JPH0278327A - Blocking filter for indoor power line carrier - Google Patents

Blocking filter for indoor power line carrier

Info

Publication number
JPH0278327A
JPH0278327A JP22863288A JP22863288A JPH0278327A JP H0278327 A JPH0278327 A JP H0278327A JP 22863288 A JP22863288 A JP 22863288A JP 22863288 A JP22863288 A JP 22863288A JP H0278327 A JPH0278327 A JP H0278327A
Authority
JP
Japan
Prior art keywords
circuit
power
phase injection
power line
opposite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22863288A
Other languages
Japanese (ja)
Inventor
Hajime Tachikawa
立川 肇
Masao Kako
加来 雅郎
Junji Shiokawa
淳司 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22863288A priority Critical patent/JPH0278327A/en
Publication of JPH0278327A publication Critical patent/JPH0278327A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a blocking filter formed to have a broad band with a few number of stages or a small constant by providing a 1st circuit connected in series with a power line and offering a high impedance to a carrier frequency, dividing the 1st circuit into two and providing an opposite phase injection circuit to the midpoint. CONSTITUTION:The 1st circuit connecting in series with the power line, offering a low impedance at a commercial power frequency (50/60Hz) and a high impedance at a carrier frequency (100-450kHz) is divided into two (captions 1, 3) and the opposite phase injection circuit 2 is provided on the midpoint. The opposite phase injection circuit 2 consists mainly of a differential amplifier type power amplifier and a coupling circuit and inverts the phase of a carrier signal injected from a live line and injects the resulting signal to the original live line. Thus, the carrier signal leaked from the circuit 3 being the 1st circuit is almost cancelled by the output signal of the opposite phase injection circuit 2 at the power live line where the opposite phase injection circuit 2 exists and then the carrier signal leaked to the power supply side via the circuit 1 is attenuated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は屋内電力線(搬送波信号を重畳して負荷機器を
監視制御し、また通話を行う屋内電力線搬送波システム
のブロッキングフィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a blocking filter for an indoor power line carrier system that superimposes a carrier signal on an indoor power line to monitor and control load equipment and also performs telephone calls.

〔従来の技術〕[Conventional technology]

このようなシステムのブロッキングフィルタとtては、
実開昭56−68351号や特開昭61−212927
号などが挙げられる。そして、その基本構成は電力線に
直列に挿入接続した。商用電源周波数に対して低インピ
ーダンスとなり搬送波周波数に対して高インピーダンス
となる第1の回路を有し、かつこの第1の回路の接続位
置に対して商用電源側の電力線間に接続した。商用電源
周波数に対して高インピーダンスとなり搬送波周波数に
対して低インピーダンスとなる第2の回路を有している
The blocking filter for such a system is:
Utility Model Publication No. 56-68351 and Japanese Patent Application Publication No. 61-212927
Examples include the number. Its basic configuration was inserted and connected in series to the power line. It has a first circuit that has a low impedance with respect to the commercial power frequency and a high impedance with respect to the carrier wave frequency, and is connected between the power lines on the commercial power source side with respect to the connection position of the first circuit. It has a second circuit that has high impedance with respect to the commercial power supply frequency and low impedance with respect to the carrier wave frequency.

この第1と第2の回路は具体的にはバンドエリミネータ
1ンフイルタまたはローパスフィルタを構成している。
Specifically, the first and second circuits constitute a band eliminator filter or a low-pass filter.

