JPH0654439A - Digital type transformer protection relay device - Google Patents

Digital type transformer protection relay device

Info

Publication number
JPH0654439A
JPH0654439A JP4223271A JP22327192A JPH0654439A JP H0654439 A JPH0654439 A JP H0654439A JP 4223271 A JP4223271 A JP 4223271A JP 22327192 A JP22327192 A JP 22327192A JP H0654439 A JPH0654439 A JP H0654439A
Authority
JP
Japan
Prior art keywords
current
transformer
input
output
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223271A
Other languages
Japanese (ja)
Inventor
Junichi Inagaki
順一 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4223271A priority Critical patent/JPH0654439A/en
Publication of JPH0654439A publication Critical patent/JPH0654439A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect internal faults with high sensitivity and high speed by permitting the saturation of analog/digital conversion means in setting only for external faults where the maximum input current occurs among the external faults of transformers. CONSTITUTION:An input current transformer 1023 has an ordinary load current within A/D full scale at least at the system secondary current, but the system secondary current during an external fault on tertiary side is set to a conversion ratio exceeding the A/D full scale. Instantaneous data of differential current are obtained from digital data D1, D2 and D3, but the instantaneous data of the differential current is set to '0' when D3 is larger than a predetermined value. Because of this, an internal fault of a transformer 100 can be judged at a high speed by using the differential current. Also, an external fault on the secondary side of the transformer 100 can correctly be judged, and erroneous operation can be prevented even for the external fault on the tertiary side. That is, the dynamic range of current input is made small so that the internal fault can be detected with a high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統の保護継電装
置、特に電流差動継電方式により変圧器を保護するディ
ジタル形変圧器保護継電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system protection relay device, and more particularly to a digital type transformer protection relay device for protecting a transformer by a current differential relay system.

【0002】[0002]

【従来の技術】変圧器を保護する継電方式としては電流
差動継電方式が一般に用いられている。この変圧器保護
における保護の基本は、 (1) 内部事故を高感度に検出すること。 (2) 外部事故時に誤動作しないこと。 の2点にある。(1) を実現するためには、電流入力のダ
イナミックレンジを小さく抑える必要があるが、(2) を
実現するためには、その逆に、外部事故発生時に流れる
最大電流に対し、忠実に電流入力を取込むため、電流入
力のダイナミックレンジを拡大する必要がある。この保
護上の要求に対する従来技術での解決方法の1つとし
て、例えば、特公昭53−29819号がある。以下、
これを説明する。図8は特公昭53−29819号に開
示されている3端子送電線の電流差動継電装置の構成例
である。図において、1は変換装置、2は送信装置、3
及び4は受信装置、5は合成装置、6は差動検出器、
7,8,9,13,14,15,18,19はレベル検出器、10,
16,20はオア回路、11,17は位相検出器、12はインヒビ
ット回路である。図の装置が3端子送電線の各端子に設
けられる。次に応動を説明する。図8の装置の設置端子
の交流電流Iが変換装置1に加えられ、出力交流電気量
3 を生ずる。電流Iと電気量e3 の瞬時値の関係は図
9のようになっており、Iの大きさが小さく飽和値IS
と−IS の間にあるときは電気量e3 はIに比例する
が、IS より正又は−IS より負になると、e3 は飽和
しeS 又は−eSとなって変化しない。電気量e3 は送
信装置2,合成装置5,レベル検出器7に加えられ、送
信装置2はe3 の瞬時値に対応した信号fT を他の端子
に送信する。この信号はe3 の瞬時値に対応した周波
数,ディジタル符号など種々の信号を用い得る。受信装
置3,4は他の2端子の各々の同様の送信装置よりの信
号fR1,fR2を受信し、受信信号fR1,fR2に対応した
電気量e5 ,e6 を生ずる。ここでe5 ,e6 は他の各
端子の装置の変換装置1の出力と等しい。
2. Description of the Related Art A current differential relay system is generally used as a relay system for protecting a transformer. The basics of protection in this transformer protection are: (1) Detecting internal accidents with high sensitivity. (2) Do not malfunction during an external accident. There are two points. In order to achieve (1), it is necessary to keep the dynamic range of the current input small, but to achieve (2), conversely, the current that is faithful to the maximum current that flows when an external accident occurs. Since the input is taken in, it is necessary to expand the dynamic range of the current input. As one of the solutions to this protection requirement in the prior art, there is, for example, Japanese Patent Publication No. 53-29819. Less than,
This will be explained. FIG. 8 is a configuration example of a current differential relay device for a three-terminal transmission line disclosed in Japanese Patent Publication No. 53-29819. In the figure, 1 is a conversion device, 2 is a transmission device, and 3
And 4 are receivers, 5 are synthesizers, 6 is a differential detector,
7,8,9,13,14,15,18,19 are level detectors, 10,
16 and 20 are OR circuits, 11 and 17 are phase detectors, and 12 is an inhibit circuit. The illustrated device is provided at each terminal of a three terminal transmission line. Next, the reaction will be described. An alternating current I at the installed terminal of the device of FIG. 8 is applied to the converter 1 and produces an output alternating current quantity e 3 . The relation between the current I and the instantaneous value of the electric quantity e 3 is as shown in FIG. 9, and the magnitude of I is small and the saturation value I S is small.
The electrical quantity e 3 When there between -I S is proportional to I, becomes more negative than Seimatawa -I S than I S, e 3 does not change becomes saturated eS or -Es. The electric quantity e 3 is applied to the transmitter 2, the synthesizer 5, and the level detector 7, and the transmitter 2 transmits the signal f T corresponding to the instantaneous value of e 3 to another terminal. As this signal, various signals such as a frequency corresponding to the instantaneous value of e 3 and a digital code can be used. The receiving devices 3 and 4 receive the signals f R1 and f R2 from the similar transmitting devices at the other two terminals and generate the electric quantities e 5 and e 6 corresponding to the received signals f R1 and f R2 . Here, e 5 and e 6 are equal to the output of the converter 1 of the other terminal devices.

