JPH0718013B2 - Method for producing glassy carbon coating - Google Patents

Method for producing glassy carbon coating

Info

Publication number
JPH0718013B2
JPH0718013B2 JP19271286A JP19271286A JPH0718013B2 JP H0718013 B2 JPH0718013 B2 JP H0718013B2 JP 19271286 A JP19271286 A JP 19271286A JP 19271286 A JP19271286 A JP 19271286A JP H0718013 B2 JPH0718013 B2 JP H0718013B2
Authority
JP
Japan
Prior art keywords
glassy carbon
coating
carbon
firing
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19271286A
Other languages
Japanese (ja)
Other versions
JPS6350480A (en
Inventor
陽一 尾形
征彦 中島
隆一 寺崎
弘 村田
新世 佐藤
和己 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP19271286A priority Critical patent/JPH0718013B2/en
Publication of JPS6350480A publication Critical patent/JPS6350480A/en
Publication of JPH0718013B2 publication Critical patent/JPH0718013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ガラス状炭素は強度、硬度が大きく、気体および液体の
不浸透性にも優れている上、化学的、熱的にも安定で、
かつ、かなりの電気伝導度、熱伝導度を有する。本発明
はこのようなガラス状炭素で被覆されたガラス状炭素被
覆体の製造方法に関する。このような被覆体は化学プラ
ント、電子、原子力、航空宇宙などの広い産業分野での
利用が期待されている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] Glassy carbon has high strength and hardness, is excellent in gas and liquid impermeability, and is chemically and thermally stable.
Moreover, it has a considerable electric conductivity and thermal conductivity. The present invention relates to a method for producing a glassy carbon coating body coated with such glassy carbon. Such coatings are expected to be used in a wide range of industrial fields such as chemical plants, electronics, nuclear power, and aerospace.

〔従来の技術とその問題点〕 従来、ガラス状炭素材はフルフリルアルコール樹脂、フ
エノール樹脂等の熱硬化性樹脂を希望する最終製品の形
状に成形し、それを不活性雰囲気中で焼成炭化する方法
をとつていた(参考文献:石川敏功他著「新・炭素工
業」近代編集社1980年発行)。しかし、この方法では焼
成炭化すると製品の収縮がかなり大きいために目的とす
る製品の大きさ、厚さ等に限界があり、また複雑な形状
のものを作ることが難しかつた。さらに、製品にクラツ
クが入ることを防ぐために焼成の際の昇温速度を遅くし
なければならず、生産性が悪くなるという問題があつ
た。ガラス状炭素材を利用する際には必ずしも製品全体
がそれである必要はなく、ある程度の厚みをもつた表面
だけがガラス状炭素材で覆われていればよい場合も多
い。
[Prior art and its problems] Conventionally, as a glassy carbon material, a thermosetting resin such as a furfuryl alcohol resin or a phenol resin is molded into a desired final product shape, and is carbonized by firing in an inert atmosphere. The method was adopted (reference: Toshinori Ishikawa et al., "New Carbon Industry," published by Modern Editor, 1980). However, in this method, the shrinkage of the product is considerably large when firing and carbonized, so that the size and thickness of the intended product are limited, and it is difficult to produce a product having a complicated shape. Further, in order to prevent cracks from entering the product, it is necessary to slow down the rate of temperature rise during firing, which causes a problem of poor productivity. When the glassy carbon material is used, it is not always necessary that the entire product is that, and in many cases, only the surface having a certain thickness needs to be covered with the glassy carbon material.

この様な観点から、有機重合体を不完全に熱分解させて
得たピツチ状化合物を芳香族溶剤と混合してスラリーを
つくり、炭素またはセラミツクス基材にそのスラリーを
塗布し、不活性雰囲気中で焼成することからなるガラス
状炭素被覆体の製造法が知られている(特公昭52−3968
4号公報)。
From such a viewpoint, a slurry is prepared by mixing a pitch-like compound obtained by incompletely thermally decomposing an organic polymer with an aromatic solvent, and coating the slurry on a carbon or ceramics base material in an inert atmosphere. There is known a method for producing a glassy carbon coated body which comprises firing at a temperature (Japanese Patent Publication No. 52-3968).
No. 4).

