JPH0515137B2 - - Google Patents

Info

Publication number
JPH0515137B2
JPH0515137B2 JP58142751A JP14275183A JPH0515137B2 JP H0515137 B2 JPH0515137 B2 JP H0515137B2 JP 58142751 A JP58142751 A JP 58142751A JP 14275183 A JP14275183 A JP 14275183A JP H0515137 B2 JPH0515137 B2 JP H0515137B2
Authority
JP
Japan
Prior art keywords
power
frequency
converter
transmission line
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58142751A
Other languages
Japanese (ja)
Other versions
JPS6035921A (en
Inventor
Keisuke Sekya
Kaiichiro Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58142751A priority Critical patent/JPS6035921A/en
Publication of JPS6035921A publication Critical patent/JPS6035921A/en
Publication of JPH0515137B2 publication Critical patent/JPH0515137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、複数の発電機からなる発電所あるい
は発電所を含む交流系統の相互間の交流電力を交
直変換器により直流電力に変換して直流送電線で
直流単独送電している状態から、上記交直変換器
の交流側端の相互間に連系しや断器を介して交流
送電線を連系し交直並列送電に移行する際の同期
併入方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to converting alternating current power between a power plant consisting of a plurality of generators or an alternating current system including power plants into direct current power using an AC/DC converter. Synchronous combination when switching from a state in which direct current is being transmitted solely on the transmission line to AC/DC parallel power transmission by interconnecting the AC transmission line between the AC side ends of the AC/DC converter or interconnecting the AC transmission line via a disconnector. Regarding how to enter.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電力需要の拡大に伴なつて大容量の発電所の建
設が進められているが、立地条件等の制約から負
荷側より遠隔地に建設しなければならないのが現
状であり、長距離、大電力送電を行なう必要がで
てきている。しかし、このような長距離且つ大電
力送電を従来の交流送電系統で行なう場合には、
系統の安定性が問題となることは周知の通りであ
る。
The construction of large-capacity power plants is progressing in line with the expansion of electricity demand, but due to constraints such as location conditions, they must be constructed in areas far from the load side, and long-distance, high-power There is a need to transmit electricity. However, when such long-distance and high-power transmission is carried out using conventional AC transmission systems,
It is well known that system stability is a problem.

そこで、かかる安定性の問題を解決した送電方
式として、近年著しい進歩を遂げている半導体技
術による高信頼度、高耐圧、大電流のサイリスタ
素子を応用した大電力直流送電が脚光を浴びてき
ている。この直流送電技術を応用することによ
り、前述した長距離、大電力送電が可能となる
が、発電機を系統に並入した時の初負荷制御が直
流単独送電の場合は複雑になることと、発電機低
負荷時の周波数制御を不要にするため等による系
統構成の種々の条件により直流送電系統と交流送
電系統とを併設して長距離、大電力送電を行なう
必要性が生じてきている。このような直流送電系
統と交流送電系統(以下、交直並列送電系統)に
より長距離、大電力送電を行なう場合、発電所か
らの交流電力を交直変換所にて直流電力に変換し
て、直流送電線により直流単独送電している状態
から、交直変換所の発電所側端に連系しや断器に
より交流送電線を連系し、交直並列送電に移行す
る過程がある。
Therefore, as a power transmission method that solves this stability problem, high-power DC power transmission that applies high reliability, high voltage resistance, and large current thyristor elements using semiconductor technology, which has made remarkable progress in recent years, has been attracting attention. . By applying this DC power transmission technology, it becomes possible to transmit large amounts of power over long distances as described above, but the initial load control when a generator is connected to the grid becomes complicated when transmitting DC power alone. BACKGROUND OF THE INVENTION Due to various system configuration conditions such as eliminating the need for frequency control when generators are under low load, it has become necessary to install both a DC power transmission system and an AC power transmission system to transmit large amounts of power over long distances. When transmitting large amounts of power over long distances using such DC and AC transmission systems (hereinafter referred to as AC/DC parallel transmission systems), AC power from a power plant is converted to DC power at an AC/DC converter station, and then the DC power is transmitted. There is a process of transitioning from a state in which DC power is being transmitted solely through electric wires to AC/DC parallel power transmission by connecting AC power lines to the power plant side end of the AC/DC converter station using interconnections or disconnectors.

