JPH05319928A - Production of highly functional carbon/ceramic composite material - Google Patents

Production of highly functional carbon/ceramic composite material

Info

Publication number
JPH05319928A
JPH05319928A JP4148552A JP14855292A JPH05319928A JP H05319928 A JPH05319928 A JP H05319928A JP 4148552 A JP4148552 A JP 4148552A JP 14855292 A JP14855292 A JP 14855292A JP H05319928 A JPH05319928 A JP H05319928A
Authority
JP
Japan
Prior art keywords
carbon
metal alkoxide
ceramic composite
carbonaceous material
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4148552A
Other languages
Japanese (ja)
Inventor
Yoshiharu Ozaki
義治 尾崎
Kazuyuki Kojima
一幸 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP4148552A priority Critical patent/JPH05319928A/en
Publication of JPH05319928A publication Critical patent/JPH05319928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a highly functional carbon/ceramic composite material having a homogeneous and dense ceramic coating film formed on the surface of a carbonaceous material or the inner surface of the pores of the material. CONSTITUTION:A polymer sol produced by hydrolyzing a metal alkoxide solution is impregnated under reduced or positive pressure into a porous carbonaceous material having an average pore diameter of 50-200mum and a porosity of 50-70% and the polymer sol is converted into an oxide and/or a carbide by heat-treating in a non-oxidizing atmosphere at >=500 deg.C. The metal of the metal alkoxide is preferably Ti, Al, Zr, Si, B or Mg.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多孔炭素質基材の表面
および気孔内面にセラミックス被膜層が形成された複合
組織を有する炭素/セラミックス複合系高機能材料の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon / ceramic composite high-performance material having a composite structure in which a ceramic coating layer is formed on the surface of a porous carbonaceous substrate and on the inner surface of pores.

【0002】[0002]

【従来の技術】従来、炭素質材料に材質強度や耐酸化性
などの高機能性を付与する目的でセラミックス系の被覆
層を形成する試みが数多く提案されている。例えば、炭
素質基材の表面にCVD法により直接に、またはSiO
ガスと基材炭素との界面反応を介してSiCの被膜を形
成する方法、炭素質基材面にムライト粒子、Al粒子を
含むスラリーを塗布したのち1000℃の温度で焼成し
たセラミックス被膜層を形成する方法(特開昭60−1083
88号公報) 、黒鉛材の表面にMgOやZrO2 を溶射し
てセラミックス層を形成する方法(特開昭57−135771号
公報) 等がこれに該当する。しかしながら、これらの従
来技術は概してプロセスが煩雑で大規模かつ高価な被覆
設備を必要とし、また形成される被覆層にクラックや剥
離現象が生じる場合がある。
2. Description of the Related Art Conventionally, many attempts have been made to form a ceramic coating layer for the purpose of imparting high functionality such as material strength and oxidation resistance to carbonaceous materials. For example, directly on the surface of a carbonaceous substrate by the CVD method, or SiO
A method for forming a SiC coating through an interfacial reaction between a gas and base carbon, and a ceramic coating layer formed by applying a slurry containing mullite particles and Al particles on the surface of a carbonaceous base material and then firing it at a temperature of 1000 ° C. Method (JP-A-60-1083)
No. 88), a method of spraying MgO or ZrO 2 on the surface of a graphite material to form a ceramic layer (Japanese Patent Laid-Open No. 57-135771), and the like correspond to this. However, these conventional techniques generally require a complicated and large-scale and expensive coating facility, and cracks and peeling phenomena may occur in the coating layer formed.

