JPH0284070A - Power conversion device - Google Patents

Power conversion device

Info

Publication number
JPH0284070A
JPH0284070A JP23585488A JP23585488A JPH0284070A JP H0284070 A JPH0284070 A JP H0284070A JP 23585488 A JP23585488 A JP 23585488A JP 23585488 A JP23585488 A JP 23585488A JP H0284070 A JPH0284070 A JP H0284070A
Authority
JP
Japan
Prior art keywords
voltage
phase
circuit
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23585488A
Other languages
Japanese (ja)
Inventor
Kazufumi Ushijima
牛嶋 和文
Yasuhiro Makino
康弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23585488A priority Critical patent/JPH0284070A/en
Publication of JPH0284070A publication Critical patent/JPH0284070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Abstract

PURPOSE:To obtain a power conversion device capable of supplying stable DC power to the load by subtracting midpoint voltage from sinusoidal wave voltage extracted by a filter circuit and by controlling switching elements with a control circuit based on the current reference signal of a lead phase from single phase AC voltage. CONSTITUTION:A control rectification circuit 7a works as a boosting type chopper circuit together with a reactor 2. The output of a resistance type potential divider 24 will be cosine wave voltage if the voltage at the connecting point 7b of capacitors 5 and 6 as a reference. In this case, the phase angle advances 90 deg. more than single phase AC voltage. Consequently, the output signal of a multiplier 13 will also be in lead phase. Transistors 8 and 9 are thereby turned ON and OFF complementarily without causing the period in which a diode 3 or a diode 4 will conduct. As a result, the current of single phase AC power source 1 is shifted in phase against the single phase AC voltage to get to a lead phase and not to be of a distorted waveform.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は家庭用空調装置のコンプレッサモータ駆動イ
ンバータの電源や無停電電源装置(U。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention is applicable to power sources for compressor motor drive inverters of household air conditioners and uninterruptible power supplies (U).

P、S)の蓄電池充電電源などの直流負荷に、安定な電
力を供給する電力変換装置に関する。
The present invention relates to a power conversion device that supplies stable power to a DC load such as a storage battery charging power source (P, S).

(ロ)従来の技術 従来この種の電力変換装置は、特開昭62−22101
4号公報に開示されているように、単相交流電源の電圧
に位相が一致した正弦波信号をもとにした電流制御、い
わゆる力率1.0または、−1,0の運転により直流電
圧の一定制御を行っている。すなわち、同公報の装置に
おいては、太陽電池の発電電力が負荷の消費電力に満た
ない場合に商用電源の交流電力を整流してインバータに
供給し、太陽電池の発14iI力が負荷の消費電力を越
える場合にはその余剰分を商用電源に回生ずるようにし
ている。第4図は従来の電力変換装置の基本回路図であ
り、PSは単相商用電源、Lはりアクドル、RCは整流
手段と回生手段とを兼用する制御整流回路であり、ダイ
オードDI、D2及びコンデンサCI。
(b) Conventional technology Conventionally, this type of power conversion device was disclosed in Japanese Patent Application Laid-Open No. 62-22101.
As disclosed in Publication No. 4, DC voltage is controlled by current control based on a sine wave signal whose phase matches the voltage of a single-phase AC power supply, so-called operation with a power factor of 1.0 or -1.0. is under constant control. In other words, in the device disclosed in the same publication, when the power generated by the solar cells is less than the power consumption of the load, AC power from the commercial power source is rectified and supplied to the inverter, and the power generated by the solar cells exceeds the power consumption of the load. If the amount exceeds that amount, the excess amount is recycled to the commercial power source. Fig. 4 is a basic circuit diagram of a conventional power conversion device, where PS is a single-phase commercial power supply, L-beam accelerator, RC is a controlled rectifier circuit that serves as both rectification means and regeneration means, and diodes DI, D2 and capacitors are connected. C.I.

C2からなる倍電圧整流回路のダイオードDI。Diode DI of the voltage doubler rectifier circuit consisting of C2.