【0003】電気量e3 ,e5 及びe6 は合成装置5に
加えられ出力電気量e7 を生ずる。ここでe7 はe3
5 ,e6 の和に等しく、e7 =e3 +e5 +e6 の関
係にある。電気量e7 が差動検出器6に加えられ、e7
の波高値が予定値以上になると時間遅れφの後差動検出
器6が動作し連続出力を生ずる。又、電気量e3 ,e5
及びe6 は各々レベル検出器7,13,8,14,9,15に
加えられる。レベル検出器7〜9は各々入力電気量の瞬
時値が正の予定値eL より正方向にある期間出力を生
じ、レベル検出器13〜15は各々入力電気量の瞬時値が負
の予定値−eL より負方向にある期間出力を生ずる。レ
ベル検出器7〜9の出力がいずれか生ずるとオア回路10
に出力を生じ、レベル検出器13〜15のいずれかに出力を
生ずるとオア回路16に出力を生ずる。又、電気量e7
レベル検出器18,19に加えられる。レベル検出器18はe
7 の瞬時値が負のとき出力を生じ、レベル検出器19はe
7 の瞬時値が正のとき出力を生ずる。位相検出器11,17
は各々レベル検出器18とオア回路10の出力又はレベル検
出器19とオア回路16の出力が共に一定時間θ(例えば60
°)続けて生ずれば動作して出力を生じ、この動作条件
が消失してから一定時間(例えば 360°)経過後出力を
消失する。位相検出器11,17のいずれか一方に出力を生
ずればオア回路20に出力を生ずる。インヒビット回路12
は差動検出器6に出力を生じ且つオア回路20に出力がな
いとき出力を生じ、しゃ断器を引きはずす。以上でレベ
ル検出器7〜9,13〜15の予定値eL と−eL の値と変
換装置1の出力電気量e3 の飽和値eS 及び−eS との
間には図9のように|eS |>|eL |の関係があり、
且つ電気量e3 の値をeL 又は−eL とする電流Iの値
L ,−IL を,不平衡運転時などの生ずる内部事故時
の最大流出電流より若干大きい値とする。又、差動検出
器6の時間遅れφは位相検出器11,17の一定時間θより
若干長い時間とする。
The electric quantities e 3 , e 5 and e 6 are applied to the synthesizer 5 to produce an output electric quantity e 7 . Where e 7 is e 3 ,
It is equal to the sum of e 5 and e 6 , and there is a relationship of e 7 = e 3 + e 5 + e 6 . The electric quantity e 7 is applied to the differential detector 6, and e 7
When the crest value of the signal becomes higher than the predetermined value, the differential detector 6 operates after the time delay φ and a continuous output is generated. Also, the electric quantities e 3 , e 5
And e 6 are added to the level detectors 7, 13, 8, 14, 9, 15 respectively. Each of the level detectors 7 to 9 produces an output during a period in which the instantaneous value of the input electric quantity is in the positive direction from the positive planned value e L , and the level detectors 13 to 15 respectively output the negative value of the instantaneous value of the input electric quantity. Outputs for a certain period in the negative direction from -e L. If any of the outputs of the level detectors 7 to 9 occurs, the OR circuit 10
To the OR circuit 16 when any of the level detectors 13 to 15 produces an output. Further, the electric quantity e 7 is added to the level detectors 18 and 19. The level detector 18 is e
An output is produced when the instantaneous value of 7 is negative, and the level detector 19 outputs e
Output is generated when the instantaneous value of 7 is positive. Phase detector 11, 17
The output of the level detector 18 and the OR circuit 10 or the output of the level detector 19 and the OR circuit 16 are both constant time θ (for example, 60
°) If it continues to occur, it operates and produces output, and the output disappears after a certain period of time (for example, 360 °) elapses after this operating condition disappears. If an output is generated in either one of the phase detectors 11 and 17, an output is generated in the OR circuit 20. Inhibit circuit 12
Produces an output on the differential detector 6 and an output on the OR circuit 20 when there is no output, tripping the breaker. As described above, between the predetermined values e L and −e L of the level detectors 7 to 9 and 13 to 15 and the saturation values e S and −e S of the output electric quantity e 3 of the conversion device 1 shown in FIG. , There is a relationship of | e S |> | e L |
Further, the values I L and -I L of the current I, which make the value of the electricity amount e 3 be e L or -e L , are set to values slightly larger than the maximum outflow current at the time of an internal accident such as unbalanced operation. Further, the time delay φ of the differential detector 6 is set to be slightly longer than the constant time θ of the phase detectors 11 and 17.

【0004】次に図8の応動について説明する。いま各
端子の電流I1A,I1B,I1Cがいずれも小さく、各電流
の瞬時値が図9のIL と−IL の間に常にある場合に
は、各端子の電気量e3 ,e5 ,e6 はいずれも常にe
L と−eL の間にあり、レベル検出器7〜9,13〜15に
はいずれも出力を生じない。このためオア回路10,16に
も出力がなく、位相検出器11,17も不動作で出力を生ぜ
ず、オア回路20にも出力を生じない。この状態で差動検
出器6に出力を生ずれば、インヒビット回路12に出力が
出てしゃ断が行なわれる。保護区間内部に事故がなけれ
ばI1A,I1B,I1Cの和は零であり、且つ各端子の変換
装置1は飽和しないため、各端子1A,1B,1Cの変換装置
1の出力e3 の和も零となる。電気量e5 ,e6 は他の
2端子の電気量e3 と等しいため、各端子とも電気量e
3 ,e5 ,e6 の和は零となり合成装置5の出力電気量
7 も零となる。e7 が零であれば差動検出器6が動作
して出力を生ずることがなく、しゃ断は行なわれない。
保護区間内部に事故がある場合には各端子の電流I1A
1B,I1Cの和は故障点電流と等しくない。このため各
端子とも電気量e3 ,e5 ,e6 の和、即ち、電気量e
7 も故障点電流に対応した値となり、差動検出器6が動
作して出力を生じインヒビット回路12に出力が得られて
しゃ断器が引きはずされる。
Next, the response of FIG. 8 will be described. Now current I 1A of the terminals, I 1B, smaller one I 1C is, when the instantaneous value of the current is always between I L and -I L in FIG. 9, the electric quantity e 3 of each terminal, e 5 and e 6 are always e
It is between L and -e L , and neither of the level detectors 7-9 and 13-15 produces an output. Therefore, the OR circuits 10 and 16 have no output, the phase detectors 11 and 17 do not operate and produce no output, and the OR circuit 20 does not produce any output. If an output is generated in the differential detector 6 in this state, an output is output to the inhibit circuit 12 to cut off. If there is no accident inside the protection section, the sum of I 1A , I 1B , and I 1C is zero, and the converter 1 at each terminal does not saturate, so the output e 3 of the converter 1 at each terminal 1A, 1B, 1C. Also becomes zero. Since the electric quantities e 5 and e 6 are equal to the electric quantities e 3 of the other two terminals, the electric quantities e 3
The sum of 3 , e 5 , and e 6 becomes zero, and the output electric quantity e 7 of the synthesizer 5 also becomes zero. If e 7 is zero, the differential detector 6 does not operate to produce an output, and the cutoff is not performed.
If there is an accident inside the protection zone, the current I 1A at each terminal,
The sum of I 1B and I 1C is not equal to the fault current. Therefore, each terminal is the sum of the electric quantities e 3 , e 5 , e 6 , that is, the electric quantity e
7 also becomes a value corresponding to the fault point current, the differential detector 6 operates to generate an output, an output is obtained in the inhibit circuit 12, and the breaker is tripped.