【0003】本出願人は、このような問題を解消して簡
単なプロセスにより効率よく高酸化抵抗性を備える耐酸
化性カーボン材を製造する手段として、金属アルコキシ
ド溶液を加水分解して重合体ゾルを生成し、該重合体ゾ
ルをカーボン材の表面に付着したのち非酸化性雰囲気中
で800℃以上の温度に熱処理して膜厚1.0μm 以下
のセラミックス被膜層を形成する方法を既に開発した
(特開平3−265582号公報) 。
The applicant of the present invention has proposed a method for solving such a problem and efficiently producing an oxidation resistant carbon material having high oxidation resistance by a simple process by hydrolyzing a metal alkoxide solution to obtain a polymer sol. Has been developed, and the polymer sol has been deposited on the surface of the carbon material and then heat-treated at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere to form a ceramic coating layer having a thickness of 1.0 μm or less. (JP-A-3-265582).

【0004】[0004]

【発明が解決しようとする課題】前記の先行技術によれ
ば、カーボン材の表面を均質緻密なガス不透過性の連続
薄膜で被覆することができ、耐酸化性を効果的に向上さ
せることが可能となる。しかし、この場合にはカーボン
基材の組織内部までセラミックス物質を浸透させること
が困難となるため、組織全体を炭素/セラミックス複合
形態に形成しようとする際には未解決の課題が残されて
いた。
According to the above-mentioned prior art, it is possible to coat the surface of the carbon material with a continuous, dense and gas-impermeable continuous thin film, and effectively improve the oxidation resistance. It will be possible. However, in this case, it becomes difficult to permeate the ceramic substance into the inside of the structure of the carbon base material, so that an unsolved problem remains when trying to form the entire structure into a carbon / ceramics composite form. ..

【0005】本発明は前記の課題を解決するために開発
されたもので、その目的は、炭素質材料の表面および組
織気孔の内面までセラミックス被膜で被覆された構造を
備える炭素/セラミックス複合系の高機能材料を効率よ
く得るための製造方法を提供することにある。
The present invention was developed to solve the above-mentioned problems, and an object thereof is to provide a carbon / ceramic composite system having a structure in which the surface of a carbonaceous material and the inner surfaces of tissue pores are covered with a ceramic film. It is to provide a manufacturing method for efficiently obtaining a highly functional material.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による炭素/セラミックス複合系高機能材料
の製造方法は、平均気孔径50〜200μm 、気孔率5
0〜70%の特性を備える多孔炭素質材料に、金属アル
コキシド溶液を加水分解して生成させた重合体ゾルを減
圧および加圧下に含浸処理し、ついで非酸化性雰囲気中
で500℃以上の温度により加熱処理することを構成上
の特徴とする。
The method for producing a carbon / ceramics composite high-performance material according to the present invention for achieving the above object has an average pore diameter of 50 to 200 μm and a porosity of 5.
A porous carbonaceous material having a property of 0 to 70% is impregnated with a polymer sol produced by hydrolyzing a metal alkoxide solution under reduced pressure and pressure, and then at a temperature of 500 ° C. or higher in a non-oxidizing atmosphere. The heat treatment is performed by means of the constitutional feature.