さらに電力線が単相3線である場合には負荷側の活線た
る2電力線間に搬送波を伝達させる第3の回路を有して
いる。この第3の回路は具体的には直列共撮回路や、コ
ンデンサのみの回路であったり、一端を中性線に接続し
たトランス利用の回路となっている。以上の構成忙よっ
て、搬送波信号が屋内側からブロッキングフィルタの外
側(電源側)へ漏洩するのを防止している。なお、第3
の回路は搬送波信号を一方から他方へ伝運することによ
って通信範囲を拡げるもので異相開信号伝達手段と呼ば
れている。
Further, when the power line is a single-phase three-wire power line, a third circuit is provided for transmitting a carrier wave between two power lines that are live lines on the load side. Specifically, this third circuit is a series shared circuit, a circuit using only a capacitor, or a circuit using a transformer with one end connected to a neutral line. The above configuration prevents the carrier signal from leaking from the indoor side to the outside (power supply side) of the blocking filter. In addition, the third
The circuit expands the communication range by transmitting the carrier signal from one side to the other, and is called a different phase open signal transmission means.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術をスペクトラム拡散通信用
として適用しようとすると、つまり広帯域化しようとす
るとバンドエリミネーシlンフィルタの段数が多くなっ
たり、あるいはローパスフィルタの部品定数が犬ぎ(な
って1寸法やコストな?の面での課題が提起されていた
However, when trying to apply the above-mentioned conventional technology to spread spectrum communication, that is, when trying to widen the band, the number of stages of the band elimination filter increases, or the component constants of the low-pass filter become too large (one size or less). Issues were raised in terms of cost.

本発明の目的は少ない段数あるいは小さな定数にて広帯
域化したブロッキングフィルタを提供することにある。
An object of the present invention is to provide a blocking filter that has a wide band with a small number of stages or small constants.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、電力線に直列に挿
入接続した。商用電源周波数に対して低インピーダンス
となり搬送波周波数に対して高インピーダンスとなる第
1の回路ya1′2分割し、その中間の位置に逆相注入
回路を設ける。
In order to achieve the above object, the present invention connects a power line in series. A first circuit ya1'2 having a low impedance with respect to the commercial power frequency and a high impedance with respect to the carrier wave frequency is divided into two parts, and an anti-phase injection circuit is provided at an intermediate position.

〔作用〕[Effect]

2分割した第1の回路は、その中間に設けた逆相注入回
路から見た電力線のインピーダンスの変化が少な(なる
ように働く。また、逆相注入回路は電力線の活線から注
出した搬送波信号を逆相にして元の活線に注入し1元の
搬送波信号乞打消すので電源側への漏洩防止機能を有し
ている。
The first circuit divided into two circuits works so that the impedance of the power line changes little when viewed from the reverse phase injection circuit installed in the middle. Since the signal is reversed in phase and injected into the original live wire to cancel the original carrier wave signal, it has a leakage prevention function to the power supply side.

〔実施例〕〔Example〕

以下1本発明の一実施例を図面馨用いて説明する。第1
図は本発明を適用したブロッキングフィルタの一構成例
を示すブロック図であって、商用電源の電力の進行方向
暑実線矢印で示し、搬送波信号の漏洩方向を破線矢印で
示したものである。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram showing a configuration example of a blocking filter to which the present invention is applied, in which the traveling direction of power from a commercial power source is indicated by a hot solid line arrow, and the leakage direction of a carrier wave signal is indicated by a broken line arrow.

図において、1は電力線に直列に挿入接続した。In the figure, 1 is inserted and connected in series to the power line.

商用電源周波数(50fiz / 60 Hz )に対
して低インピーダンスとなり搬送波周波数(IQOKk
〜450KHz)に対して高インピーダンスとなる第1
の回路である。
It has low impedance with respect to the commercial power frequency (50fiz / 60Hz) and the carrier wave frequency (IQOKk
~450KHz) with high impedance.
This is the circuit.

また、3は1と同一構成の回路であり、2は回路1と回
路2の中間に設けられた逆相注入回路である。そして、
4は単相3線である電力線の負荷側の活線たる2電力線
間に搬送波信号を伝達させる第3の回路であって、異相
開信号伝達回路である。
Further, 3 is a circuit having the same configuration as 1, and 2 is an anti-phase injection circuit provided between circuit 1 and circuit 2. and,
4 is a third circuit for transmitting a carrier wave signal between two live power lines on the load side of a single-phase three-wire power line, and is a different-phase open signal transmission circuit.