D2に並列にそれぞれトランジスタTR1,TR2を接
続して構成される。Bは大FII電池、D3は逆流防止
用ダイオード、[Vはインバータ、Mはインバータの交
流側負荷である。そして、木場電池Bの発1Iii力が
負荷の消費電力に満たない場合、即ちカ行運転の場合に
は、制御整流回路RCは昇圧型チョブパー回路として動
作し、単相商用電源PSの出力電圧を e =Es+nωt とする時、 2ng<ωt<(2n+l)zの場合には、vl>e>
O・・・・・・(1) (2n+1)π<ωt<2(n+1)πの場合に、0>
e>v2・・・・・・(2) (但しn=o、1,2.・・・・・・)となる。ここで
、vl及びv2はそれぞれコンデンサCI、C2の端子
電圧である。つまり、制御整流回路RCが式(1)、 
(2)を満足させるように昇圧型チョッパー回路として
十分に作動するとき、単相商用電源PSの出力電流波形
iは第5図の(a)のように正弦波となり、それに対応
する電圧e。
It is constructed by connecting transistors TR1 and TR2 in parallel to D2. B is a large FII battery, D3 is a backflow prevention diode, [V is an inverter, and M is an AC load of the inverter. When the output power of the Kiba battery B is less than the power consumption of the load, that is, in the case of continuous operation, the control rectifier circuit RC operates as a step-up chopper circuit, and the output voltage of the single-phase commercial power supply PS is increased. When e = Es + nωt, if 2ng<ωt<(2n+l)z, vl>e>
O... (1) If (2n+1)π<ωt<2(n+1)π, then 0>
e>v2...(2) (however, n=o, 1, 2...). Here, vl and v2 are terminal voltages of capacitors CI and C2, respectively. In other words, the control rectifier circuit RC is expressed by the formula (1),
When the step-up chopper circuit sufficiently operates to satisfy (2), the output current waveform i of the single-phase commercial power supply PS becomes a sine wave as shown in FIG. 5(a), and the corresponding voltage e.

vl、v2の各波形は第5図(b)のようになる。The waveforms of vl and v2 are as shown in FIG. 5(b).

なお、Δv=vl−v2の波形を示している。Note that a waveform of Δv=vl−v2 is shown.

(ハ)発明が解決しようとする課題 しかしながら、コンデンサCI、C2の容量が小さい場
合や負荷の状態が変化すると、第6図(a)及び第6図
(b)に示すように、カ行運転時に式(1)及び(2)
を満足しない期間、つまり制御整流回路RCが昇圧型チ
ジッパー回路として動作せずダイオードDIまたはダイ
オードD4が導通ずる期間Tを生じ、電流iの波形が正
弦波ではなく、ひずみ波となる。
(c) Problems to be Solved by the Invention However, when the capacitances of capacitors CI and C2 are small or when the load condition changes, the problem occurs when the load is turned off, as shown in FIGS. 6(a) and 6(b). Sometimes formulas (1) and (2)
There is a period T in which the control rectifier circuit RC does not operate as a boost type zipper circuit and the diode DI or the diode D4 is conductive, and the waveform of the current i becomes a distorted wave instead of a sine wave.

このような現象によって商用電源の電流波形がひずむと
、商用電源に接続される他の機器に異音や振動あるいは
焼損といった高調波障害を及ぼすという問題があった。
When the current waveform of the commercial power source is distorted due to such a phenomenon, there is a problem in that it causes harmonic interference such as abnormal noise, vibration, or burnout to other devices connected to the commercial power source.

なお、上記したような電流iの波形がひずみ波となるの
を制御するために、PLLによる位相制御回路を含む回
路により制御整流回路を#御し、商用電源から整流手段
へ入力される電流を商用電源電圧に対して進み位相にし
てひずみのない波形に保つ方法も考えられた。しかしな
がら上記回路は複雑となり、また、PLLによる位相制
御回路が商用波数の低周波領域で動作するために応答速
度が遅くなり、さらに負荷の急変など過渡的な変動に対
してPLLが不安定になるといった問題があった。
In order to control the waveform of the current i as described above from becoming a distorted wave, the control rectifier circuit is controlled by a circuit including a PLL phase control circuit, and the current input from the commercial power supply to the rectifier is controlled. A method to maintain a distortion-free waveform by leading the phase of the commercial power supply voltage was also considered. However, the above circuit is complicated, and since the PLL-based phase control circuit operates in the low frequency range of commercial wave numbers, the response speed is slow, and the PLL becomes unstable due to transient fluctuations such as sudden changes in load. There was such a problem.