【0007】本発明の基材には、多孔炭素質材料が選択
使用される。この多孔炭素質材料の種類や製造履歴は特
に問われない。したがって、例えば粒度を揃えたコーク
ス粉をタールピッチのような炭化性バインダーとともに
捏合し、粉砕、成形および焼成炭化処理する典型的なポ
ーラスカーボン製造技術のほか、ポリウレタンフォーム
のような樹脂発泡体に熱硬化性樹脂液を含浸させて硬化
後に焼成炭化する方法、炭素繊維や有機繊維をパルプ、
炭素粉末、バインダー成分等とともに成形したのち熱硬
化性樹脂液を含浸させて焼成炭化する方法など各種の方
法で得られる炭素もしくは黒鉛からなる多孔炭素質材料
を使用することができる。しかし、多孔炭素質材料の特
性として水銀圧入法による平均気孔径が50〜200μ
m で、気孔率が50〜70%のものを選定することが重
要である。平均気孔径が50μm未満で気孔率が50%
を下廻ると、金属アルコキシドの重合体ゲルが組織内部
まで円滑に浸透しなくなって全体を複合構造にすること
ができなくなり、また平均気孔径が200μm を越え気
孔率が70%を上廻ると、基材強度が不足して含浸時に
亀裂や破損が発生する。
A porous carbonaceous material is selectively used for the base material of the present invention. The type and manufacturing history of this porous carbonaceous material are not particularly limited. Therefore, for example, in addition to the typical porous carbon manufacturing technology in which coke powder having a uniform particle size is kneaded with a carbonizing binder such as tar pitch, crushing, molding, and firing carbonization, resin foam such as polyurethane foam is heated. A method of impregnating with a curable resin liquid and firing and carbonizing after curing, carbon fiber or organic fiber pulp,
It is possible to use a porous carbonaceous material made of carbon or graphite obtained by various methods such as a method of molding with carbon powder, a binder component, etc., and then impregnating with a thermosetting resin liquid and firing and carbonizing. However, as a characteristic of the porous carbonaceous material, the average pore diameter by the mercury penetration method is 50 to 200 μm.
It is important to select one with m and a porosity of 50 to 70%. Average porosity is less than 50μm and porosity is 50%
When the ratio is below the range, the metal alkoxide polymer gel does not permeate smoothly into the inside of the tissue and the whole structure cannot be formed, and when the average pore diameter exceeds 200 μm and the porosity exceeds 70%, The strength of the base material is insufficient and cracks and damages occur during impregnation.

【0008】金属アルコキシドはセラミックス物質に転
化する原料となる原料成分で、本発明の目的には構成金
属種がTi、Al、Zr、Si、BおよびMgから選ば
れた1種または2種以上の混合系が好適に用いられる。
該金属アルコキシドは溶液状態で加水分解することによ
り重合体ゾルを生成させる。この際、正常なゾル状態を
得るためには金属アルコキシド溶液に反応を遅延させる
安定化剤や解膠剤、反応を促進させる触媒等を添加して
加水分解の速度を適宜に調整することが必要となる。例
えば、金属アルコキシドとして加水分解反応が速いジル
コニウムプトキシド〔Zr(OC4H9)4〕を用いるような場合
には、ジエチレングリコール、ジエタノールアミン、ト
リエタノールアミン、トリプロパノールアミン、トリエ
チレングリコール、テトラエチレングリコールなどの安
定化剤を添加し、他方、ケイ酸エチル〔Si(OC2H5)4〕の
ような加水分解反応の遅い原料を用いる際には塩酸、硝
酸、硫酸等の無機酸触媒を添加する。
The metal alkoxide is a raw material component which is a raw material to be converted into a ceramic substance, and for the purpose of the present invention, the constituent metal species are one or more selected from Ti, Al, Zr, Si, B and Mg. A mixed system is preferably used.
The metal alkoxide is hydrolyzed in a solution state to form a polymer sol. At this time, in order to obtain a normal sol state, it is necessary to add a stabilizer or a deflocculant for delaying the reaction to the metal alkoxide solution and a catalyst for promoting the reaction to appropriately adjust the hydrolysis rate. Becomes For example, when zirconium butoxide [Zr (OC 4 H 9 ) 4 ] having a fast hydrolysis reaction is used as the metal alkoxide, diethylene glycol, diethanolamine, triethanolamine, tripropanolamine, triethylene glycol, tetraethylene glycol is used. , Etc., while adding a mineral acid catalyst such as hydrochloric acid, nitric acid, sulfuric acid when using a raw material with a slow hydrolysis reaction such as ethyl silicate [Si (OC 2 H 5 ) 4 ]. To do.