tこで、逆相注入回路2は主に差動増幅形パワーアンプ
と結合回路からなり、活線から注出した搬送波信号をほ
ぼ逆相にして元の活線に注入するものである。したがっ
て、逆相注入回路2のある部分の電力線の活線では、第
1の回路である回路3から漏洩してきた搬送波信号は逆
相注入回路2の出力信号とほぼ相殺させられてしまう。
Here, the anti-phase injection circuit 2 mainly consists of a differential amplification type power amplifier and a coupling circuit, and injects the carrier wave signal extracted from the live line into almost the opposite phase to the original live line. Therefore, in the live line of the power line in the part where the anti-phase injection circuit 2 is located, the carrier wave signal leaked from the circuit 3, which is the first circuit, is almost canceled out by the output signal of the anti-phase injection circuit 2.

この結果、・第1の回路である回路1を介して電源側へ
漏洩する搬送波信号は問題とならない程度に減衰してし
まう。
As a result, the carrier wave signal leaking to the power supply side via the first circuit, circuit 1, is attenuated to such an extent that it does not pose a problem.

次に第1図の構成の具体例を第2図および第3図に示し
て説明する。第2図においては第1図と同一物は同一番
号としである。第1の回路1,3はキャパシタンスC1
とインダクタンスL、の並列共振回路からなるものであ
る。7〜12は電力線に接。
Next, a specific example of the configuration shown in FIG. 1 will be described with reference to FIGS. 2 and 3. In FIG. 2, the same parts as in FIG. 1 are designated by the same numbers. The first circuit 1, 3 has a capacitance C1
It consists of a parallel resonant circuit with an inductance L and an inductance L. 7 to 12 are connected to the power line.

続される端子であって、端子7〜9は電源側へ。Terminals 7 to 9 are connected to the power supply side.

また端子10〜12は負荷(屋内)側へ接続される。Further, terminals 10 to 12 are connected to the load (indoor) side.

端子8は電源側の中性線(アース)へ接続されるととも
に、直接、端子11に接続される。端子7とIQはそれ
ぞれ一方の活線に接続されるとともに。
Terminal 8 is connected to a neutral line (ground) on the power supply side, and is also directly connected to terminal 11. Terminals 7 and IQ are each connected to one live wire.

1路1の並列共振回路と回路3の並列共振回路を直列に
接続した線路によって結ばれている。端子9と12はそ
れぞれ他方の活+ij!IC接続されるとともに、同様
に2つの並列共振回路χ介して結ばれている。5は端子
7と8の間に接続されたバリスタであり、同様に、6は
端子8と9の間に接続されたバリスタであって、電源側
からのサージ乞吸収するものである。異相開信号伝達回
路4はその1次側を端子10 、11間に接続したとす
ると、2次側は端子11 、12間に接続されるもので
あって1巻数比1 : 10パルストランス13とカッ
プリングコンデンサおよび、その放電用抵抗からなる。
The parallel resonant circuit of circuit 1 and the parallel resonant circuit of circuit 3 are connected by a line connected in series. Terminals 9 and 12 are each connected to the other active +ij! In addition to being IC-connected, they are also connected via two parallel resonant circuits χ. 5 is a varistor connected between terminals 7 and 8; similarly, 6 is a varistor connected between terminals 8 and 9, which absorbs surges from the power supply side. Assuming that the different phase open signal transmission circuit 4 has its primary side connected between terminals 10 and 11, its secondary side is connected between terminals 11 and 12, and is connected to a pulse transformer 13 with a turns ratio of 1:10. Consists of a coupling capacitor and its discharge resistor.

パルストランス13は1次側、2次側とも一方を端子1
1に接続しており、他方はそれぞれカップリングコンデ
ンサと放電抵抗の並列回路を介して端子10または12
に接続しである。ちなみに、設定値の例としては、パル
ストランス13のインダクタンスL3は15μHであり
、カップリングコンデンサのキャパシタンスC6は0.
68μFであり、放電抵抗の抵抗値RdはIMΩである
The pulse transformer 13 has both the primary side and the secondary side connected to terminal 1.
1, and the other terminal is connected to terminal 10 or 12 through a parallel circuit of a coupling capacitor and a discharge resistor, respectively.
It is connected to. By the way, as examples of set values, the inductance L3 of the pulse transformer 13 is 15 μH, and the capacitance C6 of the coupling capacitor is 0.
The resistance value Rd of the discharge resistor is IMΩ.