(ニ)課題を解決するための手段 この発明は、2つの整流素子と2つのコンデンサとから
なり、リアクトルを介して単相交流電源に接続され、負
荷に直流電力を供給する全波倍電圧整流回路と、 2つの整流素子のそれぞれに並列接続される半導体スイ
ッチング素子と、 単相交流電源の電圧の基本波成分と同相の正弦波電圧を
抽出するフィルタ回路と、 2つのコンデンサの接続点における電圧を抽出された正
弦波電圧に加算する加算回路と、加算回路から出力され
る単相交流電圧より進み位相の電流基準信号に基づいて
、単相交流電源の電流がひずみ波形となるのを抑制すべ
くそれぞれの半導体スイッチング素子を制御する制御回
路と、を具備することを特徴とする電力変換装置である
(d) Means for Solving the Problems This invention consists of two rectifying elements and two capacitors, and is connected to a single-phase AC power supply via a reactor, and supplies DC power to a load. a circuit, a semiconductor switching element connected in parallel to each of the two rectifying elements, a filter circuit that extracts a sine wave voltage that is in phase with the fundamental wave component of the voltage of a single-phase AC power supply, and a voltage at the connection point of the two capacitors. The current of the single-phase AC power source is suppressed from becoming a distorted waveform based on the addition circuit that adds the sine wave voltage to the extracted sine wave voltage, and the current reference signal whose phase is ahead of the single-phase AC voltage output from the addition circuit. This is a power conversion device characterized by comprising: a control circuit that controls each semiconductor switching element according to the present invention.

(ホ)作用 フィルタ回路が抽出した単相交流電源の電圧の基本波成
分と同相の正弦波電圧に加算回路にて、2つのコンデン
サの接続点における電圧(以下中点電圧と記す)を加算
すると、単相交流電圧より進み位相の電流基準信号が得
られる。ここで、中点電圧について第2図にて説明する
(e) When the voltage at the connection point of the two capacitors (hereinafter referred to as the midpoint voltage) is added to the sine wave voltage in phase with the fundamental wave component of the voltage of the single-phase AC power supply extracted by the action filter circuit in the addition circuit. , a current reference signal with a phase leading from the single-phase AC voltage can be obtained. Here, the midpoint voltage will be explained with reference to FIG. 2.

同図において、単相交流電源の電圧を81電流の内コン
デンサC2を経路として流れる分をil、またコンデン
サC1を経由して流れる分をllq直流直流負荷電流を
iとし、直流負荷電圧の172の点をコモン電位=0(
V)としてそれぞれのコンデンサCI、C2の端子電圧
vl r vtを取り扱うと、各電流は、それぞれのコ
ンデンサCI、C2のコンデンサ容量c、、c、と電圧
から次の関係がある。
In the figure, the voltage of a single-phase AC power supply is 81 current, of which the portion flowing through capacitor C2 is il, the portion flowing via capacitor C1 is llq, the DC load current is i, and 172 of the DC load voltage is Common potential = 0 (
When the terminal voltage vl r vt of each capacitor CI and C2 is treated as V), each current has the following relationship from the voltage with the capacitor capacitance c, , c of each capacitor CI and C2.

ここで、単相交流電源の電流が、電力変換装置の制御動
作により正弦波に保たれているとすればその電流icは
、 I c=++−L=Ic sin ωt−−−−−−C
2−3)(r c ;波高値)となる。
Here, if the current of the single-phase AC power supply is maintained as a sine wave by the control operation of the power converter, the current ic is I c = ++ - L = Ic sin ωt - - - - - C
2-3) (r c ; wave height value).