【0005】次に電流I1A,I1B,I1Cが大きく変換装
置1が飽和した場合について説明する。図10は電流
1A,I1Bが小さく端子1A,1Bでは変換装置1が飽和せ
ず、端子1Cでは電流I1Cが大きく変換装置1が飽和する
ような外部事故時の端子1Aに設けられた装置の応動であ
る。図では電流I1AとI1Bは等しく、且つI1A,I1B
1Cの和は零で各電流とも正弦波形である。電気量
3 ,e5 ,e6 は各々電流I1A,I1B,I1C同一スケ
ールで画かれており、飽和の起こらない電気量e3 ,e
5 は各々電流I1A,I1Bと同一図形で示される。電気量
6 は端子1Cの変換装置1の飽和のため、電流I1Cとは
同一図形とならず、図示のように飽和値eS ,−eS
飽和する波形となる。この飽和のため電気量e7 は外部
事故にも拘らず零とはならず、e6 の波形の飽和期間中
かなりの大きさとなる。このため差動検出器6が動作
し、e7 の波形はe6 波形の飽和が正波で起きている期
間はe7 の瞬時値が負、負波で飽和している期間は正と
なる。e6 波形が正で飽和している期間より若干長い期
間、e6 の瞬時値はeL より正であるため、この間レベ
ル検出器9に出力を生じ、オア回路10に出力を生ずる。
又、e6 波形が正で飽和している期間e7 は波形は負で
あるため、この間レベル検出器18に出力を生ずる。オア
回路10,レベル検出器18の両者に出力があるため、時間
θの後位相検出器11が動作し出力を生ずる。又、e6
形が負で飽和している期間より若干長い期間、e6 は−
L より負であるため、この間レベル検出器15,オア回
路16に出力を生ずる。又、e6 波形が負で飽和している
期間e7 波形は正であるため、この間レベル検出器19に
出力を生ずる。検出器19,オア回路16に共に出力がある
ため、時間θの後位相検出器17が動作し出力を生ずる。
Next, the case where the currents I 1A , I 1B and I 1C are large and the converter 1 is saturated will be described. In FIG. 10, the current I 1A and I 1B are small, and the converter 1 is not saturated at the terminals 1A and 1B, and the current I 1C is large at the terminal 1C, and the converter 1 is provided at the terminal 1A in the event of an external accident. It is a response of the device. In the figure, currents I 1A and I 1B are equal and I 1A , I 1B ,
The sum of I 1C is zero, and each current has a sinusoidal waveform. The electric quantities e 3 , e 5 and e 6 are drawn on the same scale of the currents I 1A , I 1B and I 1C , respectively, and the electric quantities e 3 and e where saturation does not occur.
5 is shown in the same figure as the currents I 1A and I 1B , respectively. Since electric quantity e 6 is the conversion device 1 of the terminal 1C saturated, not the same figure as the current I 1C, the saturation value e S as shown, the waveform is saturated by -e S. Due to this saturation, the electric quantity e 7 does not become zero in spite of an external accident and becomes considerably large during the saturation period of the waveform of e 6 . Therefore differential detector 6 operates, the period in which the instantaneous value of the period e 7 waveform e 7 is the saturation of e 6 waveform has occurred in the positive wave is saturated negative, negative wave is positive . Since the instantaneous value of e 6 is more positive than e L during the period in which the e 6 waveform is positive and slightly longer than the saturation period, the level detector 9 produces an output and the OR circuit 10 produces an output during this period.
Further, during the period e 7 in which the waveform of e 6 is positive and saturated, the waveform is negative, so that an output is generated at the level detector 18 during this period. Since both the OR circuit 10 and the level detector 18 have outputs, the phase detector 11 operates after the time θ and produces an output. Also, for a period slightly longer than the period in which the e 6 waveform is negative and saturated, e 6 is −
Since it is more negative than e L , an output is generated in the level detector 15 and the OR circuit 16 during this period. In addition, since the e 7 waveform is positive while the e 6 waveform is negative and saturated, an output is generated to the level detector 19 during this period. Since both the detector 19 and the OR circuit 16 have outputs, the phase detector 17 operates after the time θ and produces an output.

【0006】以上の応動は電流波形の毎周期繰り返され
るため、位相検出器11,17の出力はその復帰時間のため
連続した出力となる。これによりオア回路20に連続出力
が得られ、差動検出器6の動作にも拘らずインヒビット
回路12には出力なく、しゃ断は行なわれない。差動検出
器6の動作には時間遅れφを要し、φはθより長いた
め、オア回路20の出力発生より前に検出器6に出力を生
じ、インヒビット回路12による引きはずしはない。上記
従来技術によれば適当な飽和特性を有する変換装置によ
り、各端子電流に対応した電気量を得、この電気量の和
(差動電気量)が所定条件のとき動作する差動継電器
と、大きさが所定条件にある端子電流に対応した電気量
と差動電気量との間の位相関係に応動する位相比較器の
強調動作により、変換装置が飽和して外部事故時に差動
電気量を生じても事故の内外を識別し得る継電装置が得
られる。
Since the above-mentioned response is repeated every cycle of the current waveform, the outputs of the phase detectors 11 and 17 are continuous outputs due to the recovery time. As a result, a continuous output is obtained in the OR circuit 20, no output is provided to the inhibit circuit 12 regardless of the operation of the differential detector 6, and no interruption is performed. The operation of the differential detector 6 requires a time delay φ, and since φ is longer than θ, an output is generated in the detector 6 before the output of the OR circuit 20 is generated and is not tripped by the inhibit circuit 12. According to the above conventional technique, a converter having an appropriate saturation characteristic is used to obtain an electric quantity corresponding to each terminal current, and a differential relay that operates when the sum of the electric quantities (differential electric quantity) is under a predetermined condition, Due to the emphasizing operation of the phase comparator that responds to the phase relationship between the quantity of electricity corresponding to the terminal current and the quantity of differential electricity that meet the specified conditions, the converter is saturated and the quantity of differential electricity is changed in the event of an external accident. A relay device that can identify the inside and outside of the accident even if it occurs is obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来構
成においては差動検出器6の動作が時間遅れφを有す
る。この時間遅れは変換装置の飽和の有無に関係なく常
に生ずる。従って、引きはずし時間が必ず時間φだけ遅
れるため、高速の引きはずしを必要とするときの妨げと
なる欠点を有する。本発明は上記問題点を解決するため
になされたものであり、電流差動継電方式により変圧器
を保護する装置において、内部事故を高感度に、且つ高
速に検出することができると共に、外部事故時の誤動作
を防止できるディジタル形変圧器保護継電装置を提供す
ることを目的としている。
However, in the conventional configuration, the operation of the differential detector 6 has a time delay φ. This time delay will always occur whether or not the converter is saturated. Therefore, since the trip time is always delayed by the time φ, there is a drawback that it becomes an obstacle when high-speed trip is required. The present invention has been made to solve the above problems, and in a device for protecting a transformer by a current differential relay system, an internal accident can be detected with high sensitivity and at high speed, and external It is an object of the present invention to provide a digital transformer protection relay device that can prevent malfunctions in the event of an accident.

【0008】[0008]

【課題を解決するための手段】請求項1のディジタル形
変圧器保護継電装置は、変圧器の外部事故のうち最大入
力電流が生ずる外部事故時の前記最大入力電流に対して
のみアナログ/ディジタル変換手段が飽和するよう設定
した入力変換手段と、前記入力電流の大きさが前記アナ
ログ/ディジタル変換手段の飽和値付近に達したことを
検出し出力する検出手段と、少なくとも前記検出手段の
出力を条件として動作判定を不動作側に制御する制御手
段とからなる。請求項2では検出手段により検出された
入力電流の極性と、差動電流の極性とが逆極性であるこ
とを判定して出力する判定手段を備え、前記判定手段の
出力が制御手段の条件として加味するようにした。
According to a first aspect of the present invention, there is provided a digital transformer protection relay device, which is an analog / digital converter only for the maximum input current at the time of an external accident in which the maximum input current occurs in the external accident of the transformer. The input conversion means set to saturate the conversion means, the detection means for detecting and outputting that the magnitude of the input current has reached the saturation value of the analog / digital conversion means, and at least the output of the detection means. As a condition, the control means controls the motion determination to the non-motion side. According to a second aspect of the present invention, there is provided a determination unit that determines and outputs that the polarity of the input current detected by the detection unit and the polarity of the differential current are opposite polarities. I tried to add it.