【0009】上記の重合体ゾルは減圧および加圧下で多
孔炭素質材料に含浸する。この含浸処理は、オートクレ
ーブ等の圧力容器に多孔炭素質材料を入れて系内を減圧
にしたのち、多孔炭素質材料が浸漬するまで重合体ゾル
を流入し、ついで系内を加圧する工程でおこなわれる。
適用される減圧および加圧の度合は処理対象となる多孔
炭素質材料の組織性状や含浸するゾル粘度によって変動
するが、概ね減圧度を1Torr程度、加圧度を5kg/cm2
上に設定することが適切である。
The above polymer sol is impregnated into the porous carbonaceous material under reduced pressure and pressure. This impregnation treatment is performed in a step of putting the porous carbonaceous material in a pressure vessel such as an autoclave to reduce the pressure inside the system, then inflowing the polymer sol until the porous carbonaceous material is immersed, and then pressurizing the inside of the system. Be done.
The degree of reduced pressure and pressure applied varies depending on the texture of the porous carbonaceous material to be treated and the viscosity of the impregnated sol, but generally the degree of pressure reduction is set to about 1 Torr and the degree of pressure is set to 5 kg / cm 2 or more. Is appropriate.

【0010】含浸処理後の材料は、乾燥したのちAr、
2 ガスなどの非酸化性雰囲気に保持された加熱炉に移
し、500℃以上の温度に加熱処理してゾル成分を金属
酸化物層、金属酸化物と金属炭化物との混在層、または
金属炭化物層などのセラミックス被膜に転化させる。上
記の含浸−加熱の工程は必要に応じて複数回反復し、セ
ラミックス被膜の厚さを1μm 程度になるまでおこな
う。
The material after the impregnation treatment is dried and then Ar,
It is transferred to a heating furnace kept in a non-oxidizing atmosphere such as N 2 gas and heat-treated at a temperature of 500 ° C. or higher to subject the sol component to a metal oxide layer, a mixed layer of metal oxide and metal carbide, or a metal carbide. Convert to a ceramic coating such as a layer. The above-mentioned impregnation-heating step is repeated a plurality of times as necessary, until the thickness of the ceramic coating reaches about 1 μm.

【0011】[0011]

【作用】本発明のプロセスによれば、特定の気孔組織を
有する多孔炭素質材料を基材とし、これに金属アルコキ
シド溶液を加水分解した重合体ゾルを減圧および加圧し
ながら強制含浸させるから、重合体ゾルは多孔炭素材料
の表面ばかりでなく気孔組織の内部まで均一に浸透して
全気孔内を充満する。多孔炭素質材料の表面および気孔
内面に付着した重合体ゾルは、乾燥時に溶媒成分を揮散
し同時にコロイド粒子間の結合が進行して網目構造にゲ
ル化する。
According to the process of the present invention, a porous carbonaceous material having a specific pore structure is used as a base material, and a polymer sol obtained by hydrolyzing a metal alkoxide solution is forcibly impregnated under reduced pressure and pressure. The coalesced sol uniformly permeates not only the surface of the porous carbon material but also the inside of the pore structure to fill the entire pores. The polymer sol adhered to the surface of the porous carbonaceous material and the inner surface of the pores volatilizes the solvent component at the time of drying, and at the same time, the bond between the colloid particles progresses and gels into a network structure.

【0012】形成されたゲル層は500℃以上に加熱処
理する過程で結晶質もしくは非晶質の金属酸化物層に転
化し、更に1000℃を越える温度域では基材炭素と界
面反応を生じて漸次に炭化する。したがって、金属酸化
物と金属炭化物の混在層を経て最終的に完全な金属炭化
物層となる。このような各工程の作用により、多孔炭素
質基材の表面および気孔内面に均質で緻密なセラミック
ス被膜層が形成された複合組織を有する炭素/セラミッ
クス複合系の高機能材料を効率よく製造することが可能
となる。
The formed gel layer is converted into a crystalline or amorphous metal oxide layer in the course of heat treatment at 500 ° C. or higher, and further, in a temperature range exceeding 1000 ° C., an interfacial reaction occurs with the base carbon. Carbonize gradually. Therefore, a complete metal carbide layer is finally obtained through the mixed layer of metal oxide and metal carbide. Efficient production of a carbon / ceramics composite high-performance material having a composite structure in which a uniform and dense ceramics coating layer is formed on the surface of the porous carbonaceous substrate and the inner surface of the pores by the action of each of these steps. Is possible.