さて、逆相注入回路2は第1の回路である並列共振回路
間と端子8(または端子11)との間に接続される。本
実施例では電力線が3線式となっているので、差動増幅
形パワーアンプ14’Y中心とする逆相注入回路と、同
じ(パワーアンプ15ン中心とする逆相注入回路との2
系統となっている。両者は同一構成であるので、ここで
はパワーアンプ14に関してだけ述べることにする。な
お、差動増幅形パワーアンプ14(15)の負帰還回路
16を第3図に示しており、ともに説明していく。差動
増幅形パワーアンプ14の非反転入力部は端子8に接続
さし、かつボリュームRvとコンデンサ(キャパシタン
スC4)の直列回路を介して反転入力部に接続される。
Now, the anti-phase injection circuit 2 is connected between the parallel resonant circuit, which is the first circuit, and the terminal 8 (or terminal 11). In this embodiment, since the power line is a three-wire system, there are two types of circuits: one is an anti-phase injection circuit centered on the differential amplification type power amplifier 14'Y, and the other is an anti-phase injection circuit centered on the same (power amplifier 15').
It is systematic. Since both have the same configuration, only the power amplifier 14 will be described here. Note that the negative feedback circuit 16 of the differential amplification type power amplifier 14 (15) is shown in FIG. 3, and will be explained together with it. The non-inverting input section of the differential amplification type power amplifier 14 is connected to the terminal 8, and is also connected to the inverting input section via a series circuit of a volume Rv and a capacitor (capacitance C4).

このRvとC4の直列回路はパワーアンプ14の位相補
償回路であって適宜設定されるものである4゜一方、パ
ワーアンプ14の反転入力部はインダクタ。
This series circuit of Rv and C4 is a phase compensation circuit of the power amplifier 14, and is set appropriately at 4°.On the other hand, the inverting input part of the power amplifier 14 is an inductor.

(L2)とコンデンサ(C2)の直列共振回路を介して
回。
(L2) and capacitor (C2) through a series resonant circuit.

路1と3の中間にある活線に接続されるとともに、。and is connected to the live wire midway between lines 1 and 3.

負帰還回路16を介して出力部に接続される。そして、
パワーアンプ14の出力部はコンデンサ(C3)Yfし
てコンデンサ(C1)とインダクタ(Ll)の並列共振
回路に接続される。この逆相注入回路2内の並列共振回
路(C1,Ll)は先述の回路1と3の中間にある活線
に接続されるもので、その設定値は第1の回路1または
回路3における並列共振回路と同一となっている。次に
負帰還回路16は第3図に示すように、インダクタンス
L2のインダクタとキャパシタンスC2のコンデンサと
の直列共振回路と、・インダクタンス五のインダクタと
キャパシタンス2C2のコンデンサとの並列共振回路と
を直列に接続し、かつC2のコンデンサに並列に抵抗値
Rfの抵抗を並列に接続した構成となっている。ここで
部品定数の一例を挙げると、キャパシタンスC1ヲ0.
033μFとし、インダクタンスLIY15μFとした
とキ、。
It is connected to the output section via the negative feedback circuit 16. and,
The output section of the power amplifier 14 is connected to a parallel resonant circuit of a capacitor (C1) and an inductor (Ll) through a capacitor (C3) Yf. The parallel resonant circuit (C1, Ll) in this anti-phase injection circuit 2 is connected to the live wire between circuits 1 and 3, and its setting value is the same as the parallel resonant circuit in the first circuit 1 or circuit 3. It is the same as a resonant circuit. Next, as shown in FIG. 3, the negative feedback circuit 16 connects in series a series resonant circuit of an inductor with an inductance of L2 and a capacitor with a capacitance of C2, and a parallel resonant circuit of an inductor with an inductance of 5 and a capacitor with a capacitance of 2C2. A resistor having a resistance value Rf is connected in parallel to the capacitor C2. Here, to give an example of component constants, capacitance C1 is 0.
033μF and inductance LIY15μF.