このような交直並列送電に移行する過程におい
ては、発電所の周波数、電圧位相を、上記交流送
電線側の周波数、電圧位相に同期させた後に連系
しや断器を投入しなければならない。この場合、
複数の発電機からなる発電所においては、1台の
発電機の周波数、電圧位相を変化させても、発電
所全体の周波数、電圧位相の変化はわずかである
ので、交流送電線側の周波数、電圧位相に同期に
要する時間は長くかかつた。特に、発電所と交直
変換所とが大きく離れて設置されている場合は、
上記同期に要する時間が一層長くかかつた。
In the process of shifting to AC/DC/parallel power transmission, it is necessary to synchronize the frequency and voltage phase of the power plant with the frequency and voltage phase of the AC transmission line, and then turn on the interconnector or disconnector. in this case,
In a power plant consisting of multiple generators, even if the frequency and voltage phase of one generator are changed, the change in the frequency and voltage phase of the entire power plant is small, so the frequency on the AC transmission line side, It took a long time to synchronize to the voltage phase. In particular, if the power plant and the AC/DC converter station are installed far apart,
The time required for the synchronization was longer.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づいてなされたもので、
その目的とするところは、直流単独送電の状態に
て、交直変換器の交流側と交流送電線側の周波数
および電圧位相の周期を短時間のうちに行ない、
交直並列送電への移行を容易に行なうことが可能
な同期併入方法を提供することにある。
The present invention was made based on the above circumstances, and
The purpose of this is to change the frequency and voltage phase period of the AC side of the AC/DC converter and the AC transmission line side in a short time in the state of DC single power transmission,
The object of the present invention is to provide a synchronous merging method that allows easy transition to AC/DC parallel power transmission.

〔発明の概要〕[Summary of the invention]

本発明による同期併入方法は、交直変換器の交
流側端の周波数を、交流送電線側の周波数に一致
するように交直変換器を制御し、更に直流送電線
側の所定の電気量、つまり電力または電圧または
電流の微小変化により交直変換器の交流側端の電
圧位相が交流電線側の電圧位相に一致するように
交直変換器を制御することにより、上記目的を達
成するようにしている。
In the synchronous joining method according to the present invention, the AC/DC converter is controlled so that the frequency at the AC side end of the AC/DC converter matches the frequency on the AC power transmission line side, and furthermore, a predetermined amount of electricity on the DC power transmission line side, that is, The above object is achieved by controlling the AC/DC converter so that the voltage phase at the AC side end of the AC/DC converter matches the voltage phase at the AC wire side due to minute changes in power, voltage, or current.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明す
る。第1図は複数の発電機を有する発電所の発生
交流電力を、交流負荷系統に交直並列送電するこ
とのできる系統構成の一例を示す図である。第1
図において、PSは複数の発電機G1,G2,……,
Goを有した発電所である。この発電所PSの各発
電機G1,G2,……,Goの出力は、変圧器T1
T2,……,Toにより昇圧され発電所交流母線
AB1に一括されている。発電所PSの交流電力は
発電所交流母線AB1から、交流送電線AL1を介し
て、交直変換所CSの変換所交流母線AB2に送電
される。交直変換所CSでは、発電所PSからの交
流電力の一部を、変換所交流母線AB2から連系し
や断器CB、交流送電線AL2を介して変電所SSに
送電している。上記交流電力の残りは、変換所交
流母線AB2から変換器用変圧器Tcpov、交直変換
器V、直流リアクトルDCRで構成される交直変
換装置CONVにより直流電力に変換され、直流
送電線DLを介して逆変換運転されている直交変
換所CRに送電されている。この直交変換所CRで
は、上記直流電力を直交変換装置INVにて交流
電力に変換し、前述した交流送電線AL2からの交
流電力とともに交流負荷Aに供給している。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an example of a system configuration in which AC power generated by a power plant having a plurality of generators can be transmitted in AC/DC parallel to an AC load system. 1st
In the figure, PS is a plurality of generators G 1 , G 2 , ...,
It is a power plant with G o . The output of each generator G 1 , G 2 , ..., G o of this power plant PS is the output of the transformer T 1 ,
The voltage is boosted by T 2 , ..., T o and the power plant AC bus
It is summarized in AB 1 . AC power from the power station PS is transmitted from the power station AC bus line AB 1 to the conversion station AC bus line AB 2 of the AC/DC conversion station CS via the AC transmission line AL 1 . At the AC/DC converter station CS, a part of the AC power from the power station PS is transmitted from the converter station's AC bus line AB 2 to the substation SS via the interconnector, disconnector CB, and AC transmission line AL 2 . The remainder of the above AC power is converted to DC power from the converter station AC bus AB 2 by the AC/DC converter CONV, which is composed of a converter transformer T cpov , an AC/DC converter V, and a DC reactor DCR, and is then transmitted via the DC transmission line DL. The power is being transmitted to the orthogonal converter station CR, which is in reverse conversion operation. In this orthogonal conversion station CR, the DC power is converted into AC power by the orthogonal conversion device INV, and is supplied to the AC load A together with the AC power from the AC power transmission line AL 2 mentioned above.