【0013】[0013]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら説明するが、本発明は例示した実施例の範囲に限定さ
れるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples, but the present invention is not limited to the scope of the illustrated examples.

【0014】実施例1 平均気孔径100μm 、気孔率68%の特性を有する縦
横10mm、長さ25mmの多孔質炭素材料〔東海カーボン
(株)製〕を基材とし、オートクレーブ内にセットして
系内を1Torrで1時間減圧した。ついで、チタンテトラ
イソプロポキシド〔Ti(O-iC3H7)4〕を無水エタノールで
希釈し、撹拌下で水−エタノール−塩酸溶液を徐々に滴
下して加水分解により生成させた濃度0.66mol/l のTi
2 ゾルを、基材が浸漬するまでオートクレーブ中に流
入した。引き続き、系内を6kg/cm2に加圧しながら1時
間保持して含浸処理をおこなった。含浸処理後の材料を
室温で24時間、105℃で2時間乾燥したのち、N2
雰囲気に保たれた加熱炉に移し、5℃/min.の昇温速度
で500℃まで上げて3時間に亘り加熱処理を施した。
この材料につき、同一条件のゾル含浸と加熱工程を2回
反復して処理した。得られた材料を更にN2 雰囲気中で
1000℃に加熱処理した。
Example 1 A porous carbon material having a mean pore size of 100 μm and a porosity of 68%, a length and width of 10 mm and a length of 25 mm (manufactured by Tokai Carbon Co., Ltd.) was used as a base material and set in an autoclave. The inside was depressurized at 1 Torr for 1 hour. Then, the titanium tetraisopropoxide [Ti (O-iC 3 H 7 ) 4 ] was diluted with absolute ethanol, water under stirring - ethanol - concentration 0.66mol of hydrochloric acid solution was gradually added dropwise to generate by hydrolysis / l Ti
The O 2 sol was flowed into the autoclave until the substrate was immersed. Subsequently, the pressure in the system was increased to 6 kg / cm 2 and the pressure was maintained for 1 hour for impregnation. The impregnated material is dried at room temperature for 24 hours and at 105 ° C. for 2 hours, and then N 2
It was transferred to a heating furnace kept in an atmosphere and heated to 500 ° C. at a temperature rising rate of 5 ° C./min. For 3 hours for heat treatment.
This material was treated by repeating the sol impregnation under the same conditions and the heating step twice. The obtained material was further heat-treated at 1000 ° C. in an N 2 atmosphere.

【0015】上記の工程で製造された材料を中心部から
切断し、切断面を検査したところ、500℃加熱処理の
材料組織は気孔内面に厚さ1μm 程度の均質緻密なTi
2被膜が形成された炭素/セラミックス複合系の組織
を呈していることが認められた。図1はTiO2 被覆前
の多孔質炭素基材における組織内部の粒子構造を示した
走査型電子顕微鏡写真、図2はTiO2 被覆後の組織内
部の粒子構造を示した図1と同拡大寸法の走査型電子顕
微鏡写真である。図3は図1より拡大倍率を高めたTi
2 被覆前の多孔質炭素基材における組織内部の粒子構
造を示した走査型電子顕微鏡写真、図4はTiO2 被覆
後の組織内部の粒子構造を示した図3と同拡大寸法の走
査型電子顕微鏡写真である。また1000℃加熱後の組
織では被膜の一部がTiCに転化した混在複合層になっ
ていることが確認された。
The material produced in the above process was cut from the center and the cut surface was inspected. As a result, the material structure of the heat treatment at 500 ° C. was a uniform dense Ti with a thickness of about 1 μm on the inner surface of the pores.
It was confirmed that it had a carbon / ceramics composite system structure in which an O 2 coating was formed. FIG. 1 is a scanning electron micrograph showing the particle structure inside the tissue in the porous carbon substrate before coating with TiO 2 , and FIG. 2 is the same enlarged size as FIG. 1 showing the particle structure inside the tissue after coating with TiO 2 . 3 is a scanning electron micrograph of FIG. Fig. 3 shows Ti with a higher magnification than Fig. 1.
Scanning electron micrograph showing the particle structure inside the tissue in the porous carbon substrate before O 2 coating, FIG. 4 shows the particle structure inside the tissue after coating with TiO 2 and the scanning type of the same enlarged size as FIG. 3. It is an electron micrograph. Further, it was confirmed that in the structure after heating at 1000 ° C., a part of the coating film was a mixed composite layer converted to TiC.