【作用】請求項1に示すものは、各電源に接続された側
の入力変成器は、変圧器の2次側外部事故時の系統2次
電流を最大入力電力とするとき、少なくともこれが入力
した時A/D変換が正しくできる変換比になっている。
又、負荷に接続された入力変成器は、常時の負荷電流は
A/D変換のフルスケール以内となるか、3次側外部事
故時の系統2次電流はA/Dフルスケール以上となるよ
うな変換比に設定されている。したがって3次側外部事
故時のみ、負荷端子出力がリレー入力と異なり、その他
の場合は各リレー入力に等しくなる。そして異なる場合
は差動出力を「0」とし、その他の場合は各変換電気量
及び差動出力を用いて動作判定を行なう。請求項2に示
すものは、請求項1のものと同様に先ず各ディジタルデ
ータから差動分を検出し、これが所定値以上あるとき、
前記所定値以上あるものの全てについて、最初に求めた
差動出力と極性が逆のものがあるかを検討して内外部判
定をする。
According to the first aspect of the present invention, the input transformer connected to each power source receives at least the maximum input power when the secondary current in the secondary side of the transformer is the maximum input power. At this time, the conversion ratio is such that A / D conversion can be performed correctly.
For the input transformer connected to the load, make sure that the load current at all times is within the full scale of A / D conversion, or that the secondary current of the system at the time of an external accident on the tertiary side becomes A / D full scale or more. It is set to a different conversion ratio. Therefore, the load terminal output is different from the relay input only when there is a tertiary external accident, and is equal to each relay input in other cases. If they are different, the differential output is set to "0", and in other cases, the operation determination is performed using the converted electric quantities and the differential outputs. According to a second aspect of the present invention, like the first aspect, first, a differential component is detected from each digital data, and when this is a predetermined value or more,
With respect to all of those having the predetermined value or more, whether there is one having a polarity opposite to that of the differential output obtained first is examined to make an internal / external determination.

【0009】[0009]

【実施例】以下図面を参照して実施例を説明する。図1
は本発明によるディジタル形変圧器保護継電装置の一実
施例の構成図であり、三巻線変圧器に適用したものであ
る。図1において100 は変圧器で、1次,2次側が電源
に接続され、3次側が負荷に接続されている。変圧器10
0 の1次,2次,3次巻線電流I1 ,I2 ,I3 は、夫
々変流器CT1 ,CT2 ,CT3 により系統2次電流i
1 ,i2 ,i3 に変換される。系統2次電流i1
2 ,i3 はディジタル形保護継電装置101 に入力し、
夫々入力変成器1021,1022,1023により、後述する方法
にて所定の大きさの電気量e1 ,e2 ,e3 に変換され
る。電気量e1 ,e2 ,e3 はA/D変換回路103 に入
力する。このA/D変換回路103 はサンプルホールドS
/H,マルチプレクサMUX及びアナログ/ディジタル
変換部A/Dからなるが、本構成は公知であるため詳細
説明は省略する。A/D変換回路103 は、e1 ,e2
3 時系列的にディジタル量に変換し、ディジタルデー
タD1 ,D2 ,D3 としてディジタル演算部(以下MP
Uと称す)104 に出力する。MPU104 ではディジタル
データD1 ,D2 ,D3 を入力して、これらのデータを
もとに、変圧器100 の事故の有無を後述する演算処理か
ら判定し、事故有と判定したときトリップ出力を出力す
る。
Embodiments will be described below with reference to the drawings. Figure 1
1 is a configuration diagram of an embodiment of a digital transformer protection relay device according to the present invention, which is applied to a three-winding transformer. In Fig. 1, 100 is a transformer, the primary and secondary sides of which are connected to the power source and the tertiary side of which is connected to the load. Transformer 10
The primary, secondary, and tertiary winding currents I 1 , I 2 , and I 3 of 0 are the system secondary current i 1 by the current transformers CT 1 , CT 2 and CT 3, respectively.
Converted to 1 , i 2 , i 3 . System secondary current i 1 ,
i 2 and i 3 are input to the digital protective relay 101 ,
The input transformers 1021, 1022 and 1023 respectively convert the electric quantities e 1 , e 2 and e 3 of a predetermined magnitude by a method described later. The electric quantities e 1 , e 2 , e 3 are input to the A / D conversion circuit 103 . This A / D conversion circuit 103 has a sample hold S
/ H, a multiplexer MUX, and an analog / digital conversion unit A / D, but since this configuration is publicly known, detailed description will be omitted. The A / D conversion circuit 103 uses e 1 , e 2 ,
e 3 It is converted into a digital value in a time series, and is converted into digital data D 1 , D 2 , D 3 by a digital operation unit (hereinafter referred to as MP
(U) 104. The MPU 104 inputs the digital data D 1 , D 2 and D 3 and judges the presence or absence of an accident in the transformer 100 from the arithmetic processing described later based on these data, and when it judges that there is an accident, it outputs the trip output. Output.

【0010】次に作用について説明する。入力変成器10
21は変圧器100 の2次側外部事故時の系統2次電流e1
を最大入力電流i1maxとするとき、少なくともi1max
力時に、A/Dが正しくアナログ/ディジタル変換でき
るように、系統2次電流i1 を電気量e1 に変換するよ
うな変換比に設定する。即ち、i1maxがA/Dのフルス
ケール以内となるように設定される。全く同様に、入力
変成器1022は変圧器100 の1次側外部事故時の2次電流
2maxがA/Dのフルスケール以内となるような変換比
に設定する。入力変成器1023は少なくとも系統2次電流
3 における常時の負荷電流i3LがA/Dフルスケール
以内となるが。3次側外部事故時の系統2次電流i3max
はA/Dのフルスケール以上となるような変換比に設定
する。以上のような入力変成器1021,1022,1023の変換
比の設定により、3次側外部事故時のみディジタルデー
タD3がリレー入力i3 の大きさに等しくはないが、他
の状態ではディジタルデータD1 ,D2 ,D3 共、リレ
ー入力i1 ,i2 ,i3 に等しくなる。
Next, the operation will be described. Input transformer 10
21 is the system secondary current e 1 at the secondary side external accident of the transformer 100
Is a maximum input current i 1max , a conversion ratio is set so that the system secondary current i 1 is converted into an electric quantity e 1 so that A / D can be properly analog / digital converted at least when i 1max is input. . That is, i 1max is set within the full scale of A / D. In exactly the same manner, the input transformer 1022 is set to a conversion ratio such that the secondary current i 2max at the time of a primary side external fault of the transformer 100 is within the full scale of A / D. In the input transformer 1023, at least the constant load current i 3L in the system secondary current i 3 is within the A / D full scale. System secondary current i 3max in case of external accident on the tertiary side
Is set to a conversion ratio such that the full scale of A / D is obtained. By setting the conversion ratios of the input transformers 1021, 1022, and 1023 as described above, the digital data D 3 is not equal to the magnitude of the relay input i 3 only in the case of an external accident on the tertiary side, but in other states the digital data D 3 is not. D 1, D 2, D 3 both equal to relay input i 1, i 2, i 3 .