通常の場合コンデンサCI、C2は、同容量に選定され
るから、 C,=C,=Cとすると、 (2−1) −(2−2)式より、 変形して 従って、中点電圧は、 v 、+ V!= −−1a cosωt ・・・・・
・(2−6)となり、単相交流電源の電流のみに依存し
、直流電源から電流の大きさ、言い替えれば直流電圧−
定制御が成されている場合の直流電力の大きさに無関係
である。
Normally, capacitors CI and C2 are selected to have the same capacity, so if C, = C, = C, then from equation (2-1) - (2-2), the midpoint voltage is transformed as follows. , v, +V! = −−1a cosωt・・・・・・
・(2-6), which depends only on the current of the single-phase AC power supply, and the magnitude of the current from the DC power supply, in other words, the DC voltage -
It is unrelated to the magnitude of DC power when constant control is performed.

従って上記のフィルタ回路が抽出した正弦波電圧に(2
−6)式で示される中点電圧を減算すれば、単相交流電
圧より進み位相の電流基準信号が得られる。しかも、中
点電圧は、直流負荷電圧一定制御による、単相交流電源
の電流振幅に比例して変化するから直流負荷電力の増加
に比例して進み位相角が変化する。
Therefore, the sine wave voltage extracted by the above filter circuit is (2
-6) By subtracting the midpoint voltage shown by the equation, a current reference signal having a phase leading from the single-phase AC voltage can be obtained. Moreover, since the midpoint voltage changes in proportion to the current amplitude of the single-phase AC power supply under constant DC load voltage control, the leading phase angle changes in proportion to the increase in DC load power.

そして上記電流基準信号に基づいて、制御回路はそれぞ
れのスイッチング素子を制御するので、単相交流電源の
電流の波形は正弦波に保たれる。
Since the control circuit controls each switching element based on the current reference signal, the waveform of the current of the single-phase AC power source is maintained as a sine wave.

(へ)実施例 以下、図面に示す実施例に基づいて、この発明を詳述す
る。これによって、この発明が限定されるものではない
(f) Examples The present invention will now be described in detail based on examples shown in the drawings. This invention is not limited by this.

第1図はこの発明の一実施例を示す電気回路図であり、
!は単相交流電源、2はリアクトル、3゜4は整流素子
であるダイオード、5,6はコンデンサ、7はダイオー
ド3.4及びコンデンサ5゜6によって構成される全波
倍電圧整流回路であり、ダイオード3.4にはそれぞれ
並列に半導体スイッチング素子であるトランジスタ8,
9が接続され、それによって制御整流回路7ユが構成さ
れる。制gIJ整流回路7aの出力端には、列えば家庭
用空調装置のコンプレッサモータ駆動のインバータなど
の比較的消費電力の大きい負荷IOが接続される。
FIG. 1 is an electric circuit diagram showing an embodiment of the present invention.
! is a single-phase AC power supply, 2 is a reactor, 3゜4 is a rectifier diode, 5 and 6 are capacitors, 7 is a full-wave voltage doubler rectifier circuit composed of a diode 3.4 and a capacitor 5゜6, Transistors 8, which are semiconductor switching elements, are connected in parallel to the diodes 3 and 4, respectively.
9 are connected, thereby configuring the control rectifier circuit 7U. A load IO with relatively large power consumption, such as an inverter for driving a compressor motor of a domestic air conditioner, is connected to the output end of the control gIJ rectifier circuit 7a.

