contact in order to facilitate understanding of the operation because it is increasingly required to open and close at a high speed under the above conditions, but is constituted by a non-contact switching element.
[0021]
As an example of a practical device, when the series transformer 4 of FIG. 1 is used at a system voltage of 6600 V, when the primary winding 41 is at about 500 V, the secondary winding 42 is wound at about 600 V. When the ratio is set and the detection voltage is 6000 V at the load end and the three phases are balanced, the inverter output is adjusted to 500 V, the secondary voltage 600 V is applied in series, and the output is adjusted to the distribution line voltage 6600 V. You. In order to avoid the worst case of a power failure in the distribution line even if an abnormality occurs in the inverter output, the open / close switch R1 of the short-circuit means 43 is closed and the secondary winding 42 is short-circuited, resulting in an equivalent circuit. Is supplied with a voltage of 6000 V.
[0022]
The second embodiment of the present invention shown in FIG. 3 will be described. In a power distribution system in which three-phase power is received at one power receiving end and power supplied through a second line impedance is supplied to a third load end, When a single-phase heavy load is connected, a three-phase unbalanced voltage is generated, and when a current for compensating for the unbalanced current is applied from the inverter to the distribution line, the secondary winding of the series transformer according to claim 1 is connected. The object has been achieved by eliminating the connecting part and directly connecting the output side of the inverter at the connection point P in parallel with the load.
[0023]
FIG. 4 shows in detail a portion for connecting the output of the three-phase inverter to the distribution line in the third embodiment according to the present invention. A voltage detector VK detects a voltage at which a three-phase imbalance has occurred due to a single-phase heavy load from a receiving end 1 of three-phase power to a load end 3 having a line impedance 2, and a negative-phase current command signal value generation unit described above. At step 10, the current command value is extracted, the current command value is compared with the negative-phase current value of the output current detector 11 of the PWM inverter, and this signal is supplied to the PWM drive pulse generation unit 9 shown in FIG. As in the case described above, the control circuit operates to return the compensation current from the inverter output terminal UVW to the electric line through the connection point P with the electric line, thereby suppressing unbalance. In this case, as the DC power supply of the inverter 7, a DC power obtained by rectifying the alternating current taken from the connection point P with the distribution line and by the diodes D1 to D6 and storing the voltage between the terminals of the capacitor C is used. In the embodiment of FIG. 4 in which the direct current smoothed by the capacitor C and the reactor L is stored in the capacitor C, the shunt transformer and the series transformer can be omitted to provide a resource-saving economic device.
[0024]
In this manner, in the embodiment shown in FIGS. 3 and 4, not only the space required for installing the transformer can be saved, but also the progress of the semiconductor switching element technology constituting the inverter can be achieved without directly interposing the electrical distribution line without electric insulation. The connection has been made possible, eliminating the need for transformer components and man-hours.
【The invention's effect】
According to the present invention, the instantaneous voltage fluctuation caused by the generation of the step voltage as in the case of the conventional transformer tap switching type does not occur. Since it has an unbalanced voltage suppression function, it is possible to provide a device that does not cause a large fluctuation in voltage by preventing the utilization rate of equipment on the substation side from decreasing when a heavy single-phase load is connected to the three-phase distribution system. So the industrial value is great. Further, in the embodiment in which the series transformer can be eliminated, the economical effect that this device can be provided at a lower cost is increased.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an overall configuration in an embodiment according to the present invention.
FIG. 2 is a time series diagram of the operation of the short-circuit means in the embodiment according to the present invention.
FIG. 3 is a circuit diagram showing an entire configuration according to a second embodiment of the present invention.
FIG. 4 is a circuit diagram showing a main part according to a third embodiment of the present invention.
FIG. 5 is a circuit diagram of a conventional device.
FIG. 6 is a configuration circuit diagram of a conventional constant voltage control PWM inverter.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Receiving end 2 Line impedance 3 Load end 30 Output end 31, 32, 33 Load 4 Series transformer 41 Primary winding 42 of series transformer 42 Secondary winding 43 of series transformer 43 Shorting means 44 Inverter output circuit breaking means 5 minutes Road transformer 51 Primary winding 52 of shunt transformer 52 Secondary winding 6 of shunt transformer 6 Rectifier circuit 7 PWM inverter 8 PWM signal generation means 9 PWM drive pulse generation unit 10 Negative-phase current command signal value generation unit 11 Current Detector 91 Current waveform control circuit 92 PWM control circuit 101 Three-phase to two-phase conversion circuit 102 Rotational coordinate negative-phase conversion circuit 103 Negative-phase voltage zero control circuit 104 Two-phase to three-phase conversion circuit C Capacitor D Diode L Reactor Q1 to Q6 Semiconductor switching Element P Connection points R1 and R2 between inverter output and power line Open / close switch

