JPH026454B2 - - Google Patents

Info

Publication number
JPH026454B2
JPH026454B2 JP56032076A JP3207681A JPH026454B2 JP H026454 B2 JPH026454 B2 JP H026454B2 JP 56032076 A JP56032076 A JP 56032076A JP 3207681 A JP3207681 A JP 3207681A JP H026454 B2 JPH026454 B2 JP H026454B2
Authority
JP
Japan
Prior art keywords
operational amplifier
voltage
output
amplifier amp
inverting input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56032076A
Other languages
Japanese (ja)
Other versions
JPS57147322A (en
Inventor
Toshihiro Kawaguchi
Yasuo Anno
Kyoko Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56032076A priority Critical patent/JPS57147322A/en
Publication of JPS57147322A publication Critical patent/JPS57147322A/en
Publication of JPH026454B2 publication Critical patent/JPH026454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0231Astable circuits

Description

【発明の詳細な説明】 本発明は、電圧制御による周波数可変の矩形波
発振器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage-controlled frequency variable square wave oscillator.

従来の電圧制御による周波数可変の矩形波発振
器は、パルスのハイレベル期間とローレベル期間
の両方を変えることができず、いずれか一方の期
間は一定であつた。そのため、オン・オフ比を一
定にしてその周期を可変とする矩形波が得られな
いばかりかこの矩形波発振器で後段の相補形式の
トランジスタ等を駆動する場合、両トランジスタ
のオン・オフ期間にアンバランスが生じ一方のト
ランジスタが他方のトランジスタに比べ頻繁に動
作することになる。そのため、該一方のトランジ
スタの寿命が短かくなり、結果として回路全体の
寿命が短かくなる。
In conventional voltage-controlled frequency-variable square wave oscillators, both the high-level period and the low-level period of the pulse cannot be changed, and one of the periods remains constant. Therefore, not only is it not possible to obtain a rectangular wave with a constant on/off ratio and variable period, but when this rectangular wave oscillator is used to drive complementary type transistors in the subsequent stage, there is an imbalance between the on/off periods of both transistors. A balance will result in one transistor operating more frequently than the other. Therefore, the lifespan of the one transistor is shortened, and as a result, the lifespan of the entire circuit is shortened.

本発明は、かかる欠点を改善し、両トランジス
タが平等に駆動され、回路全体としての寿命を延
ばしたものである。
The present invention improves this drawback, allows both transistors to be equally driven, and extends the life of the entire circuit.