第1図において、PT1,PT2は、交流送電線
AL2、変換所交流母線AB2に設けた変成器であ
り、夫々検出信号a,bを出力する。またCT1
CT2は、交直変換装置CONVの交流側、直流側
に夫々設けた変流器であり、夫々検出信号c,d
を出力する。
In Figure 1, PT 1 and PT 2 are AC power transmission lines.
AL 2 is a transformer installed on the AC bus line AB 2 of the converter station, and outputs detection signals a and b, respectively. Also CT 1 ,
CT 2 is a current transformer installed on the AC side and DC side of the AC/DC converter CONV, and receives detection signals c and d, respectively.
Output.

次に第2図を参照して直流単独送電から交直並
列送電に移行する際の手順について説明する。第
2図は交直変換器Vの制御装置をブロツク図にて
示したものである。第2図においてFrefは交直変
換器Vの基準周波数を設定するための基準周波数
設定信号frefを出力する基準周波数設定回路であ
る。FC1は第1図において交流送電線AL2に設け
られた変成器PT1からの検出信号aに基づいて、
交流送電線AL2側の周波数検出信号fc1を出力す
る周波数変換器である。
Next, with reference to FIG. 2, the procedure for transitioning from DC independent power transmission to AC/DC parallel power transmission will be described. FIG. 2 shows a control device for the AC/DC converter V in a block diagram. In FIG. 2, Fref is a reference frequency setting circuit that outputs a reference frequency setting signal fref for setting the reference frequency of the AC/DC converter V. FC 1 is based on the detection signal a from the transformer PT 1 installed on the AC transmission line AL 2 in FIG.
This is a frequency converter that outputs a frequency detection signal fc 1 on the AC power transmission line AL 2 side.

FC2は第1図において変換所交流母線AB2に設
けられた変成器PT2からの検出信号bに基づいて
変換所交流母線AB2側の周波数検出信号fc2を出
力する周波数変換器である。
FC 2 is a frequency converter that outputs a frequency detection signal fc 2 on the converter station AC bus AB 2 side based on the detection signal b from the transformer PT 2 provided on the converter station AC bus AB 2 in FIG. .

上記基準周波数設定器Frefからの基準周波数設
定信号frefと、周波数変換器FC1からの周波数検
出信号fc1とは、切換機構Sにて切換出力され、
上記周波数変換器FC2からの周波数検出信号fc2
比較器COM1にて比較され、比較器COM1から
の偏差出力Δfは積分器Iに送出される。
The reference frequency setting signal fref from the reference frequency setter Fref and the frequency detection signal fc 1 from the frequency converter FC 1 are switched and outputted by a switching mechanism S,
It is compared with the frequency detection signal fc 2 from the frequency converter FC 2 by the comparator COM1, and the deviation output Δf from the comparator COM1 is sent to the integrator I.

Pは、変成器PT2からの検出信号b、及び変流
器CT1からの検出信号cに基づいて、変換所交流
母線AB2側の電力検出信号Pを出力する電力検出
器である。
P is a power detector that outputs a power detection signal P on the converter station AC bus AB 2 side based on the detection signal b from the transformer PT 2 and the detection signal c from the current transformer CT 1 .

BVは、上記切換機構Sの操作により、基準周
波数設定器Fref側に切換えたことを条件に、変換
所交流母線AB2側の電圧位相を調整するために、
直流送電線DL側の電力調整を行なう定電力制御
回路APRに電力制御信号Δpdvを出力する電力制
御信号発生回路である。定電力制御回路APRで
は積分回路Iからの電力指令信号pdpはスイツチ
SWを介して電力検出器Pからの電力検出信号p
及び電力制御信号発生回路BVからの電力制御信
号Δpdvと比較器COM2にて比較され、その偏差
信号に基づいて直流送電線DL側の電力制御を行
なうための電力制御信号idpを出力する。この電
力制御信号idpは、定電流制御回路ACRに送出さ
れる。この定電力流制御回路ACRでは、直流送
電線DLに設けられた変流器CT2からの検出信号
dと上記電力制御信号idpとともに比較器COM3
にて比較され、その偏差信号により定電流制御を
行なうための位相制御信号phcを図示しない位相
制御回路に送出する。
In order to adjust the voltage phase on the conversion station AC bus AB 2 side, BV is set on the condition that the switching mechanism S is operated to switch to the reference frequency setter Fref side.
This is a power control signal generation circuit that outputs a power control signal Δpdv to a constant power control circuit APR that adjusts power on the DL side of the DC transmission line. In the constant power control circuit APR, the power command signal PDP from the integrating circuit I is
Power detection signal p from power detector P via SW
and the power control signal Δpdv from the power control signal generation circuit BV in the comparator COM2, and outputs the power control signal idp for controlling the power on the DC transmission line DL side based on the deviation signal. This power control signal idp is sent to the constant current control circuit ACR. In this constant power flow control circuit ACR, the detection signal d from the current transformer CT2 provided in the DC transmission line DL and the power control signal idp are combined with the comparator COM3.
A phase control signal phc for performing constant current control is sent to a phase control circuit (not shown) using the deviation signal.