Claims (3)

三相受電系統の受電端と負荷端との間に直列に二次巻線が接続された直列変圧器,該変圧器の一次巻線に接続されたPWMインバータ,該インバータの入力側に接続された整流回路,該整流回路の入力側に二次巻線,上記受電端に一次巻線が接続された分路変圧器とによって主回路が形成された三相不平衡電圧抑制装置において,前記PWMインバータを駆動させるための信号生成手段として,三相電圧を二相に変換する三相二相変換回路,二相交流信号を直流信号に変換する回転座標逆相変換回路,三相が平衡していることを示している逆相電圧ゼロと前記受電系統電圧の検出逆相電圧との誤差信号を取り出す逆相電圧ゼロ制御回路,直流信号を交流信号に変換する二相三相変換回路とから構成される逆相電流指令信号値生成ユニットと,電流波形制御回路及びPWM制御回路で構成されるPWM駆動パルス生成ユニットとを具備したPWM信号生成手段を有するとともに,生成される逆相電流指令信号値を電流波形制御の基準信号値として用いるPWMインバータの波形制御機能をもたせたことを特徴とする三相不平衡電圧抑制装置。A series transformer having a secondary winding connected in series between the receiving end and the load end of the three-phase power receiving system, a PWM inverter connected to the primary winding of the transformer, and an input connected to the input side of the inverter. A three-phase unbalanced voltage suppressor, wherein a main circuit is formed by a rectifier circuit, a secondary winding on an input side of the rectifier circuit, and a shunt transformer having a primary winding connected to the power receiving end. Three-phase to two-phase conversion circuit for converting three-phase voltage to two-phase, rotating coordinate anti-phase conversion circuit for converting two-phase AC signal to DC signal, and three-phase balanced A negative-phase voltage zero control circuit for extracting an error signal between the negative-phase voltage zero indicating that the power supply system voltage is detected and the negative-phase voltage detected by the power receiving system voltage, and a two-phase three-phase conversion circuit for converting a DC signal into an AC signal Negative-phase current command signal value generation unit A PWM inverter having a PWM signal generation means including a PWM drive pulse generation unit including a current waveform control circuit and a PWM control circuit, and using a generated negative-phase current command signal value as a reference signal value for current waveform control A three-phase unbalanced voltage suppressor having a waveform control function. 前記直列変圧器が一次巻線に並列接続される短絡手段を具備する直列変圧器であり,該短絡手段がインバータ出力回路遮断手段と連動して作動する短絡手段であり前記両手段が同時に閉路することを防止した請求項1記載の三相不平衡電圧抑制装置。The series transformer is a series transformer having a short-circuit means connected in parallel to a primary winding, and the short-circuit means is a short-circuit means operating in conjunction with an inverter output circuit cut-off means, and the two means are simultaneously closed. 3. The three-phase unbalanced voltage suppressor according to claim 1, wherein the three-phase unbalanced voltage suppressor is prevented. 三相受電系統の受電端と負荷端との間に負荷に並列に接続されたPWMインバータとによって主回路が形成された三相不平衡電圧抑制装置において,前記PWMインバータを駆動させるための信号生成手段として,三相電圧を二相に変換する三相二相変換回路,二相交流信号を直流信号に変換する回転座標逆相変換回路,三相が平衡していることを示している逆相電圧ゼロと前記受電系統電圧の検出逆相電圧との誤差信号を取り出す逆相電圧ゼロ制御回路,直流信号を交流信号に変換する二相三相変換回路とから構成される逆相電流指令信号値生成ユニットと,電流波形制御回路及びPWM制御回路で構成されるPWM駆動パルス生成ユニットとを具備したPWM信号生成手段を有するとともに,生成される逆相電流指令信号値を電流波形制御の基準信号値として用いるPWMインバータの波形制御機能をもたせたことを特徴とする三相不平衡電圧抑制装置。In a three-phase unbalanced voltage suppression device in which a main circuit is formed by a PWM inverter connected in parallel to a load between a receiving end and a load end of a three-phase power receiving system, a signal generation for driving the PWM inverter is performed. As means, a three-phase to two-phase conversion circuit for converting a three-phase voltage to a two-phase, a rotary coordinate reverse-phase conversion circuit for converting a two-phase AC signal to a DC signal, a reverse phase indicating that the three phases are balanced. A negative-phase current command signal value comprising a negative-phase voltage zero control circuit for extracting an error signal between zero voltage and the detected negative-phase voltage of the power receiving system voltage, and a two-phase to three-phase conversion circuit for converting a DC signal to an AC signal A PWM signal generating means comprising a current generating unit and a PWM drive pulse generating unit comprising a current waveform control circuit and a PWM control circuit; Three-phase unbalanced voltage suppression apparatus characterized by remembering waveform control function of the PWM inverter to be used as a reference signal value.
JP2002371279A 2002-12-24 2002-12-24 Three-phase unbalanced voltage restraining apparatus Withdrawn JP2004208345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371279A JP2004208345A (en) 2002-12-24 2002-12-24 Three-phase unbalanced voltage restraining apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371279A JP2004208345A (en) 2002-12-24 2002-12-24 Three-phase unbalanced voltage restraining apparatus