【0016】比較例1 基材として平均気孔径4μm 、気孔率23%の黒鉛材
〔東海カーボン(株)製G340〕を用い、減圧度10
Torr、加圧度200kg/cm2に設定したほかは実施例1と
同一の含浸−加熱処理条件によりTiO2 被膜を形成し
た。得られた材料の中心部を切断して切断面を検査した
ところ、表面以外の内部組織にはTiO2の存在は認め
られなかった。
Comparative Example 1 A graphite material having an average pore diameter of 4 μm and a porosity of 23% [G340 manufactured by Tokai Carbon Co., Ltd.] was used as a base material, and the degree of vacuum was 10
A TiO 2 film was formed under the same impregnation-heat treatment conditions as in Example 1 except that the pressure was set to Torr and the pressure was set to 200 kg / cm 2 . When the center portion of the obtained material was cut and the cut surface was inspected, the presence of TiO 2 was not found in the internal structure other than the surface.

【0017】比較例2 基材として平均気孔径300μm 、気孔率85%の多孔
質黒鉛材〔東海カーボン(株)製〕を用い、その他は全
て実施例1と同一のプロセスで処理をおこなったとこ
ろ、含浸処理時に基材に亀裂が発生して正常な複合材料
を得ることができなかった。
Comparative Example 2 A porous graphite material having an average pore diameter of 300 μm and a porosity of 85% (manufactured by Tokai Carbon Co., Ltd.) was used as a base material, and the rest was treated in the same process as in Example 1. However, the base material was cracked during the impregnation treatment, and a normal composite material could not be obtained.

【0018】実施例3 平均気孔径が130μm 、気孔径が58%の多孔質炭素
材〔東海カーボン(株)製〕を基材とし、含浸材として
ジルコニウムプトキシド〔Zr(OC4H9)4〕をイソプロパノ
ールに0.05mol の割合で混合し、これにジルコニウムプ
トキシドの2倍量のエチレングリコール(安定化剤)を
添加して自動撹拌しながら徐々に加水分解させた重合体
ゾルを用いた。その他は実施例1と同一の条件で含浸お
よび加熱処理を施して組織内外にZrO2 被膜を形成し
た。得られた材料を中心部から切断して内部組織を検査
したところ、全組織の気孔内面に厚さ約1μm の均質緻
密なZrO2 被膜が形成された炭素/セラミックス複合
形態を呈していることが認められた。
Example 3 A porous carbon material having an average pore diameter of 130 μm and a pore diameter of 58% (manufactured by Tokai Carbon Co., Ltd.) was used as a base material, and zirconium butoxide [Zr (OC 4 H 9 ) 4 was used as an impregnating material. ] Was mixed with isopropanol at a ratio of 0.05 mol, ethylene glycol (stabilizer) in an amount twice that of zirconium butoxide was added thereto, and the polymer sol was hydrolyzed gradually with automatic stirring. Otherwise, impregnation and heat treatment were performed under the same conditions as in Example 1 to form a ZrO 2 coating inside and outside the structure. When the obtained material was cut from the center and the internal structure was inspected, it was found that it had a carbon / ceramics composite morphology in which a uniform and dense ZrO 2 coating with a thickness of about 1 μm was formed on the inner surface of the pores of all the structures. Admitted.