11はトランジスタ8,9の0N10FFを制御する制
御回路で、誤差増幅器12、掛算器13、ヒステリシス
コンパレータI4、パルス整形回路15およびアイソレ
ージジンアンプ16.17とで構成される。誤差増幅器
12は、その一方の入力端に印加される、コンデンサ5
の正極の電圧つまりは負荷電圧を分圧器18にて分圧し
た負荷電圧検出信号と他方の入力端に印加される直流基
準電圧V rerとの偏差を増幅し、掛算器13の一方
の入力端に印加する。掛算器!3の他方の入力端には、
後述する、単相交流電源lの電圧より進み位相の電流基
準信号5rerが入力される。ヒステリシスコンパレー
タ14は掛算器I3の出力信号と単相交流電源!の電流
を適当なレベルに変換して出力する電流変成器19の出
力信号とを比較し、PWM(/<ルス幅変調)パルスを
パルス整形回路15へ出力する。パルス整形回路15か
ら出力されるパルスは、それぞれのアイソレーションア
ンプ16.17を介してそれぞれのトランジスタ8゜9
のベースに印加される。
Reference numeral 11 denotes a control circuit for controlling 0N10FF of transistors 8 and 9, and is composed of an error amplifier 12, a multiplier 13, a hysteresis comparator I4, a pulse shaping circuit 15, and isolation amplifiers 16 and 17. The error amplifier 12 has a capacitor 5 applied to one input terminal thereof.
The positive voltage of the voltage, that is, the deviation between the load voltage detection signal obtained by dividing the load voltage by the voltage divider 18 and the DC reference voltage V rer applied to the other input terminal, is amplified and to be applied. Multiplier! At the other input end of 3,
A current reference signal 5rer whose phase is ahead of the voltage of a single-phase AC power source 1, which will be described later, is input. The hysteresis comparator 14 uses the output signal of the multiplier I3 and the single-phase AC power supply! It compares the current with the output signal of the current transformer 19 which converts the current into an appropriate level and outputs it, and outputs a PWM (/< pulse width modulation) pulse to the pulse shaping circuit 15. The pulses output from the pulse shaping circuit 15 are passed through the respective isolation amplifiers 16 and 17 to the respective transistors 8゜9.
applied to the base of

20はフィルタ回路であるバンドパスフィルタで、単相
交流電源1の電圧の基本波成分と同位相の正弦波電圧を
抽出し、抵抗21.22からなる加算回路23へ出力す
る。加算回路23の抵抗22には、負荷電圧を抵抗分圧
器24にて等分した電圧が印加される。加算回路23は
、掛算器13の他方の入力端にその出力端が接続されて
いる。つまり、上記の電流基準信号S rerは加算回
路23によって、バンドパスフィルタ20から出力され
る正弦波電圧に、コンデンサ5.6の両端電圧の1/2
分圧点の電圧を加算して得られるものである。したがっ
て掛算器13の出力する出力信号は、加算回路23が出
力する電流基準信号S re「を誤差増幅器!2の直流
信号で振幅変調されることになる。
Reference numeral 20 denotes a bandpass filter, which is a filter circuit, which extracts a sine wave voltage having the same phase as the fundamental wave component of the voltage of the single-phase AC power supply 1, and outputs it to an adder circuit 23 consisting of resistors 21 and 22. A voltage obtained by equally dividing the load voltage by a resistor voltage divider 24 is applied to the resistor 22 of the adder circuit 23 . The output end of the adder circuit 23 is connected to the other input end of the multiplier 13. In other words, the above current reference signal S rer is added to the sine wave voltage output from the bandpass filter 20 by the addition circuit 23 to 1/2 of the voltage across the capacitor 5.6.
It is obtained by adding the voltages at the voltage dividing points. Therefore, the output signal output from the multiplier 13 is amplitude-modulated by the current reference signal Sre'' output from the adder circuit 23 using the DC signal from the error amplifier!2.

以上の構成において、制御整流回路7aは、リアクトル
2とともに昇圧形チョッパー回路として動作する。この
昇圧形チョッパー回路としての動作は基本的には特開昭
82−221014号公報lζ示されたものと同様であ
るが、この実施例においては、抵抗分圧器24の出力は
コンデンサ5.6の接続点7bの電圧を基準とした場合
、余弦波電圧となり、単相交流電圧より位相角が90度
進んでおり、したかって掛算器13の出力信号ら同様に
進み位相の信号となる。これによってそれぞれのトラン
ジスタ8.9は、制御回路Ifによってダイオード3ま
たはダイオード4が導通する期間を生じることなく相補
にON10 F Fされる。この結果、単相交流電源1
の電流は単相交流電圧に対し移相されて進み位相となり
、ひずみ波形とはならない。
In the above configuration, the controlled rectifier circuit 7a operates together with the reactor 2 as a step-up chopper circuit. The operation of this step-up chopper circuit is basically the same as that shown in Japanese Unexamined Patent Publication No. 82-221014, but in this embodiment, the output of the resistor voltage divider 24 is connected to the capacitor 5.6. When the voltage at the connection point 7b is used as a reference, it becomes a cosine wave voltage and has a phase angle that is 90 degrees ahead of that of the single-phase AC voltage.Therefore, the output signal of the multiplier 13 similarly becomes a signal that has a leading phase. As a result, the respective transistors 8, 9 are turned on in a complementary manner by the control circuit If without producing a period in which the diode 3 or the diode 4 is conductive. As a result, single-phase AC power supply 1
The current is shifted in phase with respect to the single-phase AC voltage and has a leading phase, and does not have a distorted waveform.