次に直流単独送電時における具体的な制御につ
いて第2図を参照して説明する。先づ、切換機構
Sを操作して基準周波数設定信号frefと変換所交
流母線AB2側の周波数検出信号fc2とを比較器
COM1にて比較する。このとき切換機構Sの操
作により電力制御信号発生回路BVは動作しな
い。上記比較器COM1にて偏差信号Δf1=fc2
frefを積分回路Iに与え、積分処理を施こす。積
分回路Iからは電力指令信号pdp1=K∫Δf1dt=
K∫(fc2−fref)dt(Kは定数)が定電力制御回路
APRに与えられるとともに電力検出器Pからの
電力検出信号pにより定電力制御回路APR、定
電流制御回路ACR及び図示しない位相制御回路
を制御し、発電所PSの出力周波数、即ち変換所
交流母線AB2側の周波数と、基準周波数とが一致
させて、発電所PSの出力電力を制御する。なお
説明を簡単にするために、発電所PSと交直変換
所CSとの間における交流送電線AL1での電力損
失は無視する。またスイツチSWは直流単独送電
時の電力指令信号pdpから交直並列送電時の電力
指令信号pdp′に切換えるためのものである。
Next, specific control during direct current power transmission will be explained with reference to FIG. 2. First, operate the switching mechanism S to compare the reference frequency setting signal fref and the frequency detection signal fc 2 on the AC bus AB 2 side of the converter.
Compare on COM1. At this time, the power control signal generation circuit BV does not operate due to the operation of the switching mechanism S. Deviation signal Δf 1 = fc 2 − at the above comparator COM1
fref is given to the integration circuit I to perform integration processing. From the integrating circuit I, the power command signal pdp 1 =K∫Δf 1 dt=
K∫(fc 2 −fref)dt (K is a constant) is a constant power control circuit
APR and the power detection signal p from the power detector P controls a constant power control circuit APR, a constant current control circuit ACR, and a phase control circuit (not shown) to control the output frequency of the power station PS, that is, the AC bus line AB of the converter station. The output power of the power plant PS is controlled by matching the frequency on the second side with the reference frequency. In order to simplify the explanation, the power loss in the AC power transmission line AL 1 between the power station PS and the AC/DC converter station CS will be ignored. The switch SW is used to switch from the power command signal PDP during direct current transmission to the power command signal PDP' during AC/DC parallel power transmission.

次に直流単独送電から交直並列送電へ移行する
際の制御について第2図を参照して説明する。先
づ切換機構Sを操作して交流送電線AL1側の周波
数検出信号fc1と、変換所交流母線AB2側の周波
数検出信号fc2とを比較器COM1にて比較し、偏
差信号Δf2=fc2−fc1が積分回路Iに送出される。
この偏差信号Δf2により積分回路Iからは電力指
令信号pdp2=K∫Δf2dt=K∫(fc2−fc1)dt(Kは定
数)が定電力制御回路APRに与えられるととも
に、電力検出器Pからの電力検出信号pにより定
電力制御回路APR、定電流制御回路ACR及び図
示しない位相制御回路を制御し、発電所PSの出
力周波数、即ち変換所交流母線AB2側の周波数
を、交流送電線AL2側の周波数に一致するように
制御する。
Next, control at the time of transition from DC independent power transmission to AC/DC parallel power transmission will be explained with reference to FIG. 2. First, by operating the switching mechanism S, the frequency detection signal fc 1 on the AC transmission line AL 1 side and the frequency detection signal fc 2 on the AC bus line AB 2 side of the converter station are compared by the comparator COM1, and a deviation signal Δf 2 is obtained. =fc 2 -fc 1 is sent to the integrating circuit I.
Based on this deviation signal Δf 2 , the power command signal pdp 2 =K∫Δf 2 dt=K∫(fc 2 −fc 1 )dt (K is a constant) is given from the integrating circuit I to the constant power control circuit APR, and the power A constant power control circuit APR, a constant current control circuit ACR, and a phase control circuit (not shown) are controlled by the power detection signal p from the detector P, and the output frequency of the power station PS, that is, the frequency on the converter station AC bus AB 2 side, is Control to match the frequency of AC power transmission line AL 2 side.