【0019】[0019]

【発明の効果】以上のとおり、本発明によれば多孔炭素
質材料の表面および気孔内面に均質で緻密なセラミック
ス被膜が形成された組織の炭素/セラミックス複合系材
料を効率よく製造することができる。したがって、高機
能材料として各種用途に対する有用性が期待できる。
As described above, according to the present invention, a carbon / ceramic composite material having a structure in which a uniform and dense ceramic coating is formed on the surface of the porous carbonaceous material and the inner surface of the pores can be efficiently produced. .. Therefore, it can be expected to be useful as a high-performance material for various applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のTiO2 被覆前の多孔質炭素基材に
おける組織内部の粒子構造を示した走査型電子顕微鏡写
真である。
FIG. 1 is a scanning electron micrograph showing a grain structure inside a tissue in a porous carbon substrate before coating with TiO 2 in Example 1.

【図2】実施例1のTiO2 被覆後における組織内部の
粒子構造を示した図1と同拡大寸法の走査型電子顕微鏡
写真である。
2 is a scanning electron micrograph of the same enlarged size as FIG. 1, showing the particle structure inside the tissue after coating with TiO 2 in Example 1. FIG.

【図3】図1より拡大倍率を高めたTiO2 被覆前の多
孔質炭素基材における組織内部の粒子構造を示した走査
型電子顕微鏡写真である。
FIG. 3 is a scanning electron micrograph showing the grain structure inside the structure of the porous carbon substrate before coating with TiO 2 which has a higher magnification than that of FIG. 1.

【図4】TiO2 被覆後の気孔組織の粒子構造を示した
図3と同拡大寸法の走査型電子顕微鏡写真である。
FIG. 4 is a scanning electron micrograph showing the particle structure of the pore structure after coating with TiO 2 and having the same enlarged size as in FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均気孔径50〜200μm 、気孔率5
0〜70%の特性を備える多孔炭素質材料に、金属アル
コキシド溶液を加水分解して生成させた重合体ゾルを減
圧および加圧下に含浸処理し、ついで非酸化性雰囲気中
で500℃以上の温度により加熱処理することを特徴と
する炭素/セラミックス複合系高機能材料の製造方法。
1. An average pore diameter of 50 to 200 μm and a porosity of 5.
A porous carbonaceous material having a property of 0 to 70% is impregnated with a polymer sol produced by hydrolyzing a metal alkoxide solution under reduced pressure and pressure, and then at a temperature of 500 ° C. or higher in a non-oxidizing atmosphere. A method for producing a carbon / ceramics composite-based high-performance material, which is characterized by performing heat treatment with
【請求項2】 金属アルコキシドを構成する金属種がT
i、Al、Zr、Si、BおよびMgから選ばれた1種
または2種以上の混合系であり、形成されるセラミック
形態が酸化物および/または炭化物である請求項1記載
の炭素/セラミックス複合系高機能材料の製造方法。
2. The metal species constituting the metal alkoxide is T
The carbon / ceramic composite according to claim 1, which is a mixed system of one or more selected from i, Al, Zr, Si, B and Mg, and the formed ceramic form is an oxide and / or a carbide. -Based high-performance material manufacturing method.
JP4148552A 1992-05-15 1992-05-15 Production of highly functional carbon/ceramic composite material Pending JPH05319928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4148552A JPH05319928A (en) 1992-05-15 1992-05-15 Production of highly functional carbon/ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4148552A JPH05319928A (en) 1992-05-15 1992-05-15 Production of highly functional carbon/ceramic composite material

Publications (1)

Publication Number Publication Date
JPH05319928A true JPH05319928A (en) 1993-12-03

Family

ID=15455317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4148552A Pending JPH05319928A (en) 1992-05-15 1992-05-15 Production of highly functional carbon/ceramic composite material

Country Status (1)