第3図は、この実施例の移相効果について誤差増幅器1
2の最大出力を1.0として、その出力振幅を可変した
場合の、掛算器I3の出力信号が単相交流電源の電圧の
位相に対してなす位相差を示す。
FIG. 3 shows the error amplifier 1 regarding the phase shift effect of this embodiment.
2 shows the phase difference that the output signal of the multiplier I3 makes with respect to the phase of the voltage of the single-phase AC power supply when the maximum output of the multiplier I3 is set to 1.0 and the output amplitude is varied.

ここで、kl、k、は、加算回路23の加算比率ツマリ
、バンドパスフィルタ20の出力信号に抵抗分圧器21
の出力信号を加え合わせる比率を高くした場合かに、で
あり、また低い場合かに2である。
Here, kl and k are the summation ratio summaries of the adder circuit 23, and the resistance voltage divider 21 is applied to the output signal of the bandpass filter 20.
When the ratio of adding the output signals of is increased, it is 1, and when it is low, it is 2.

(ト)発明の効果 この発明によれば、単相交流電源の電流波形をひずませ
ろことなく、負荷に対して安定な直流電力を供給できる
電力変換装置が得られろ。また下記のような効果も奏す
るしのである。
(G) Effects of the Invention According to the present invention, a power conversion device can be obtained that can supply stable DC power to a load without distorting the current waveform of a single-phase AC power source. It also has the following effects.

(1)負荷電力が増加するのに伴って、電流の進み角度
が自動的に増加する制御が簡単な回路構成で安定に実現
できる。
(1) Control that automatically increases the current advance angle as the load power increases can be stably realized with a simple circuit configuration.

(2)コンデンサの平均直流電圧のアンバランス電圧が
補正されるフィードバック制御ループが構成されるから
、偏りによるコンデンサのストレスか軽減され、商用電
源に対して偶数高調波電流を発生さけることがない。
(2) Since a feedback control loop is configured in which the unbalanced voltage of the average DC voltage of the capacitor is corrected, stress on the capacitor due to bias is reduced, and even harmonic currents are not generated in the commercial power supply.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:よ二の発明の実施例を示す電気回路図、第2図
はこの発明における進み位相の1f′tL基準信号につ
いての基本原理を説明するための電気回路図、第3図;
よ実音ρjにおける動作特性を示すグラフ、第4図:!
従来例の電力変換装置の基本構成を示す電気回路図、第
5図及び第6図は第4図の各部の波形を示す波形図であ
る。 第 1 閃 ■・・・・・・単相交tl’1M源、  2・・・・・
・リアクトル、3.4・・・・・・ダイオード、5.6
・・・・・・コンデンサ、7・・・・・全波@電圧整流
回路、 8.9・・・・・・トランジスタ、11・・・・・・$
制御回路、20・・・・・・バンドパスフィルタ、23
・・・・・・加算回路。 笥 閃 笥 図
Fig. 1: An electric circuit diagram showing an embodiment of Yoji's invention; Fig. 2 is an electric circuit diagram for explaining the basic principle of the leading phase 1f'tL reference signal in this invention; Fig. 3;
Graph showing the operating characteristics at the actual sound ρj, Figure 4:!
FIGS. 5 and 6 are waveform diagrams showing the waveforms of various parts of FIG. 4. FIGS. 1st Flash■...Single-phase alternating tl'1M source, 2...
・Reactor, 3.4...Diode, 5.6
...Capacitor, 7...Full wave@voltage rectifier circuit, 8.9...Transistor, 11...$
Control circuit, 20...Band pass filter, 23
...Addition circuit. Scroll