一般に、受電系統容量は、発電所PSの容量よ
りも大きいので、発電所PS側の周波数は、交流
送電線AL2側の周波数に合致するように制御され
る。
Generally, the power receiving system capacity is larger than the capacity of the power station PS, so the frequency on the power station PS side is controlled to match the frequency on the AC power transmission line AL2 side.

次に切換機構Sの操作により、一定時間後に電
力制御信号発生回路BVが動作する。この電力制
御信号発生回路BVからは電力制御信号Δpdvが
出力され、定電力制御回路APRの入力に加算さ
れる。この電力制御信号Δpdvに応じて直流送電
線DLにおける直流電力は微少変化し、変換所交
流母線AB2側の周波数は極くわずか、且つゆつく
り変化する。よつて変換所交流母線AB2側の電圧
位相と交流送電線AL2側の電圧位相とは合致させ
ることができる。
Next, by operating the switching mechanism S, the power control signal generating circuit BV is activated after a certain period of time. The power control signal Δpdv is output from the power control signal generation circuit BV and added to the input of the constant power control circuit APR. According to this power control signal Δpdv, the DC power in the DC power transmission line DL changes slightly, and the frequency on the converter station AC bus AB 2 side changes very slightly and slowly. Therefore, the voltage phase on the converter AC bus line AB 2 side and the voltage phase on the AC power transmission line AL 2 side can be matched.

上述した変換所交流母線AB2側と交流送電線
AL2側との周波数及び電圧位相を同期させた後、
第3図に示したような同期検出回路にて同期判定
を行ない、第1図における連系しや断器CBを投
入して、交直並列送電に移行させる。
AC bus line AB 2 side of the converter station mentioned above and AC transmission line
After synchronizing the frequency and voltage phase with the AL 2 side,
A synchronization detection circuit as shown in Fig. 3 performs synchronization judgment, and the interconnector/disconnector CB shown in Fig. 1 is turned on to shift to AC/DC parallel power transmission.

第3図において、ΔFは、交流送電線AL2側の
変成器PT1の検出信号aおよび変換所交流母線
AB2側の変成器P2の検出信号bを入力として、
交流送電線AL2及び変換所交流母線AB2の周波数
偏差を検出する周波数偏差検出器である。LD1
は、周波数偏差検出器ΔFからの出力された周波
数偏差が所定値以下になつたときに信号出力する
レベル検出器である。ΔPHは、変成器PT1の検
出信号aおよび変成器PT2の検出信号bを入力と
して、交流送電線AL2及び変換所交流母線AB2
電圧位相偏差を検出する電圧位相偏差検出器であ
る。LD2は、電圧位相偏差検出器ΔPHから出力
された電圧位相偏差が所定値以下になつたときに
信号出力するレベル検出器である。上記レベル検
出器LD1及びLD2の信号出力は、第2図におけ
る切換機構Sの動作信号sとともにアンドゲート
ANDに入力される。アンドゲートANDでは上記
入力信号がアンド条件を満足したときに、第1図
における連系しや断器CBの投入指令としての信
号出力mを出力する。
In Fig. 3, ΔF is the detection signal a of transformer PT 1 on the AC transmission line AL 2 side and the AC bus line of the converter station.
Using the detection signal b of transformer P 2 on the AB 2 side as input,
This is a frequency deviation detector that detects the frequency deviation of the AC power transmission line AL 2 and the converter station AC bus AB 2 . LD1
is a level detector that outputs a signal when the frequency deviation output from the frequency deviation detector ΔF becomes equal to or less than a predetermined value. ΔPH is a voltage phase deviation detector that receives the detection signal a of the transformer PT 1 and the detection signal b of the transformer PT 2 as input and detects the voltage phase deviation of the AC power transmission line AL 2 and the converter station AC bus AB 2 . . LD2 is a level detector that outputs a signal when the voltage phase deviation output from the voltage phase deviation detector ΔPH becomes equal to or less than a predetermined value. The signal outputs of the level detectors LD1 and LD2 are combined with the operation signal s of the switching mechanism S in FIG.
Entered into AND. When the input signal satisfies the AND condition, the AND gate AND outputs a signal output m as a command to close the connection or disconnection CB in FIG. 1.