この方法ならば、上記のガラス状炭素材被覆製品製造の
問題点がある程度克服されるが、ガラス状炭素被覆層を
厚くすることが難しく、それを厚くするために上記塗布
および焼成の操作を繰り返し行なうとクラツクが発生す
るため十分な厚さの被覆層は得られないという欠点があ
つた。
With this method, the above-mentioned problems of the glassy carbon material-coated product production can be overcome to some extent, but it is difficult to thicken the glassy carbon coating layer, and the above-mentioned coating and firing operations are repeated to thicken it. If this is done, cracking will occur, so that a coating layer having a sufficient thickness cannot be obtained.

本発明は、上記した欠点を解消するガラス状炭素被覆体
の製造方法を提供することを目的とする。
It is an object of the present invention to provide a method for producing a glassy carbon coated body that eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

発明者らは炭素、セラミツクス等の成形体に前記スラリ
ーを塗布したものを不活性雰囲気中で焼成する条件につ
いて検討中に、前記焼成の前に、酸化性雰囲気中で加熱
することによつて前記欠点が解消することを見出した。
また、さらに、このような酸化性雰囲気中で焼成するこ
とによつて、焼成時の炭素の損失がいちじるしく少なく
なること、すなわち炭素収率が向上することがわかつ
た。
The present inventors are investigating the conditions for firing a molded product such as carbon or ceramics coated with the slurry in an inert atmosphere, and by heating in an oxidizing atmosphere before the firing, We have found that the drawbacks are resolved.
Further, it has been found that the firing in such an oxidizing atmosphere significantly reduces the loss of carbon during firing, that is, improves the carbon yield.

すなわち本発明は、炭素、金属またはセラミツクスの成
形体に有機高分子の不完全熱分解生成物の被膜を形成
し、酸化性雰囲気中で加熱し、ついで不活性雰囲気中で
焼成することを特徴とするガラス状炭素被覆体の製造方
法である。以下、本発明について詳しく説明する。
That is, the present invention is characterized in that a film of an incomplete thermal decomposition product of an organic polymer is formed on a molded body of carbon, metal or ceramics, heated in an oxidizing atmosphere, and then fired in an inert atmosphere. It is a method for producing a glassy carbon coated body. Hereinafter, the present invention will be described in detail.

本発明において、炭素、金属またはセラミツクス材料は
特に限定はないが、ガラス状炭素の被膜を形成しようと
する表面がある程度荒れていることが好ましい。すなわ
ち、細孔を有する材料ならば、開気孔率が5〜50%、好
ましくは8〜20%であり、滑らかな材料ならば、♯30〜
♯2000の、好ましくは♯300〜♯800の研磨材で表面研磨
する。
In the present invention, the carbon, metal or ceramics material is not particularly limited, but it is preferable that the surface on which the glassy carbon film is to be formed is rough to some extent. That is, if the material has pores, the open porosity is 5 to 50%, preferably 8 to 20%, and if it is a smooth material, # 30 to
Surface-polish with # 2000, preferably # 300 to # 800 abrasives.

有機高分子は特に限定はないが、炭素含有量が30重量%
以上のものが好ましく、たとえばポリ塩化ビニル、ポリ
ビニルアルコール、ポリ酢酸ビニル、アルキルフエノー
ルである。
The organic polymer is not particularly limited, but the carbon content is 30% by weight.
The above are preferable, for example, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and alkylphenol.

これらの有機高分子を適度に熱分解させたピツチ状物質
(以下PCと略す)は炭素含有量が80重量%以上である上
に、ベンゼン、クロロホルム等の有機溶剤に溶けるため
塗布法により簡単に被膜を形成できる。特にガラス状炭
素被覆体の使途が半導体用治具、サセプター等の場合に
は、不純物の面からポリ塩化ビニルを熱分解させたPCが
とりわけ好ましい。熱分解は、アルゴン等の不活性雰囲
気中で200〜500℃で30分以上加熱して行なう。
Pitch-like substances (hereinafter abbreviated as PC) obtained by appropriately thermally decomposing these organic polymers have a carbon content of 80% by weight or more, and since they are soluble in organic solvents such as benzene and chloroform, they can be easily applied by a coating method. A film can be formed. Especially when the glassy carbon coating is used for semiconductor jigs, susceptors, etc., PC in which polyvinyl chloride is thermally decomposed from the viewpoint of impurities is particularly preferable. The thermal decomposition is performed by heating at 200 to 500 ° C for 30 minutes or more in an inert atmosphere such as argon.