Claims (1)

【特許請求の範囲】 1、2つの整流素子と2つのコンデンサとからなり、リ
アクトルを介して単相交流電源に接続され、負荷に直流
電力を供給する全波倍電圧整流回路と、 2つの整流素子のそれぞれに並列接続される半導体スイ
ッチング素子と、 単相交流電源の電圧の基本波成分と同相の正弦波電圧を
抽出するフィルタ回路と、 2つのコンデンサの接続点における電圧を抽出された正
弦波電圧に加算する加算回路と、加算回路から出力され
る単相交流電圧より進み位相の電流基準信号に基づいて
、単相交流電源の電流がひずみ波形となるのを抑制すべ
くそれぞれの半導体スイッチング素子を制御する制御回
路と、を具備することを特徴とする電力変換装置。
[Claims] 1. A full-wave voltage doubler rectifier circuit consisting of two rectifying elements and two capacitors, connected to a single-phase AC power source via a reactor, and supplying DC power to a load; and two rectifiers. A semiconductor switching element connected in parallel to each element, a filter circuit that extracts a sine wave voltage that is in phase with the fundamental wave component of the voltage of the single-phase AC power supply, and a sine wave that extracts the voltage at the connection point of the two capacitors. Based on an adder circuit that adds to the voltage and a current reference signal whose phase is ahead of the single-phase AC voltage output from the adder circuit, each semiconductor switching element is used to suppress the current of the single-phase AC power source from becoming a distorted waveform. A power conversion device characterized by comprising: a control circuit that controls;
JP23585488A 1988-09-20 1988-09-20 Power conversion device Pending JPH0284070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23585488A JPH0284070A (en) 1988-09-20 1988-09-20 Power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23585488A JPH0284070A (en) 1988-09-20 1988-09-20 Power conversion device

Publications (1)

Publication Number Publication Date
JPH0284070A true JPH0284070A (en) 1990-03-26

Family

ID=16992237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23585488A Pending JPH0284070A (en) 1988-09-20 1988-09-20 Power conversion device

Country Status (1)

Country Link
JP (1) JPH0284070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328728A (en) * 1992-05-18 1993-12-10 Sanken Electric Co Ltd Ac/dc converter
WO2017115621A1 (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Power conversion device
JP2017121162A (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Electric power conversion system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328728A (en) * 1992-05-18 1993-12-10 Sanken Electric Co Ltd Ac/dc converter
WO2017115621A1 (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Power conversion device
JP2017121162A (en) * 2015-12-28 2017-07-06 ダイキン工業株式会社 Electric power conversion system
US10218287B2 (en) 2015-12-28 2019-02-26 Daikin Industries, Ltd. Power conversion device

Similar Documents

Publication Publication Date Title
JP3390007B2 (en) Emergency power supply
US5045989A (en) PWM power supply eliminating modulation-frequency components from ground potentials
US5373196A (en) Combination static/dynamic inverter
JP2607033B2 (en) Active three-phase power conditioner
EP0500789B1 (en) An uninterrupted power supply system having improved power factor correction circuit
KR940007716B1 (en) Continuous current control type power factor correct circuit
US8503205B2 (en) AC/DC converter with a PFC and a DC/DC converter
JP5323426B2 (en) Power converter
US5604669A (en) Resonant, current mode regulated, half-bridge power supply
JPS6253178A (en) Power unit for inverter circuit
JP4765015B2 (en) Power converter
JPH0284070A (en) Power conversion device
JPS6258871A (en) Control method for chopper device
JPS58141699A (en) Motor controller
JPH08223923A (en) Current-mode switching stabilized power-supply apparatus
JPH0265667A (en) Converter controller
JP3211944B2 (en) Inverter device
JPH0628927Y2 (en) Standby uninterruptible power supply
JPH07120222B2 (en) Power converter
JP2001086737A (en) Power supply
JPH0686539A (en) Converter circuit
JPH10127046A (en) Control circuit for step-up converter
JPH0318275A (en) Switching power device
JP3349213B2 (en) Control circuit of self-control converter
KR930003008B1 (en) Pulse width modulation inverter control system