次に第4図を参照して第1図乃至第3図にて示
した動作手順を、時間tの径過とともに説明す
る。第4図において、時刻t1にて直流送電線DL
における直流電力は増加し、また変換所交流母線
AB2側の周波数fc〓2は交流送電線AL2側の周波数
fc〓1よりも高い状態にある。このとき切換機構S
を操作すると、直流電力は増加するとともに、変
換所交流母線AB2側の周波数fc〓2は徐々に小さく
なる。時刻t1からT1時間径過した時刻t2にて、変
換所交流母線AB2側の周波数fc〓2と交流送電線
AL2側の周波数fc〓1は一致し、このときにレベル
検出器LD1は信号出力する。更に時刻t2から時間
T2径過した時刻t3にて、変換所交流母線AB2側の
周波数fc〓2は、わずかに変動しつつも、変換所交
流母線AB2側と交流送電線AL2側との電圧位相は
一致し、レベル検出器LD2は信号出力する。この
時刻t3にてアンドゲートANDはアンド条件を満
たし、信号出力mにより連系しや断器CBを投入
する。
Next, referring to FIG. 4, the operating procedure shown in FIGS. 1 to 3 will be explained along with the passage of time t. In Figure 4, at time t 1 , the DC transmission line DL
The DC power at the converter station will increase, and the AC bus
AB 2 side frequency fc〓 2 is the frequency of AC transmission line AL 2 side
fc〓 is in a state higher than 1 . At this time, the switching mechanism S
When , the DC power increases and the frequency fc〓 2 on the AC bus line AB 2 of the converter station gradually decreases. At time t 2 , which has elapsed from time t 1 to T 1 hour, the frequency fc 〓 2 on the AC bus AB 2 side of the converter station and the AC transmission line
The frequencies fc〓 1 on the AL 2 side match, and at this time the level detector LD 1 outputs a signal. Further time from time t 2
At time t 3 after T 2 , the frequency fc 〓 2 on the converter station AC bus AB 2 side changes slightly, but the voltage phase between the converter station AC bus AB 2 side and the AC transmission line AL 2 side changes slightly. match, and the level detector LD 2 outputs a signal. At this time t3 , the AND gate AND satisfies the AND condition, and the signal output m connects the connection or turns on the disconnector CB.

以上述べたように本実施例では、変換所交流母
線AB2側の交流送電線AL2側の周波数を一致され
た後、電圧位相を一致させて同期条件を整え、こ
の同期条件により連系しや断器CBを投入して、
直流単独送電から交直並列送電に容易且つ短時間
に移行させることができる。
As described above, in this embodiment, after matching the frequencies of the AC power transmission line AL 2 side on the AC bus line AB 2 side of the converter station, the voltage phases are matched to establish synchronization conditions, and interconnection is established using this synchronization condition. or insert a disconnector CB,
It is possible to easily and quickly shift from DC single power transmission to AC/DC parallel power transmission.

なお、本発明は上記実施例に限定されるもので
はない。即ち、第5図に示すように電力制御信号
発生回路BVの出力は、定電流制御回路ACRに加
算しても、上述した実施例と同一の効果を得るこ
とができる。また定電圧制御にて運転されている
変換器の電圧設定入力に、上記電力制御信号発生
回路BVの出力を作用させても同様の効果が得ら
れる。
Note that the present invention is not limited to the above embodiments. That is, even if the output of the power control signal generation circuit BV is added to the constant current control circuit ACR as shown in FIG. 5, the same effect as in the above embodiment can be obtained. The same effect can also be obtained by applying the output of the power control signal generation circuit BV to the voltage setting input of a converter operated under constant voltage control.

更に、電力制御信号発生回路BVの出力信号
を、定電力制御回路APRの電力検出量フイード
バツクループまたは、定電流制御回路ACRの電
流検出量フイードバツクループに作用させても、
同様の効果が得られることはいうまでもない。
Furthermore, even if the output signal of the power control signal generation circuit BV is applied to the power detection amount feedback loop of the constant power control circuit APR or the current detection amount feedback loop of the constant current control circuit ACR,
Needless to say, similar effects can be obtained.