Country Link
JP (1) JPH05319928A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004113251A1 (en) * 2003-06-20 2006-07-20 松下電器産業株式会社 Porous material and method for producing the same
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
KR101218508B1 (en) * 2012-01-17 2013-01-03 인하대학교 산학협력단 Ceramic-carbon composites and its process
CN108178663A (en) * 2018-01-26 2018-06-19 河南省化工研究所有限责任公司 A kind of preparation method of superhigh temperature oxidation-resistant graphite mold
WO2019077753A1 (en) * 2017-10-20 2019-04-25 日立化成株式会社 Hydrophilic carbon molded article and production method therefor
JP2019069872A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light active modified carbon particle/titania core shell composite and method for manufacturing the same
JP2023518612A (en) * 2020-11-30 2023-05-02 青島恒能達能源科技有限公司 Carbon-based composite material and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004113251A1 (en) * 2003-06-20 2006-07-20 松下電器産業株式会社 Porous material and method for producing the same
JP2011243412A (en) * 2010-05-18 2011-12-01 National Institute Of Advanced Industrial & Technology Porous microwave heating element and manufacturing method thereof, and filter and manufacturing method thereof
KR101218508B1 (en) * 2012-01-17 2013-01-03 인하대학교 산학협력단 Ceramic-carbon composites and its process
JP2019069872A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light active modified carbon particle/titania core shell composite and method for manufacturing the same
WO2019077753A1 (en) * 2017-10-20 2019-04-25 日立化成株式会社 Hydrophilic carbon molded article and production method therefor
JPWO2019077753A1 (en) * 2017-10-20 2020-11-05 日立化成株式会社 Hydrophilic carbon molded product and its manufacturing method
CN108178663A (en) * 2018-01-26 2018-06-19 河南省化工研究所有限责任公司 A kind of preparation method of superhigh temperature oxidation-resistant graphite mold
JP2023518612A (en) * 2020-11-30 2023-05-02 青島恒能達能源科技有限公司 Carbon-based composite material and its preparation method and application

Similar Documents

Publication Publication Date Title
US5250242A (en) Method of producing ceramic sintered body having dense ceramic membrane
CN106747477B (en) A kind of Cf/SiC-ZrC-ZrB2The preparation method of ultra-temperature ceramic-based composite material
WO2003035577A1 (en) Silicon carbide based porous structure and method for manufacture thereof
JP2003508329A (en) Mullite body and method for forming mullite body
KR101679883B1 (en) Method for making porous acicular mullite bodies
CN110423119A (en) A kind of preparation method of resistance to ablation C/SiC ceramic matric composite
CN111807843B (en) Light high-strength silicon carbide foam ceramic and preparation method thereof
CN112537962B (en) Preparation method of SiC coating
EP0826651B1 (en) Method for producing an oxidation protection for porous ceramics based on SiC and Si3N4
CN109179373B (en) Antioxidant carbon aerogel material and preparation method thereof
JPH05319928A (en) Production of highly functional carbon/ceramic composite material
CN110820323B (en) Preparation method of Si-C-O ceramic antioxidant coating on surface of carbon fiber
CN110158309B (en) Method for preparing carbon fiber with silicon carbide coating on surface
JPH1017382A (en) Production of silicon carbide formed body
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
CN114315390B (en) Carbon/carbon composite material surface wide-temperature-range long-life antioxidation coating and low-temperature preparation method
CN110872198B (en) Nanowire toughened ZrB2Preparation method of-ZrC-SiC oxidation resistant coating
JP3422515B2 (en) Method for forming oxidation-resistant coating on carbonaceous substrate
JP3193762B2 (en) Oxidation resistant treatment of carbon fiber reinforced carbon material
JP3844273B2 (en) Oxidation resistant C / C composite and method for producing the same
JP3038483B2 (en) Manufacturing method of oxidation resistant carbon material
JPH0225503A (en) Production of high density sintered body
JP2004189575A (en) Silicon carbide-based porous structure material coated with ceramic and method of producing the same
JPH07138070A (en) Production of carbonaceous material coated with glassy carbon
JPH1160357A (en) Oxidation resistant c/c composite material and its production