【0011】次にMPU104 の演算処理を図2にて説明
する。図2はMPU104 の演算処理のフローチャートの
一例である。図2において、処理f1 ではディジタルデ
ータD1 ,D2 ,D3 を読込む処理を行ない、処理f2
にてこのデータD1 ,D2 ,D3 から、 Dd =D1 +D2 +D3 ……………………………………………(1) なる演算により差動電流の瞬時値データDd を求める。
処理f3 ではディジタルデータD3 の絶対値と所定値L
0 との比較処理を行なう。電流f3 において、D3 がL
0 より大きいと判定したとき、次の処理はf4 となる。
一方、D3 がL0 に等しいかもしくはこれより小さいと
判定したとき、次の処理は処理f5 となる。処理f4
は差動電流の瞬時値データDd を“0”の値にセットす
る。次に処理f5 ではデータD1 ,D2 ,D3 及びDd
を用いて動作判定を行なう。この動作判定方法は公知で
あり詳細説明は省略するが、例えば、 |ΣDd |−K1 ||ΣD1 |+|ΣD2 |+|ΣD3 ||≧K0 ……(2) K1 ,K0 :定数。Σ:振幅値演算。なる動作式により
動作判定を行なう。なお、(2) 式に関する演算では、変
流比整合を入力変成器1021,1022,1023にて行なうと仮
定している。以上図1,図2を用いて説明した本発明の
一実施例における応動を以下説明する。なお、本発明の
応動は、MPU104 における演算処理での応動であり、
離散的なディジタルデータの応動であるが、説明を簡明
にするためアナログ波形で説明する。
Next, the arithmetic processing of the MPU 104 will be described with reference to FIG. FIG. 2 is an example of a flowchart of the arithmetic processing of the MPU 104. In FIG. 2, in process f 1 , the process of reading digital data D 1 , D 2 , D 3 is performed, and process f 2
Then, from this data D 1 , D 2 , D 3 , D d = D 1 + D 2 + D 3 ………………………………………… (1) Instantaneous value data D d is obtained.
In the process f 3 , the absolute value of the digital data D 3 and the predetermined value L
Performs comparison processing with 0 . At current f 3 , D 3 is L
When it is determined that the value is greater than 0 , the next process is f 4 .
On the other hand, when it is determined that D 3 is equal to or smaller than L 0 , the next process is process f 5 . In the process f 4 , the instantaneous value data D d of the differential current is set to the value “0”. Next, in the process f 5 , the data D 1 , D 2 , D 3 and D d
Is used to make a motion determination. Although this operation determination method is publicly known and its detailed description is omitted, for example, | ΣD d | -K 1 || ΣD 1 | + | ΣD 2 | + | ΣD 3 || ≧ K 0 (2) K 1 , K 0 : a constant. Σ: Amplitude value calculation. The motion determination is performed by the following motion formula. In the calculation related to the equation (2), it is assumed that the current transformer ratio matching is performed by the input transformers 1021, 1022, 1023. The response in the embodiment of the present invention described above with reference to FIGS. 1 and 2 will be described below. The response of the present invention is a response in the arithmetic processing in the MPU 104,
Although it is a response to discrete digital data, an analog waveform will be used for the sake of simplicity.

【0012】図3は系統健全状態での系統での電気量e
1 ,e2 ,e3 波形であり、1次側が流入、2次及び3
次側が流出で示している。入力変成器1023は常時の負荷
状流入力に対しては、A/Dの出力が飽和しないような
変換を行なう。従って、電気量e3 のレベルは図2の処
理f3 における所定値L0 に対応する入力変成器1023の
出力レベルL0pより低い。一方、電気量e1 ,e2 につ
いては、飽和しないようになっているため、e1
2 ,e3 から算出される差動電流ed ((2) 式のΣD
d に相当する)は“0”となる。この差動電流ed は動
作判定においては、(2) 式で示したΣDd として算出さ
れる。このΣDd は理想的には零であるが、変流器の誤
差,変流比の不整合等の誤差のため零とはならず、その
ため、(2) 式に示したK0 即ち、検出感度をもたせ、Σ
d が一定値以上とならなければ不動作と判定するよう
にしている。この検出感度K0 が低いほど、保護性能が
優れたものといえる。ところで図1で示したディジタル
保護継電装置においては、このK0 を考える上で、更に
A/Dにおける量子化誤差を考えなければならない。即
ち、系統電流I1 ,I2 ,I3 に対し、大電流域までを
A/Dにおける変換を可能とする。即ち、フルスケール
を大きくとると、小電流入力時(例えば、負荷潮流)に
は、量子化誤差のため大きさの判定に誤差が生ずる。特
に、3次側電流I3 に関しては以下の理由でこの問題が
顕著である。
FIG. 3 shows the amount of electricity e in the system when the system is healthy.
Waveforms of 1 , e 2 , e 3 with primary side inflow, secondary and 3
The outflow shows the next side. The input transformer 1023 performs a conversion for a constant load-like flow input so that the A / D output is not saturated. Therefore, the level of the electric quantity e 3 is lower than the output level L 0p of the input transformer 1023 corresponding to the predetermined value L 0 in the process f 3 of FIG. On the other hand, since the electric quantities e 1 and e 2 are not saturated, e 1 ,
Differential current e d calculated from e 2 and e 3 (ΣD in equation (2)
( corresponding to d ) is “0”. This differential current e d is calculated as ΣD d shown in equation (2) in the operation determination. This ΣD d is ideally zero, but it does not become zero due to the error of the current transformer and the error such as mismatch of the current ratio. Therefore, K 0 shown in the equation (2), that is, the detection Give sensitivity, Σ
If D d does not exceed a certain value, it is determined to be inoperative. It can be said that the lower the detection sensitivity K 0, the better the protection performance. By the way, in the digital protective relay device shown in FIG. 1, in consideration of K 0 , it is necessary to further consider the quantization error in A / D. That is, it is possible to convert the system currents I 1 , I 2 , and I 3 up to a large current region in A / D. That is, if the full scale is large, an error occurs in the determination of the size due to a quantization error when a small current is input (for example, load flow). In particular, this problem is remarkable for the tertiary current I 3 for the following reason.

【0013】変圧器100 の1次もしくは2次での外部事
故時には、夫々2次もしくは1次側の電源からの通過電
流のみ流れるのに対し、3次での外部事故は両電源から
の電流が通過することになる。そのため、一般に、変流
器CT3 のCT比はCT1 ,CT2 に較べ大きく設定は
されているが、それでもなお、変圧器100 の1次もしく
は2次の外部事故時のi1 ,i2 の大きさと3次の外部
事故時のi3 とを較べると、後者は前者の数倍から十倍
程度である。従って、i3maxをフルスケールとすると、
3 に関する量子化誤差はi1 ,i2 に対して極めて大
となり、検出感度K0 を大きくせざるを得ない。本発明
では上述したように、i3LがA/Dフルスケール以内で
あればよいよう設定するため、I3 即ち、i3 及びe3
が小さくとも量子化,誤差を小さくすることができ、e
d (ΣDd )の算出、即ち、検出感度K0 を低くするこ
とができる。
In the case of an external accident in the primary or secondary of the transformer 100, only the passing current from the secondary or primary side power source flows respectively, whereas in the external accident in the tertiary, the current from both power sources is Will pass through. Therefore, in general, the CT ratio of the current transformer CT 3 is set to be larger than that of CT 1 and CT 2 , but nevertheless, i 1 and i 2 at the time of a primary or secondary external accident of the transformer 100 are still set. Comparing the magnitude of i and i 3 at the time of the third external accident, the latter is several to ten times that of the former. Therefore, if i 3max is full scale,
The quantization error for i 3 is extremely large for i 1 and i 2 , and the detection sensitivity K 0 must be increased. In the present invention, as described above, since i 3L is set to be within the A / D full scale, I 3 ie i 3 and e 3
Even if is small, quantization and error can be reduced, and e
The calculation of d (ΣD d ), that is, the detection sensitivity K 0 can be lowered.