また、第1図においては複数の発電機G1,G2
……,Goからなる発電所PSと交直変換所CS′と
は、交流送電線AL1にて離れて設置された場合を
示しているが、同一地点に設置された場合、また
交流送電線AL1が変換所交流母線AB2と同一であ
つても適用可能である。更に多端子直流送電系統
における交直並列送電にても適用可能である。
Moreover, in FIG. 1, a plurality of generators G 1 , G 2 ,
The power plant PS consisting of ... , G It is applicable even if AL 1 is the same as the converter station AC bus AB 2 . Furthermore, it is also applicable to AC/DC parallel power transmission in a multi-terminal DC transmission system.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、複数の発電
機を有した発電所あるいは発電所を含む電力系統
の相互間において、交直変換器の交流側端の周波
数を交流送電線側の周波数に一致するように交直
変換器を制御し、更に直流送電線側の所定の電気
量の微少変化により交直変換器の交流側端の電圧
位相が交流送電線側の電圧位相に一致するように
交直変換器を制御するようにしたので、直流単独
送電の状態にて、交直変換器の交流側と交流送電
線側の周波数および電圧位相の同期を短時間のう
ちに行ない、交直並列送電への移行を容易に行な
うことが可能な同期併入方法が提供できる。
As described above, according to the present invention, the frequency of the AC side end of the AC/DC converter is matched to the frequency of the AC transmission line side between power plants having multiple generators or power systems including power plants. The AC/DC converter is controlled so that the voltage phase at the AC side end of the AC/DC converter matches the voltage phase at the AC power line side due to minute changes in a predetermined amount of electricity on the DC power line side. As a result, the frequency and voltage phase of the AC side of the AC/DC converter and the AC transmission line side can be synchronized in a short time in the state of single DC power transmission, making it easy to shift to AC/DC parallel power transmission. A method of synchronous merging that can be performed can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電力系統の構成の
一例を示す系統構成図、第2図及び第3図は本発
明による同期併入方法の一実施例を説明するため
のブロツク図、第4図は同実施例の作用を説明す
るための図、第5図は本発明の他の実施例を説明
するための図である。 G1,G2,……,Go……発電機、PS……発電
所、T1,T2,……,To……変圧器、AB1……発
電所交流母線、AL1,AL2……交流送電線、CS
……交直変換所、AB2……変換所交流母線、CB
……連系しや断器、SS……変電所、Tconv……
変換器用変圧器、V……交直変換器、DCR……
直流リアクトル、CONV……交直変換装置、DL
……直流送電線、CR……直交変換所、INV……
直交変換装置、A……交流負荷、PT1,PT2……
変成器、CT1,CT2……変流器、Fref……基準周
波数設定回路、FC1……周波数変換器、FC2……
周波数変換器、S……切換機構、COM1,COM
2,COM3……比較器、I……積分回路、P…
…電力検出器、BV……電力制御信号発生回路、
SW……スイツチ、APR……定電流制御回路、
ACR……定電流制御回路、AF……周波数偏差検
出回路、ΔPH……電圧位相差検出回路、LD1,
LD2……レベル検出回路、AND……アンドゲー
ト。
FIG. 1 is a system configuration diagram showing an example of the configuration of a power system to which the present invention is applied; FIGS. 2 and 3 are block diagrams for explaining an embodiment of the synchronous merging method according to the present invention; FIG. 4 is a diagram for explaining the operation of the same embodiment, and FIG. 5 is a diagram for explaining another embodiment of the present invention. G 1 , G 2 , ..., G o ... Generator, PS ... Power plant, T 1 , T 2 , ..., T o ... Transformer, AB 1 ... Power plant AC bus, AL 1 , AL 2 ……AC transmission line, CS
...AC/DC converter station, AB 2 ...Converter station AC bus, CB
...grid connection and disconnection, SS...substation, Tconv...
Converter transformer, V...AC/DC converter, DCR...
DC reactor, CONV……AC/DC converter, DL
...DC transmission line, CR...orthogonal converter station, INV...
Orthogonal transformation device, A...AC load, PT 1 , PT 2 ...
Transformer, CT 1 , CT 2 ... Current transformer, Fref ... Reference frequency setting circuit, FC 1 ... Frequency converter, FC 2 ...
Frequency converter, S...Switching mechanism, COM1, COM
2, COM3...Comparator, I...Integrator circuit, P...
...Power detector, BV...Power control signal generation circuit,
SW...Switch, APR...Constant current control circuit,
ACR: Constant current control circuit, AF: Frequency deviation detection circuit, ΔPH: Voltage phase difference detection circuit, LD1,
LD2...Level detection circuit, AND...And gate.