前記PCを溶剤に200〜800g/lの濃度で溶かして炭素、金
属またはセラミツクスの成形体に塗布すればよい。溶剤
は溶解性、揮発性の点でトリクレンなどの脂肪族塩素系
の溶剤がとくに好ましい。塗布の方法は超音波含浸、は
け塗り、スプレー、浸漬などである。塗布後に比較的低
温(50〜100℃ていど)で乾燥することが好ましい。
The PC may be dissolved in a solvent at a concentration of 200 to 800 g / l and applied to a carbon, metal or ceramic compact. From the viewpoint of solubility and volatility, the solvent is preferably an aliphatic chlorine-based solvent such as trichlene. The method of application is ultrasonic impregnation, brush coating, spraying, dipping and the like. It is preferable to dry at a relatively low temperature (about 50 to 100 ° C.) after coating.

ついで前記塗布体を酸化性雰囲気中で加熱する。酸化性
雰囲気とは酸素、オゾンなど酸化作用のあるガスであ
る。簡便には温度150〜350℃での空気酸化でよい。空気
中で加熱する場合に、温度が150℃未満では酸化に長時
間要するので実用的でなく、350℃を越えると脱炭酸反
応が顕著になり、炭素収率が下るため好ましくない。オ
ゾンを用いる場合には空気に1%ていどのオゾンを混合
して50℃ていどの温度で加熱すればよい。加熱の時間は
成形体の形状、塗布被膜の厚さにより調節しなければな
らないが通常は5〜20時間が適当である。
Then, the coated body is heated in an oxidizing atmosphere. The oxidizing atmosphere is a gas having an oxidizing action such as oxygen or ozone. Air oxidation at a temperature of 150 to 350 ° C is convenient. When heating in air, if the temperature is lower than 150 ° C., it takes a long time to oxidize, which is not practical, and if it exceeds 350 ° C., the decarboxylation reaction becomes remarkable and the carbon yield decreases, which is not preferable. When ozone is used, 1% of ozone is mixed with air and heated at 50 ° C. at which temperature. The heating time must be adjusted depending on the shape of the molded product and the thickness of the coating film, but usually 5 to 20 hours is appropriate.

なお、このように酸化性雰囲気中で加熱することによつ
て焼成時の炭素化収率が向上する理由としては、PCの被
膜表面が酸化されることによつて分子間または分子内で
架橋化が起り、これにより焼成の過程においてPCが溶融
しにくくなり、溶融状態を経ることなく炭化されるため
であろうと考えられる。
The reason why the carbonization yield at the time of firing is improved by heating in an oxidizing atmosphere in this way is that intermolecular or intramolecular crosslinking is caused by the oxidation of the coating surface of PC. It is thought that this is because PC becomes difficult to melt during the firing process and is carbonized without going through the molten state.

本発明において焼成とは、600〜1300℃ていどの温度で3
0分以上の加熱を施すことであり、これによりPCは炭素
化する。なお、前記スラリーの塗布において厚く塗布し
た場合、またはPCの溶解濃度を高くした場合には泡の発
生を防ぐために焼成の際の昇温速度をやや遅くするほう
がよい。
In the present invention, calcination means 600 to 1300 ° C. at which temperature 3
It is to heat for 0 minutes or more, which causes PC to be carbonized. In addition, when the slurry is applied thickly or when the dissolved concentration of PC is increased, it is preferable to slightly slow the temperature rising rate during firing in order to prevent generation of bubbles.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 塩化ビニル樹脂(電気化学工業(株)製SS−110タイ
プ)を加熱炉に入れ、アルゴンガス雰囲気下、390℃で9
0分加熱した。得られたPCをトリクレンに800g/lの濃度
で溶解し、塗布母液とした。塗布対象の材料は開気孔率
15%の黒鉛及びアルミナ板(100mm×100mm×10mm)を用
い、超音波含浸により塗布した。
Example 1 A vinyl chloride resin (SS-110 type manufactured by Denki Kagaku Kogyo Co., Ltd.) was placed in a heating furnace and heated at 390 ° C. for 9 hours under an argon gas atmosphere.
Heated for 0 minutes. The obtained PC was dissolved in trichlene at a concentration of 800 g / l to prepare a coating mother liquor. Material to be applied is open porosity
A 15% graphite and alumina plate (100 mm x 100 mm x 10 mm) was used and applied by ultrasonic impregnation.