【0014】図4は変圧器100 の内部事故状態を示す。
内部事故時e1 ,e2 は流入となり、e3 は背後に電源
がないため流れない。従って、図2の処理において、処
理f3 における判定では|D3 |≦L0 であり、e3
対する飽和がないように構成したときに全く同じ判定と
なり、差動電流ed 、即ち、ΣDd を用いて高速に判定
することができる。なお、e1 ,e2 に対し、A/D変
換でのフルスケールがL1p,L2pで示す値であった場合
も、差動電流ed は破線のようになるが、動作判定上支
障はない。
FIG. 4 shows an internal fault condition of the transformer 100.
At the time of an internal accident, e 1 and e 2 will flow in, and e 3 will not flow because there is no power source behind it. Therefore, in the process of FIG. 2, the determination in the process f 3 is | D 3 | ≦ L 0 , and when the configuration is such that there is no saturation with respect to e 3 , the determination is exactly the same and the differential current e d , that is, ΣD It can be determined at high speed using d . Even when the full scale in A / D conversion is a value indicated by L 1p and L 2p with respect to e 1 and e 2 , the differential current e d is as indicated by the broken line, but this is a hindrance to the operation determination. There is no.

【0015】図5は変圧器100 の2次側外部事故を示
す。このときe1 は流入,e2 は流出,e3 は図4と同
じく流れない。従って、この外部事故時には図4の場合
と同じく、図5における電流f3 では|D3 |≦L0
判定となり、e3 に対する飽和がないときと同じとな
る。そして差動電流ed は零、即ち、ΣDd は零であ
り、外部事故は正しく判定できる。
FIG. 5 shows a secondary side external accident of the transformer 100. At this time, e 1 flows in, e 2 flows out, and e 3 does not flow as in FIG. Therefore, at the time of this external accident, as in the case of FIG. 4, the determination of | D 3 | ≦ L 0 is made for the current f 3 in FIG. 5, which is the same as when there is no saturation for e 3 . The differential current e d is zero, that is, ΣD d is zero, and the external accident can be correctly determined.

【0016】図6は変圧器100 の3次側外部事故を示
す。このときe1 及びe2 は流入,e3 は流出となる。
電気量e3 の大きさは前述したように、A/D変換のフ
ルスケールL0p以上となる、従って、本来差動電流
d 、即ち、ΣDd は生じないはずであるが、e3 がA
/D変換のフルスケールl0 に対応するレベルl0pを越
える時間t2 〜t3 及びt7 〜t8 の間、フルスケール
0pを越えた大きさに相当する差動電流ed が破線のよ
うに生ずる。しかし、図2における処理f3 での判定レ
ベルL0 に対応してレベルL0pをe3 が越えるのは時間
1 〜t4 及びt6 〜t9 の間となり、この間の差動電
流Dd の計算は図2で説明したように、処理f4 が実行
され零となる。従って、3次側外部事故に対しても誤動
作を防止できる。なお、流出がある内部事故に関するリ
レー動作は、従来と同じく可能である。即ち、I2 もし
くはI3 に流出があったにしても流出電流は負荷電流相
当であり、この大きさの電流に対しては上述したよう
に、A/Dがフルスケールオーバーすることはない。従
って、従来と全く同じく動作判定が(2) 式により実行で
きることは明らかである。以上説明したように、本実施
例によれば電流入力のダイナミックレンジを小さくして
いるので検出感度を高感度にでき、内部事故の検出を高
感度に検出できる。又、電流入力のダイナミックレンジ
の縮小化に伴ない発生する外部事故時の差電流は、入力
レベルを監視することで外部事故と判定することができ
るため、動作判定上零と制御することができる。従っ
て、外部事故時の誤動作を防止できる。更に、外部事故
時の誤動作を防止できるため、動作判定に遅延が不要で
あり、高速にトリップ出力を出力できる。
FIG. 6 shows an external accident on the tertiary side of the transformer 100. At this time, e 1 and e 2 are inflow, and e 3 is outflow.
As described above, the magnitude of the electric quantity e 3 is equal to or larger than the full scale L 0p of A / D conversion. Therefore, the differential current e d , that is, ΣD d should not be generated, but e 3 is A
/ D during the time that exceeds the level l 0p corresponding to the full scale l 0 transformation t 2 ~t 3 and t 7 ~t 8, differential current e d corresponding to a size exceeding the full scale l 0p broken line Occurs like. However, e 3 exceeds the level L 0p corresponding to the determination level L 0 in the process f 3 in FIG. 2 between times t 1 to t 4 and t 6 to t 9 , and the differential current D during this time. As described in FIG. 2, the calculation of d becomes zero by executing the process f 4 . Therefore, it is possible to prevent malfunction even in the case of a tertiary external accident. It should be noted that the relay operation related to the internal accident with leakage is possible as in the conventional case. That is, even if there is an outflow in I 2 or I 3 , the outflow current is equivalent to the load current, and for a current of this magnitude, the A / D does not full scale over as described above. Therefore, it is clear that the motion determination can be executed by the equation (2) exactly as in the conventional case. As described above, according to this embodiment, the dynamic range of the current input is made small, so that the detection sensitivity can be made high and the internal accident can be detected with high sensitivity. Further, the difference current at the time of an external accident, which occurs with the reduction of the dynamic range of the current input, can be judged as an external accident by monitoring the input level, so that it can be controlled to zero in operation judgment. . Therefore, it is possible to prevent malfunction in the event of an external accident. Further, since it is possible to prevent malfunction in the event of an external accident, there is no need for delay in motion determination, and trip output can be output at high speed.

【0017】上記実施例によれば、電流入力i1
2 ,i3 のうちいずれが変圧器の3次入力であるか予
め既知の場合を例に示したが、一般的には、いずれの入
力が3次に接続されてもよい構成となっている。その場
合は、次のように変形すればよい。先ず、入力変成器10
21,1022,1023における変流比整合は、公知のタップ選
択をとる方法にする。タップ選択により変流比整合は自
由に選択できる。又、入力変成器1021,1022,1023の変
換比は、変圧器の1次,2次,3次いずれの外部事故時
においても、系統2次電流i1 ,i2 に対し、A/Dが
フルスケールをオーバーしないように設定する。次にM
PU104 の演算処理においては図2のフローを図7の処
理に変更すればよい。但し、同一処理記号は同一処理を
示す。図7において、処理f3AではディジタルデータD
1 ,D2 ,D3 のすべてについて、所定値L0 との比較
を行なう。そして、その結果、いずれも所定値L0 以下
のときは、次に処理f5 を実行する。一方、いずれか1
つが所定値L0 を越えていたときは次に処理f6 を実行
する。処理f6 においてはディジタルデータD1
2 ,D3 のうち処理f3Aで所定値L0 以上になったデ
ィジタルデータの全てについて、処理f2 で求めたDd
との極性の判定を行なう。そして、逆極性のものがあっ
たときは次に処理f4 を実行し、なかったときは次に処
理f5 を実行する。他の処理は図2に同じであり説明は
省略する。
According to the above embodiment, the current inputs i 1 ,
The case where it is known in advance which one of i 2 and i 3 is the tertiary input of the transformer has been shown as an example, but generally, any input may be connected to the tertiary. There is. In that case, it may be modified as follows. First, the input transformer 10
The current ratio matching at 21, 1022, and 1023 is performed by a known tap selection method. The current ratio matching can be freely selected by tap selection. In addition, the conversion ratio of the input transformers 1021, 1022, and 1023 is A / D for the system secondary currents i 1 and i 2 in any of the primary, secondary, and tertiary external faults of the transformer. Set so that full scale is not exceeded. Then M
In the arithmetic processing of the PU 104, the flow of FIG. 2 may be changed to the processing of FIG. However, the same processing symbol indicates the same processing. In FIG. 7, in process f 3A , digital data D
All 1 , 1 , D 2 , and D 3 are compared with a predetermined value L 0 . Then, as a result, when all are less than or equal to the predetermined value L 0 , the process f 5 is executed next. On the other hand, either one
If one exceeds the predetermined value L 0 , then the process f 6 is executed. In the process f 6 , the digital data D 1 ,
Of all D 2 and D 3 , the digital data D d obtained in the process f 2 for all the digital data which has become the predetermined value L 0 or more in the process f 3A.
The polarity of and is determined. Then, if there is a reverse polarity, the process f 4 is executed next, and if not, the process f 5 is executed next. The other processes are the same as those in FIG. 2 and their explanations are omitted.