Claims (1)

【特許請求の範囲】 1 発電所を含む一の電力系統の交流電力を、交
直変換装置により直流電力に変換して直流送電線
で他の電力系統に直流単独送電している状態か
ら、前記交直変換装置の交流側端の連系しや断器
を介して前記電力系統間を交流送電線で連系して
交直並列送電に移行する際の前記連系しや断器の
同期併入方法であつて、 前記交直変換装置の交流側端の周波数と前記交
流送電線の周波数との偏差値を積分演算した値を
補正量とし前記交直変換装置の電力指令値に加算
し、前記交直変換装置の交流側端の周波数を前記
交流送電線の周波数に一致するように制御し、 次いで、微小電力設定値をさらに前記電力指令
値に加算し、前記交直変換装置の交流側端の電圧
位相と前記交流送電線の電圧位相との位相差を零
にするように制御し、 前記交直変換装置の交流側端の周波数および電
圧位相と、前記交流送電線の周波数および電圧位
とを同期させて前記連系しや断器を投入させるこ
とを特徴とする同期併入方法。
[Scope of Claims] 1. From a state in which AC power in one power system including a power plant is converted to DC power by an AC/DC converter and solely transmitted as DC power to another power system via a DC transmission line, A method of synchronously joining the interconnector or disconnector at the AC side end of the converter when interconnecting the power systems with an AC transmission line and transitioning to AC/DC parallel power transmission. At that time, a value obtained by integrating the deviation value between the frequency of the AC side end of the AC/DC converter and the frequency of the AC power transmission line is added as a correction amount to the power command value of the AC/DC converter, and The frequency of the AC side end is controlled to match the frequency of the AC power transmission line, and then a minute power setting value is further added to the power command value, so that the voltage phase of the AC side end of the AC/DC converter and the AC Control is performed so that the phase difference with the voltage phase of the power transmission line is zero, and the frequency and voltage phase of the AC side end of the AC/DC converter are synchronized with the frequency and voltage potential of the AC power transmission line to achieve the interconnection. A synchronous merging method characterized by turning on a power cutter.
JP58142751A 1983-08-03 1983-08-03 Synchronization adopting method Granted JPS6035921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58142751A JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58142751A JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Publications (2)

Publication Number Publication Date
JPS6035921A JPS6035921A (en) 1985-02-23
JPH0515137B2 true JPH0515137B2 (en) 1993-02-26

Family

ID=15322731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58142751A Granted JPS6035921A (en) 1983-08-03 1983-08-03 Synchronization adopting method

Country Status (1)

Country Link
JP (1) JPS6035921A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352082B2 (en) * 2004-02-10 2008-04-01 Liebert Corporation Transfer switch device and method
JP5608965B2 (en) 2008-10-06 2014-10-22 シンフォニアテクノロジー株式会社 Electromagnetic clutch with brake

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579230A (en) * 1980-06-17 1982-01-18 Tokyo Shibaura Electric Co Method of synchronously inputting in parallel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579230A (en) * 1980-06-17 1982-01-18 Tokyo Shibaura Electric Co Method of synchronously inputting in parallel

Also Published As

Publication number Publication date
JPS6035921A (en) 1985-02-23

Similar Documents

Publication Publication Date Title
US10998833B2 (en) Distributed voltage source inverters
US10374429B2 (en) Islanding a plurality of grid tied power converters
US8754544B2 (en) Apparatus for synchronizing uninterruptible power supplies
CN109193746B (en) Virtual synchronous generator seamless switching method based on direct-current power distribution center
US20130073109A1 (en) Droop control system for grid-connected synchronization
US9419439B2 (en) Reconnecting a wind power plant to a utility grid
EP3203598B1 (en) Medium and high voltage grid-connected power generation system, medium and high voltage grid-connected system
JP6011739B1 (en) Control device and power conversion system
JPH0991049A (en) Solar photovoltaic power generation system
KR100738571B1 (en) Cascaded H-bridge Inverter System Using CAN Communication Interrupt
JP3508133B2 (en) Grid-connected power converter and control method thereof
CN107078506B (en) Voltage source converter
JPH0515137B2 (en)
US20230082909A1 (en) Relating to bipole power transmission schemes
CN105490308A (en) Middle-high-voltage grid-connected system and middle-high-voltage grid-connected power generation system
CN115313496A (en) Energy storage converter grid-connected control method based on droop control
EP3913762A1 (en) Bipole hvdc power transmission system configurable to monopole operation
JPH03142512A (en) Power generation system
Malkhandi et al. A synchronizing strategy for seamless interconnection of an isolated microgrid
CN110556861B (en) Switching control method applied to island mode and grid-connected mode of micro power grid system
JPH11262275A (en) Inverter device
JP2732667B2 (en) Battery power storage system
RU2747785C1 (en) Method for controlling electric power system
JPS6260898B2 (en)
US11923789B2 (en) Power converter