Publications (1)

Publication Number Publication Date
JP2004208345A true JP2004208345A (en) 2004-07-22

Family

ID=32810202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371279A Withdrawn JP2004208345A (en) 2002-12-24 2002-12-24 Three-phase unbalanced voltage restraining apparatus

Country Status (1)

Country Link
JP (1) JP2004208345A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088249A (en) * 2009-12-07 2011-06-08 株式会社京三制作所 Unbalanced voltage compensation method, unbalanced voltage compensator, three-phase converter control method, and controller of three-phase converter
JP2014087242A (en) * 2012-10-26 2014-05-12 Chugoku Electric Power Co Inc:The Arithmetic device, arithmetic method and program
CN106374772A (en) * 2016-09-13 2017-02-01 沈阳东软医疗系统有限公司 Series compensation circuit of gradient amplifier and nuclear magnetic resonance imaging equipment
CN106532748A (en) * 2016-12-23 2017-03-22 新奥(中国)燃气投资有限公司 Three-phase power consumption imbalance adjusting device and control method thereof and generator unit
CN107069780A (en) * 2017-05-11 2017-08-18 成都瑞尔维轨道交通技术有限公司 Distribution system and power system
CN108306282A (en) * 2017-12-29 2018-07-20 国网宁夏电力有限公司经济技术研究院 It is a kind of with solve the problems, such as power grid diagnosis for be oriented to power distribution network automatic planning
CN110224417A (en) * 2019-06-11 2019-09-10 河南隆鑫电力设备有限公司 A kind of low-voltage network three-phase load unbalance automatic adjustment system
CN112039096A (en) * 2020-08-27 2020-12-04 南京亚派科技股份有限公司 Three-phase unbalanced current compensation device and method
CN112152237A (en) * 2020-09-03 2020-12-29 国电南瑞科技股份有限公司 Transformer area power quality management method and system based on multi-DFACTS device coordination control