塗布体を加熱炉に入れ、雰囲気を空気にして室温から15
0℃までは5℃/min、150〜270℃の間は0.08℃/minの昇
温速度で昇温し、270℃で5時間加熱した。つぎに雰囲
気をアルゴンに置換し、350℃までは15℃/min、350℃か
ら550℃までは2℃/min、550℃から1000℃までは15℃/m
inの昇温速度で昇温し、1000℃で30分保つことにより焼
成を行つた。
Put the coated body in a heating furnace, and let the atmosphere be air, and
The temperature was raised up to 0 ° C. at 5 ° C./min, between 150 and 270 ° C. at a rate of 0.08 ° C./min, and heated at 270 ° C. for 5 hours. Next, the atmosphere was replaced with argon, and 15 ℃ / min up to 350 ℃, 2 ℃ / min from 350 ℃ to 550 ℃, 15 ℃ / m from 550 ℃ to 1000 ℃.
Firing was performed by raising the temperature at an in-rate and maintaining it at 1000 ° C. for 30 minutes.

下記の式により被覆量Tおよび炭素化収率Rを求めた。The coating amount T and the carbonization yield R were calculated by the following formulas.

ここでW0は被覆前の成形体の重さ、W1はPCを塗布・乾燥
した後の成形体の重さ、W2は焼成後の成形体の重さ、A
は成形体の表面積である。
Here, W 0 is the weight of the molded body before coating, W 1 is the weight of the molded body after applying and drying PC, W 2 is the weight of the molded body after firing, A
Is the surface area of the molded body.

焼成品を光学顕微鏡(倍率100倍)およびSEM(倍率最高
5000倍)でくわしく観察してクラツクおよび剥離の有無
を調べた。
The baked product is an optical microscope (magnification 100x) and SEM (magnification max.
It was observed in detail at 5000 times) to check for cracks and peeling.

結果は表に示した通り良好なガラス状炭素被覆面が得ら
れ、また、炭素化収率が高く、満足すべきものであつ
た。
As a result, a good glassy carbon-coated surface was obtained as shown in the table, and the carbonization yield was high, which was satisfactory.

実施例2 実施例1と同一方法、同一条件で製造したガラス状炭素
被覆体の表面を♯1000のシリコンカーバイド研摩材で研
摩し、さらにふたたび実施例1のPC塗布、乾燥、酸化性
雰囲気中での加熱および不活性雰囲気中での焼成を行な
つた。実施例1と同じ方法で被覆量および炭素化収率を
求め、光学顕微鏡およびSEM観察を行なつた。その結果
は表に示すとおり、良好な被覆面を得ることができ、ま
た、炭素化収率が高く、満足すべきものであつた。
Example 2 The surface of a glassy carbon coating produced in the same manner and under the same conditions as in Example 1 was polished with a # 1000 silicon carbide abrasive, and then again applied in the PC coating, drying and oxidizing atmosphere of Example 1. Was heated and baked in an inert atmosphere. The coating amount and the carbonization yield were determined by the same method as in Example 1, and the observation under an optical microscope and SEM was performed. As a result, as shown in the table, a good coated surface was obtained and the carbonization yield was high, which was satisfactory.

実施例3 塗布体を加熱炉に入れて加熱するときに、雰囲気を空気
の代りに、空気に約1%のオゾンを加えたこと、加熱の
温度、時間を50℃で10時間とした外は実施例1と同一方
法、同一条件でガラス状炭素被覆体を製造した。
Example 3 When the coated body was placed in a heating furnace and heated, the atmosphere was changed to air, and about 1% ozone was added to the atmosphere. The heating temperature and time were 50 ° C. and 10 hours, respectively. A glassy carbon coating was produced under the same method and conditions as in Example 1.

実施例1と同じ方法で被覆量および炭素化収率を求め、
光学顕微鏡およびSEM観察を行なつた。その結果は表に
示すとおり、良好な被覆面を得ることができ、また、炭
素収率が高く、満足すべきものであつた。
The coating amount and the carbonization yield were determined by the same method as in Example 1,
An optical microscope and SEM observation were performed. As a result, as shown in the table, a good coated surface was obtained and the carbon yield was high, which was satisfactory.

比較例 塗布体を酸化性雰囲気中で加熱することなく、不活性雰
囲気中で焼成した。その外は実施例1に準拠して行つ
た。その結果は表に示す通り被覆面に多くのクラツクが
見られ、また、被覆面の炭素化収率も悪かつた。
Comparative Example The coated body was baked in an inert atmosphere without heating in an oxidizing atmosphere. Other than that, it performed according to Example 1. As a result, as shown in the table, many cracks were observed on the coated surface, and the carbonization yield of the coated surface was poor.