インダクタンスL2は1.6μH,キャパシタンスc2
と03は0.33μF、抵抗RfはIKΩ、キャパシタ
ンスC4は2.2μF程度となる。
Inductance L2 is 1.6μH, capacitance c2
and 03 are 0.33 μF, resistance Rf is IKΩ, and capacitance C4 is about 2.2 μF.

このような構成により、端子10 、11間に搬送波の
電圧voが生じて、今1回路1と3の間の活線に電圧v
lが生じたとすると、パワーアンプ14の出力Iには若
干の遅れの後に電圧−Voが生じて先述の活線の電圧v
1を搬送波周波数を電圧Oに戻そうとする。この結果1
回路lから端子7側へ漏洩する搬送波信号は大幅に減衰
する。
With this configuration, carrier wave voltage vo is generated between terminals 10 and 11, and voltage v is now generated on the live line between circuits 1 and 3.
If l occurs, the voltage -Vo will occur at the output I of the power amplifier 14 after a slight delay, and the voltage of the live wire v
1 to return the carrier frequency to voltage O. This result 1
The carrier wave signal leaking from the circuit 1 to the terminal 7 side is significantly attenuated.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電力線に直列に挿
入接続した搬送波周波数(100Kk〜450KHz)
に対して高インピーダンスとなる第1の回路を設け、こ
の第1の回路を2分割するとともに中間の位置に逆相注
入回路を設げたので、第1の回路から漏洩した搬送波信
号は逆相注入回路の出力信号により相殺されて電源側(
屋外側)へ漏洩せず、しかもこの効果を得るに必要な構
成は比較的簡単であるので寸法やコストなどの面での課
題が改善される。
As explained above, according to the present invention, the carrier wave frequency (100Kk to 450KHz) inserted and connected in series to the power line
A first circuit that has a high impedance is provided, and this first circuit is divided into two, and an anti-phase injection circuit is provided in the middle, so that the carrier signal leaking from the first circuit is injected into an anti-phase injection circuit. It is canceled out by the output signal of the circuit and the power supply side (
Since the structure required to obtain this effect is relatively simple, problems in terms of size and cost are improved.

なお1回路1と3のインダクタはアモルファスコアを用
いても本発明は有効であり、逆相注入回路のパワーアン
プ14 、15の電源を端子7〜9の部分から供給して
もよい。
Note that the present invention is effective even if amorphous cores are used as the inductors of one circuit 1 and 3, and the power for the power amplifiers 14 and 15 of the reverse phase injection circuit may be supplied from the terminals 7 to 9.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図は第1図の具体的構成を示す回路図、第3図は第
2図の差動増幅形パワーアンプの負帰還回路16の具体
的構成を示す回路図である。 2・・・逆相注入回路、 14 、15・・・差動増幅形パワーアンプ。 16・・・負帰還回路、   4・・・異相開信号伝達
回路、・1.3・・・第1の回路。
FIG. 1 is a block diagram showing one embodiment of the present invention. 2 is a circuit diagram showing a specific configuration of FIG. 1, and FIG. 3 is a circuit diagram showing a specific configuration of the negative feedback circuit 16 of the differential amplification type power amplifier of FIG. 2...Negative phase injection circuit, 14, 15...Differential amplification type power amplifier. 16... Negative feedback circuit, 4... Different phase open signal transmission circuit, 1.3... First circuit.