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120427A (en) * 2009-12-07 2011-06-16 Kyosan Electric Mfg Co Ltd Method and device for compensating unbalanced voltage and method and device for controlling three-phase converter
CN102088249A (en) * 2009-12-07 2011-06-08 株式会社京三制作所 Unbalanced voltage compensation method, unbalanced voltage compensator, three-phase converter control method, and controller of three-phase converter
JP2014087242A (en) * 2012-10-26 2014-05-12 Chugoku Electric Power Co Inc:The Arithmetic device, arithmetic method and program
CN106374772A (en) * 2016-09-13 2017-02-01 沈阳东软医疗系统有限公司 Series compensation circuit of gradient amplifier and nuclear magnetic resonance imaging equipment
CN106532748A (en) * 2016-12-23 2017-03-22 新奥(中国)燃气投资有限公司 Three-phase power consumption imbalance adjusting device and control method thereof and generator unit
CN107069780B (en) * 2017-05-11 2024-03-26 成都交达电气有限公司 Power distribution system and power system
CN107069780A (en) * 2017-05-11 2017-08-18 成都瑞尔维轨道交通技术有限公司 Distribution system and power system
CN108306282A (en) * 2017-12-29 2018-07-20 国网宁夏电力有限公司经济技术研究院 It is a kind of with solve the problems, such as power grid diagnosis for be oriented to power distribution network automatic planning
CN108306282B (en) * 2017-12-29 2021-05-14 国网宁夏电力有限公司经济技术研究院 Power distribution network automatic planning method with power grid diagnosis problem solving as guide
CN110224417A (en) * 2019-06-11 2019-09-10 河南隆鑫电力设备有限公司 A kind of low-voltage network three-phase load unbalance automatic adjustment system
CN112039096A (en) * 2020-08-27 2020-12-04 南京亚派科技股份有限公司 Three-phase unbalanced current compensation device and method
CN112152237A (en) * 2020-09-03 2020-12-29 国电南瑞科技股份有限公司 Transformer area power quality management method and system based on multi-DFACTS device coordination control
CN112152237B (en) * 2020-09-03 2022-07-08 国电南瑞科技股份有限公司 Transformer area power quality management method and system based on multi-DFACTS device coordination control

Similar Documents

Publication Publication Date Title
US9646795B2 (en) Low-frequency circuit breaker
US7485980B2 (en) Power converter for doubly-fed power generator system
US5771161A (en) Uninterruptable capability for an active power line conditioner
US11075540B2 (en) Uninterruptible power supply device
US20060164782A1 (en) Control system, method and product for uninterruptible power supply
US20030057923A1 (en) Power generating device
JP6243801B2 (en) Power converter
Ma et al. Power controllability of three-phase converter with unbalanced AC source
US10305274B2 (en) Pre-magnetizing a transformer connected to a modular multilevel power converter
JP2004208345A (en) Three-phase unbalanced voltage restraining apparatus
JP2006238621A (en) Uninterruptible power supply
MX2014006059A (en) Auxiliary power source device for vehicle and overcurrent protection method.
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JP4693214B2 (en) Inverter device
KR101506010B1 (en) Control device for direct current terminal unbalanced voltage of uninterruptible power supply
WO2011013187A1 (en) Self-excited reactive power compensation device
JP2000308361A (en) Neutral-point clamping power conversion apparatus
JP2005020805A (en) Wind power generator
JPH06276688A (en) Power generation system based on induction generator
JP3057332B2 (en) Instantaneous interruption power switching method and instantaneous interruption uninterruptible power supply
JPS6035892B2 (en) power converter
JPH0487572A (en) Power unit
JP2005348563A (en) Ac power supply apparatus
JP3517461B2 (en) Starting method of power conversion device and power conversion device using the method
JP2001005541A (en) Automatic voltage adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070727