〔効果〕 本発明方法によりガラス状炭素被覆体を製造すると、該
被覆はクラツクのない良好な表面状態となり、かつ炭素
化収率が高くなるので、被覆量を多くすることができる
という効果がある。
[Effect] When the glassy carbon coating is produced by the method of the present invention, the coating has a good surface condition without cracks, and the carbonization yield is high, so that the coating amount can be increased. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 新世 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内 (72)発明者 野澤 和己 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内 審査官 小川 進 (56)参考文献 特開 昭58−69792(JP,A) 特公 昭52−39684(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinyo Sato 3-5-1, Asahimachi, Machida, Tokyo Denka Kagaku Kogyo Co., Ltd. Central Research Laboratory (72) Inventor Kazumi Nozawa 3 Asahimachi, Machida, Tokyo Susumu Ogawa, Examiner, Central Research Laboratory, Denka Kagaku Kogyo Co., Ltd. (56) References JP-A-58-69792 (JP, A) JP-B-52-39684 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭素、金属またはセラミツクスの成形体に
有機高分子の不完全熱分解生成物の被膜を形成し、酸化
性雰囲気中で加熱し、ついで不活性雰囲気中で焼成する
ことを特徴とするガラス状炭素被覆体の製造方法。
1. A carbon, metal or ceramic molded body is formed with a film of an incomplete thermal decomposition product of an organic polymer, heated in an oxidizing atmosphere, and then fired in an inert atmosphere. A method for producing a glassy carbon coated body.
JP19271286A 1986-08-20 1986-08-20 Method for producing glassy carbon coating Expired - Lifetime JPH0718013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19271286A JPH0718013B2 (en) 1986-08-20 1986-08-20 Method for producing glassy carbon coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19271286A JPH0718013B2 (en) 1986-08-20 1986-08-20 Method for producing glassy carbon coating

Publications (2)

Publication Number Publication Date
JPS6350480A JPS6350480A (en) 1988-03-03
JPH0718013B2 true JPH0718013B2 (en) 1995-03-01

Family

ID=16295802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19271286A Expired - Lifetime JPH0718013B2 (en) 1986-08-20 1986-08-20 Method for producing glassy carbon coating

Country Status (1)

Country Link
JP (1) JPH0718013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03271183A (en) * 1990-03-16 1991-12-03 Agency Of Ind Science & Technol Production of surface-conductive ceramics
JPH05247881A (en) * 1992-03-09 1993-09-24 Fuji Sangyo Kk Light-weight and incombustible board, its production and use thereof
DE502004010042D1 (en) * 2003-05-16 2009-10-22 Cinv Ag METHOD OF COATING SUBSTRATES WITH CARBON-BASED MATERIAL
DE10322182A1 (en) * 2003-05-16 2004-12-02 Blue Membranes Gmbh Process for the production of porous, carbon-based material

Also Published As

Publication number Publication date
JPS6350480A (en) 1988-03-03

Similar Documents

Publication Publication Date Title
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP0529593A1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
JPH0718013B2 (en) Method for producing glassy carbon coating
JPH1017382A (en) Production of silicon carbide formed body
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
JP4104096B2 (en) Porous SiC molded body and method for producing the same
JPH0848509A (en) Production of carbonaceous porous body
JPH05319928A (en) Production of highly functional carbon/ceramic composite material
JPH02111663A (en) Porous conductive material
US1012531A (en) Process for the manufacture of solid-fashioned bodies containing silicon carbid.
EP0392749B1 (en) Heat-resistant, corrosion-resistant inorganic composite bodies and process for preparing the same
JPS62292611A (en) Production of glassy carbon film
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS6355183A (en) Manufacture of glassy carbon coated body
JP3038483B2 (en) Manufacturing method of oxidation resistant carbon material
JPH08151268A (en) Production of silicon carbide sintered compact
JPH11180788A (en) Oxidation resistant carbon-silicon carbide composite material and heating part using the same
JPH01103976A (en) Ceramics coated graphite material
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
JP3555670B2 (en) Method for producing electrode plate for plasma etching and electrode plate for plasma etching obtained by the method
JPH05279119A (en) Carbon material having oxidation resistance and its production
JP2004002133A (en) Production process of carbon/silicon carbide composite material, and carbon/silicon carbide composite material by the production process
JP3543529B2 (en) Method for producing silicon carbide ceramics
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JPH03295881A (en) Silicon carbide member and its production