以下図面に従つて、本発明を更に詳細に説明す
る。第1図は、従来例を示す。図において、抵抗
R2,R3、演算増幅器AMP1およびコンデンサC1
で構成された回路は積分器であり、この積分器の
出力に電圧比較器を設けている。即ち、電圧比較
器は抵抗R6,R7,R8および演算増幅器AMP2に
より構成されている。そして、その電圧比較器の
出力でトランジスタQ0を制御してコンデンサC1
の充放電を制御する。これにより電圧比較器より
矩形波が得られ、この矩形波は、次段のコレクタ
−エミツタ位相分割回路で互に逆位相の矩形波に
分割される。即ち、この位相分割回路は抵抗R9
R10,R11、トランジスタQ1よりなり、この位相
分割回路はコンデンサC2,C3を介して、ブツシ
ユ・プル増幅器に接続されている。このプツシ
ユ・プル増幅器は抵抗R12〜R15、トランジスタ
Q2,Q3、トランスTより成り、このプツシユ・
プル増幅器の出力OUTより出力矩形波が得られ
る。かかる構成において、比較器の出力電圧が−
V0ボルトにある場、トランジスタQ0はカツトオ
フされており、演算増幅器AMP2の非反転入力
には、抵抗R7とR8による分圧電位が与えられて
いる。即ち、抵抗R7,R8の抵抗値を夫々r7、r8
すると、−V0×(r7/r7+r8)ボルトが演算増幅器 AMP2の正入力に与えられている。この状態で
入力端子INにViの電圧をかけたとすると、抵抗
R1、R2を通してコンデンサC1に充電電流が流れ、
積分器の出力はほぼ直線的に下がる。この積分器
の出力電圧が、−V0×(r7/r7+r8)ボルトに達する と、比較器の出力電圧は+V0ボルトになる。こ
のとき、トランジスタQ0は導通状態となり、コ
ンデンサC1に蓄えられた電荷は、抵抗R2、トラ
ンジスタQ0を通して放電される。この放電電流
は、ツエナーダイオードDZ、抵抗R2により決め
られる。一方、この放電により、積分器の出力は
ほぼ怒直線的に増加し、その電圧が+V0×
(r7/r7+r8)ボルトに達すると、再び比較器の出力 は−V0ボルトになる。このことを繰返すことに
より、比較器から矩形波出力が得られる。ここ
で、入力端子INの電圧が高くなると、コンデン
サC1に充電される電流が増加するため、積分器
出力電圧の降下速度が増加する。これに対し、コ
ンデンサC1の放電電流には変化はなく、積分器
の出力電圧上昇速度は一定である。この入力端子
INに時間と共に直線的に単調増加する電圧を加
えた場合の積分器の出力を第2図に、比較器の出
力を第3図に示す。これら図において、横軸は時
間、縦軸は電位を示し、第2図における積分器の
出力は、+Vaボルトから−Vaボルトへの変化時
間が、時間の経過と共に短かくなる。これに対
し、−Vaボルトから+Vaボルトへの変化時間は
時間の経過によらず一定である。そこで、第3図
に示す比較器の出力は+V0ボルトである期間t0
一定であるが、−V0ボルトである期間t1,t1′は時
間の経過と共に短かくなる。そして、かかる第3
図に示した矩形波により第1図の位相分割回路が
駆動される。これにより、第1図のトランジスタ
Q2は比較器の出力が−V0の期間、即ち、第3図
のt1,t1′…の期間導通し、+V0の期間、即ち、t0
の期間はカツトオフとなる。第1図のトランジス
タQ5は、トランジスタQ2と全く逆の動作となる。
これにより、第1図の出力OUTからは、第3図
に示す波形に類似の出力が得られる。以上の如き
特性を有するものであり、入力電圧を一定にし、
回路定数をうまく設定すれば、トランジスタQ2
とQ3の導通、非導通時間を等しくでき、オン・
オフ比の等しい矩形波を得ることはできるが、こ
の矩形波周期を可変にする場合は、必ず、オン・
オフ比が等しくなくなる。更に、このオン・オフ
比が等しくなくなれば、両トランジスタQ2,Q3
の導通時間に差が出てくる。従つて、両トランジ
スタQ2,Q3の寿命にも差が生じ、結果的には回
路全体としての寿命が短かくなる。
The present invention will be explained in more detail below with reference to the drawings. FIG. 1 shows a conventional example. In the figure, resistance
R 2 , R 3 , operational amplifier AMP1 and capacitor C 1
The circuit composed of is an integrator, and a voltage comparator is provided at the output of this integrator. That is, the voltage comparator is composed of resistors R 6 , R 7 , R 8 and an operational amplifier AMP2. Then, the output of the voltage comparator controls transistor Q 0 and capacitor C 1
control the charging and discharging of As a result, a rectangular wave is obtained from the voltage comparator, and this rectangular wave is divided into rectangular waves having mutually opposite phases in a collector-emitter phase dividing circuit in the next stage. That is, this phase dividing circuit has resistors R 9 ,
This phase divider circuit, consisting of R 10 , R 11 and transistor Q 1 , is connected to a bush pull amplifier via capacitors C 2 and C 3 . This push-pull amplifier consists of resistors R12 to R15 , transistors
It consists of Q 2 , Q 3 and transformer T.
An output square wave is obtained from the output OUT of the pull amplifier. In such a configuration, the output voltage of the comparator is -
At V 0 volts, transistor Q 0 is cut off and the non-inverting input of operational amplifier AMP2 is provided with a potential divided by resistors R 7 and R 8 . That is, when the resistance values of the resistors R 7 and R 8 are defined as r 7 and r 8 , respectively, -V 0 ×(r 7 /r 7 +r 8 ) volts are applied to the positive input of the operational amplifier AMP2. In this state, if a voltage of Vi is applied to the input terminal IN, the resistance
Charging current flows to capacitor C 1 through R 1 and R 2 ,
The output of the integrator falls approximately linearly. When the output voltage of this integrator reaches -V 0 *(r 7 /r 7 +r 8 ) volts, the output voltage of the comparator will be +V 0 volts. At this time, the transistor Q 0 becomes conductive, and the charge stored in the capacitor C 1 is discharged through the resistor R 2 and the transistor Q 0 . This discharge current is determined by the Zener diode DZ and resistor R2 . On the other hand, due to this discharge, the output of the integrator increases almost linearly, and the voltage increases to +V 0 ×
When (r 7 /r 7 +r 8 ) volts is reached, the output of the comparator is again −V 0 volts. By repeating this, a square wave output is obtained from the comparator. Here, as the voltage at the input terminal IN increases, the current charged in the capacitor C1 increases, so the rate of fall of the integrator output voltage increases. On the other hand, there is no change in the discharge current of the capacitor C1 , and the rate of increase in the output voltage of the integrator is constant. This input terminal
Figure 2 shows the output of the integrator when a voltage that monotonically increases linearly with time is applied to IN, and Figure 3 shows the output of the comparator. In these figures, the horizontal axis shows time and the vertical axis shows potential, and in the output of the integrator in FIG. 2, the time required for the output of the integrator to change from +Va volts to -Va volts becomes shorter as time passes. On the other hand, the change time from -Va volts to +Va volts is constant regardless of the passage of time. Therefore, the period t 0 in which the output of the comparator shown in FIG. 3 is +V 0 volts is constant, but the periods t 1 and t 1 ' in which it is -V 0 volts become shorter as time passes. And such third
The phase division circuit of FIG. 1 is driven by the rectangular wave shown in the figure. As a result, the transistor in Figure 1
Q 2 is conductive during the period when the output of the comparator is −V 0 , that is, during the period t 1 , t 1 ' ... in FIG .
The cutoff period will be the cutoff period. Transistor Q5 in FIG. 1 operates completely opposite to transistor Q2 .
As a result, an output similar to the waveform shown in FIG. 3 is obtained from the output OUT in FIG. 1. It has the above characteristics, keeps the input voltage constant,
If you set the circuit constants well, the transistor Q 2
The conduction and non-conduction times of Q3 and Q3 can be made equal, and the on/off
It is possible to obtain a square wave with the same off ratio, but if you want to make the rectangular wave period variable, you must
The off ratios are no longer equal. Furthermore, if these on-off ratios are no longer equal, both transistors Q 2 and Q 3
There will be a difference in the conduction time. Therefore, there is a difference in the lifespan of both transistors Q 2 and Q 3 , and as a result, the lifespan of the entire circuit is shortened.