【0018】以上説明した図1及び図7による他の実施
例の応動を以下説明する。上述したように、e1
2 ,e3 がA/D変換のフルスケールをオーバーする
のは変圧器3次の外部事故時と、変圧器の内部事故時の
場合のみとなるよう設定したある。従って、最初のケー
スを考えると図6に示したように、フルスケールl0p
越えるのは変圧器100 の3次側入力の端子のみであり、
このとき、ldとl3 は逆極性、即ち、Dd とD3 は逆
極性である。一方、後者のケースを考えると図4で示し
たように、変圧器100 の2次側及び3次側入力のいずれ
もフルスケールを越えることはありうる。しかしながら
その場合、差動電流ed と1次側の電流は同じ極性とな
る。故に、図7において、処理f6 において、逆極性と
判定したときは外部事故であり、いずれも同じ極性のと
きは内部事故であり、図2の処理と同じ作用となる。以
上説明したように、図1の構成において入力変成器102
1,1022,1023の変換比を変圧器のいずれの外部事故時
にもA/Dがフルスケールオーバーしないように選択
し、MPU104 における処理を図7の処理とすることに
より、図1及び図2で示した構成での効果に加え、リレ
ー入力の接続が任意に選択できる装置を提供することが
できる。
The response of the other embodiment shown in FIGS. 1 and 7 will be described below. As mentioned above, e 1 ,
It has been set that e 2 and e 3 exceed the full scale of A / D conversion only when there is an external accident in the third transformer and when there is an internal accident in the transformer. Therefore, considering the first case, as shown in FIG. 6, it is only the terminal of the tertiary side input of the transformer 100 that exceeds the full scale l 0p ,
At this time, l d and l 3 have opposite polarities, that is, D d and D 3 have opposite polarities. On the other hand, considering the latter case, as shown in FIG. 4, both the secondary side input and the tertiary side input of the transformer 100 may exceed the full scale. However, in that case, the differential current e d and the primary current have the same polarity. Therefore, in the process f 6 in FIG. 7, it is an external accident when it is determined that the polarity is opposite, and when it is the same polarity, it is an internal accident, and the same action as the process in FIG. 2 is obtained. As explained above, in the configuration of FIG.
By selecting the conversion ratio of 1,1022,1023 so that the A / D does not full scale over in the event of any external accident of the transformer, and making the processing of MPU104 the processing of FIG. In addition to the effect of the configuration shown, it is possible to provide a device in which the connection of the relay input can be arbitrarily selected.

【0019】以上述べた他、種々変形した構成が可能で
あり、以下に列挙して説明する。 (1) 以上の説明では三巻線変圧器を保護する場合で説明
したが、二巻線変圧器に対しても全く同様に適用できる
ことは明らかである。例えば、図7の演算処理の適用を
考えれば、リレー入力数を2つと考えるだけでよい。 (2) 図2及び図7の処理においては、処理f4 でDd
零に制御する方法で説明したが、これに限定されるもの
ではなく、以下のように種々変形できる。 Dd の大きさに拘らずDd を零に近い所定値に常に
制御する。 Dd をDd ′=Dd /K(K:1より大きな定数)
とする。 Dd を制御する代りに、差動電流の振幅演算結果Σ
d を零もしくは又はの手法と同じ手法で制御す
る。 Dd を制御する代りに、(2) 式の左辺即ち、(動作
量−抑制量)の算出値を零もしくは零に近い値に制御す
る。 (3) 以上の説明では外部事故と判定したとき、差動電流
等の動作判定式内の値を制御する方法で説明したが、単
に、出力をロックする方式であってもよい。 (4) 以上の構成では、変流比整合を入力変成器でとるよ
うにしていたが、これに限るものではなく、MPUでの
演算処理で行なってもよい。その場合には、図2及び図
7の処理において、処理f1 と処理f2 の間に、ディジ
タルデータD1 ,D2 ,D3 を変流比整合係数を乗算す
る処理が入る。そして、処理f2 及び処理f5 におい
て、この変流比整合係数を考慮した処理が行なわれるこ
とはいうまでもない。 (5) 以上の説明では電流入力のダイナミックレンジの設
定を入力変成器で行なう構成を用いていたが、これに限
らず例えば、公知の増幅回路を図1の構成の入力変成器
1021,1022,1023とS/Hの間に挿入する構成であって
もよく、増幅機能を有する回路が入力変成器とA/Dの
間のいかなる所にあってもよいことは明らかである。
In addition to the above, various modified configurations are possible and will be listed and described below. (1) In the above description, the case of protecting a three-winding transformer was described, but it is clear that the same can be applied to a two-winding transformer. For example, considering the application of the arithmetic processing of FIG. 7, it is only necessary to consider the number of relay inputs as two. (2) In the processing of FIGS. 2 and 7, the method of controlling D d to zero in the processing f 4 has been described, but the present invention is not limited to this, and various modifications can be made as follows. Always controlled to a predetermined value close to zero regardless D d to the magnitude of D d. Let D d be D d ′ = D d / K (K: a constant larger than 1)
And Instead of controlling D d , the differential current amplitude calculation result Σ
Control D d in the same way as zero or. Instead of controlling D d , the left side of equation (2), that is, the calculated value of (motion amount-suppression amount) is controlled to zero or a value close to zero. (3) In the above description, the method of controlling the value in the operation determination formula such as the differential current when it is determined to be an external accident has been described, but the output may be simply locked. (4) In the above configuration, the current transformer ratio matching is performed by the input transformer, but the present invention is not limited to this, and the MPU may perform arithmetic processing. In that case, in the processes of FIGS. 2 and 7, a process of multiplying the digital data D 1 , D 2 and D 3 by the current ratio matching coefficient is inserted between the processes f 1 and f 2 . Needless to say, the processing f 2 and the processing f 5 are performed in consideration of the current-changing ratio matching coefficient. (5) In the above description, the configuration in which the dynamic range of the current input is set by the input transformer is used, but the present invention is not limited to this. For example, a known amplifier circuit may be used as the input transformer having the configuration shown in FIG.
It is obvious that the circuit may be inserted between 1021, 1022, 1023 and the S / H, and the circuit having the amplifying function may be located anywhere between the input transformer and the A / D.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば電
流差動継電方式により変圧器を保護する装置において、
以下に列挙する効果を奏する。 (1) 電流入力のダイナミックレンジを小さくしているた
め、検出感度を高感度にでき、内部事故の検出を高感度
にでき、(2) 電流入力のダイナミックレンジの縮小化に
伴ない差電流が発生するが、外部事故検出の手段によ
り、該差動電流でも誤動作しないよう制御され、(3)
(2) の方法による外部事故防止の手段により、従来の同
様な動作判定が可能であり動作遅延のないディジタル形
変圧器保護継電装置を提供することができる。
As described above, according to the present invention, in the device for protecting the transformer by the current differential relay system,
The effects listed below are produced. (1) Since the dynamic range of the current input is made small, the detection sensitivity can be made high, the internal accident can be made highly sensitive, and (2) the difference current due to the reduction of the dynamic range of the current input can be reduced. Although it occurs, it is controlled by the external accident detection means so that it does not malfunction even with the differential current, (3)
By the method of preventing an external accident by the method of (2), it is possible to provide a digital transformer protection relay device capable of performing the same operation determination as in the past and having no operation delay.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるディジタル形変圧器保護継電装置
の構成の一実施例。
FIG. 1 shows an embodiment of the configuration of a digital transformer protection relay device according to the present invention.