Claims (1)

【特許請求の範囲】[Claims] 1、電力線に直列に挿入接続した搬送波周波数に対して
高インピーダンスとなる2つの第1の回路と、この2つ
の第1の回路の中間位置に設けられ、上記電力線の活線
から注出した搬送波信号を逆相にして上記活線に注入す
る逆相注入回路とを有することを特徴とする屋内電力線
搬送波システムのブロッキングフィルタ。
1. Two first circuits that have a high impedance with respect to the carrier frequency, which are inserted and connected in series to the power line, and a carrier wave that is installed at an intermediate position between these two first circuits and extracted from the live wire of the power line. A blocking filter for an indoor power line carrier system, comprising a reverse phase injection circuit for injecting a signal into the live line with a reverse phase signal.
JP22863288A 1988-09-14 1988-09-14 Blocking filter for indoor power line carrier Pending JPH0278327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22863288A JPH0278327A (en) 1988-09-14 1988-09-14 Blocking filter for indoor power line carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22863288A JPH0278327A (en) 1988-09-14 1988-09-14 Blocking filter for indoor power line carrier

Publications (1)

Publication Number Publication Date
JPH0278327A true JPH0278327A (en) 1990-03-19

Family

ID=16879383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22863288A Pending JPH0278327A (en) 1988-09-14 1988-09-14 Blocking filter for indoor power line carrier

Country Status (1)

Country Link
JP (1) JPH0278327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256662B2 (en) 2002-08-19 2007-08-14 Tdk Corporation Common mode signal suppressing circuit and normal mode signal suppressing circuit
US7378943B2 (en) 2002-05-20 2008-05-27 Tdk Corporation Noise suppressing circuit
US7423520B2 (en) 2003-03-05 2008-09-09 Tdk Corporation Noise suppressing circuit
CN103516397A (en) * 2013-09-17 2014-01-15 深圳市共进电子股份有限公司 Method and system for separating electric signal based on power line carrier
JP2022158967A (en) * 2021-03-31 2022-10-17 オムロン株式会社 Differential mode/common mode integrated active filter, and electric system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378943B2 (en) 2002-05-20 2008-05-27 Tdk Corporation Noise suppressing circuit
US7256662B2 (en) 2002-08-19 2007-08-14 Tdk Corporation Common mode signal suppressing circuit and normal mode signal suppressing circuit
US7423520B2 (en) 2003-03-05 2008-09-09 Tdk Corporation Noise suppressing circuit
CN103516397A (en) * 2013-09-17 2014-01-15 深圳市共进电子股份有限公司 Method and system for separating electric signal based on power line carrier
JP2022158967A (en) * 2021-03-31 2022-10-17 オムロン株式会社 Differential mode/common mode integrated active filter, and electric system

Similar Documents

Publication Publication Date Title
US3671885A (en) High frequency signal routing devices for use in catv systems
US9419586B2 (en) Device for negative group delay
US5317277A (en) Power amplifying apparatus for supplying A.C. signals having a maximum loop gain at a desired frequency
KR950016341A (en) Signal Splitter Circuit for CATV
US4999594A (en) AC line filter with tapped balun winding
JPH06101652B2 (en) Bias circuit
US4170761A (en) Remotely powered intermediate amplifier for communications transmission
US4306311A (en) Double-balanced mixer circuit
US5469126A (en) I/Q-modulator and I/Q-demodulator
US4760356A (en) Power line filter
JPH0278327A (en) Blocking filter for indoor power line carrier
US3769586A (en) Hybrid coupler for radio transmitter having parallel output amplifier stages
US3624536A (en) High-dynamic-range amplifier
US5642080A (en) Low noise amplifier in monolithic integrated circuit
US4453131A (en) Transformer coupled amplifier circuit
JPS60237857A (en) Power source circuit
CA1041183A (en) Balanced dual output mixer circuit
KR100847570B1 (en) Power line communication device for signal isolator and leakage signal absorber
CA1106005A (en) Negative impedance converters
US5054118A (en) Balanced mixer utilizing filters
US4151493A (en) Negative impedance converters
JPS6313418A (en) Diode high frequency switch
JPS62154908A (en) Mixer circuit
JPH01194707A (en) Active low-pass filter device
JPH051132Y2 (en)