【図2】図1におけるMPUの演算処理のフローチャー
ト。
FIG. 2 is a flowchart of a calculation process of the MPU in FIG.

【図3】系統が健全状態での系統での電気量e1
2 ,e3 の波形図。
[Fig. 3] Electricity e 1 in the system when the system is in a healthy state,
Waveforms of e 2 and e 3 .

【図4】変圧器の内部事故時の波形図。FIG. 4 is a waveform diagram at the time of an internal accident of a transformer.

【図5】変圧器の2次側外部事故時の波形図。FIG. 5 is a waveform diagram at the time of a secondary side external accident of the transformer.

【図6】変圧器の3次側外部事故時の波形図。FIG. 6 is a waveform diagram at the time of an external accident on the tertiary side of the transformer.

【図7】本発明によるMPUの演算処理の他の実施例の
フローチャート。
FIG. 7 is a flowchart of another embodiment of the MPU arithmetic processing according to the present invention.

【図8】従来技術による構成例。FIG. 8 shows a configuration example according to a conventional technique.

【図9】系統からの入力と出力との関係を示す図。FIG. 9 is a diagram showing a relationship between inputs and outputs from a system.

【図10】入力電流が大きく飽和した状態を説明する図。FIG. 10 is a diagram illustrating a state where an input current is highly saturated.

【符号の説明】101 ディジタル形保護継電装置 1021,1022,1023 入力変成器103 A/D変換回路 104 ディジタル演算部[Description of symbols] 101 Digital protective relay 1021, 1022, 1023 Input transformer 103 A / D converter circuit 104 Digital operation unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電流差動継電方式を用いて変圧器を保護
するディジタル形変圧器保護継電装置において、前記変
圧器の外部事故のうち最大入力電流が生ずる外部事故時
の前記最大入力電流に対してのみアナログ/ディジタル
変換手段が飽和すうよう設定した入力変換手段と、前記
入力電流の大きさが前記アナログ/ディジタル変換手段
の飽和値付近に達したことを検出し出力する検出手段
と、少なくとも前記検出手段の出力を条件として動作判
定を不動作側に制御する制御手段とを備えたことを特徴
とするディジタル形変圧器保護継電装置。
1. A digital transformer protection relay device for protecting a transformer by using a current differential relay system, wherein the maximum input current at the time of an external accident in which the maximum input current occurs among the external accidents of the transformer. Input conversion means set so that the analog / digital conversion means saturates, and detection means for detecting and outputting that the magnitude of the input current has reached near the saturation value of the analog / digital conversion means. A digital transformer protection relay device, comprising at least control means for controlling an operation determination to a non-operation side on the condition of an output of the detection means.
【請求項2】 検出手段により検出された入力電流の極
性と、差動電流の極性とが逆極性であることを判定して
出力する判定手段を備え、前記判定手段の出力が制御手
段の条件として加味されたことを特徴とする請求項1記
載のディジタル形変圧器保護継電装置。
2. A determination means for determining that the polarity of the input current detected by the detection means and the polarity of the differential current are opposite polarities and outputting the determination result, wherein the output of the determination means is a condition of the control means. The digital relay protection relay device according to claim 1, wherein the digital relay protection relay device is added.
JP4223271A 1992-07-30 1992-07-30 Digital type transformer protection relay device Pending JPH0654439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223271A JPH0654439A (en) 1992-07-30 1992-07-30 Digital type transformer protection relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223271A JPH0654439A (en) 1992-07-30 1992-07-30 Digital type transformer protection relay device

Publications (1)

Publication Number Publication Date
JPH0654439A true JPH0654439A (en) 1994-02-25

Family

ID=16795509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223271A Pending JPH0654439A (en) 1992-07-30 1992-07-30 Digital type transformer protection relay device

Country Status (1)

Country Link
JP (1) JPH0654439A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083313A (en) * 1998-04-21 1999-11-25 니시무로 타이죠 System protection relay equipment
WO2007027598A1 (en) * 2005-08-30 2007-03-08 Abb Technology Ag Method and system for through fault detection in electrical devices
CN106410749A (en) * 2015-12-31 2017-02-15 南华大学 Load transformer differential quick-break protection method
CN110676811A (en) * 2019-09-26 2020-01-10 南京南瑞继保电气有限公司 System and method for accelerating faults in protection area of series transformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083313A (en) * 1998-04-21 1999-11-25 니시무로 타이죠 System protection relay equipment
WO2007027598A1 (en) * 2005-08-30 2007-03-08 Abb Technology Ag Method and system for through fault detection in electrical devices
US8451574B2 (en) 2005-08-30 2013-05-28 Abb Technology Ag Method and system for through fault detection in electrical devices
CN106410749A (en) * 2015-12-31 2017-02-15 南华大学 Load transformer differential quick-break protection method
CN110676811A (en) * 2019-09-26 2020-01-10 南京南瑞继保电气有限公司 System and method for accelerating faults in protection area of series transformer
CN110676811B (en) * 2019-09-26 2022-03-29 南京南瑞继保电气有限公司 System and method for accelerating faults in protection area of series transformer

Similar Documents

Publication Publication Date Title
US4281386A (en) Systems for detecting faults in electric power systems
EP0098721A2 (en) Differential protection relay device
EP1929602B1 (en) Method and system for fault detection in electrical power devices
JPH0654439A (en) Digital type transformer protection relay device
JPH04355628A (en) Dc transmission line short circuit detector
US4661877A (en) Transformer protective relay
JP2000312434A (en) Ground leakage breaker and detecting method of ground fault
JP2004088919A (en) Current differential protective relay device
JPH11326393A (en) Fault detector circuit for dc current detector
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP2801770B2 (en) Monitoring circuit of AC / DC converter
JP2577424B2 (en) Current differential relay method
SU972624A1 (en) Device for monitoring absence of losing in phase disconnected in cycle of single-phase reconnection of power transmission line
JP5072085B2 (en) Device for detecting resistance ground fault current
KR19980074129A (en) Distribution System Fault Detector
JP2002017037A (en) Pcm carrier relay
JPH0619405B2 (en) Disconnection detection device for PT secondary circuit
JP2744107B2 (en) Monitoring device
JPH09261871A (en) Lead-in bus bar voltage selection method in system control
KR20210114769A (en) Circuit breaker and circuit for detecting signal of circuit breaker
SU1101958A1 (en) Device for overall protecting of electric installations
JP3940492B2 (en) Digital type protective relay
JPH01170318A (en) Ratio differential relay
JPH0125290B2 (en)
JPH1141794A (en) Ratio differential relay