本発明は、かかる欠点を改善したものであり、
演算増幅器AMPの比較電流が入力される非反転
入力を該演算増幅器AMPの出力端子に接続する
第1の抵抗R26と、外部から得られる電圧によ
り該演算増幅器AMPの0電位を中心として対称
な正負の比較電圧を与える比較電圧源と、該比較
電圧源の正の比較電圧を与える端子と該演算増幅
器AMPの非反転入力の間に、該演算増幅器AMP
の出力が正電圧の時に導通するダイオードD1
と、該比較電圧源の負の比較電圧を与える端子と
該演算増幅器AMPの非反転入力の間に、該演算
増幅器AMPの出力が負電圧の時に導通するダイ
オードD2と、該演算増幅器AMPの反転入力を
該演算増幅器AMPの出力端子を接続する抵抗R
25と、該演算増幅器AMPの反転入力と負電源
を接続するコンデンサC21を設けたことを特徴
とする電圧制御式矩形波発振器である。
The present invention improves these drawbacks,
A first resistor R26 connects the non-inverting input to which the comparison current of the operational amplifier AMP is inputted to the output terminal of the operational amplifier AMP, and a voltage obtained from the outside is used to control the positive and negative voltages symmetrical about the 0 potential of the operational amplifier AMP. A comparison voltage source that provides a comparison voltage of
Diode D1 conducts when the output of is positive voltage.
, a diode D2 that conducts when the output of the operational amplifier AMP is a negative voltage, and a diode D2 that conducts when the output of the operational amplifier AMP is a negative voltage, and a diode D2 that is connected between the terminal that provides a negative comparison voltage of the comparison voltage source and the non-inverting input of the operational amplifier AMP. A resistor R connecting the input to the output terminal of the operational amplifier AMP
25, and a capacitor C21 connecting the inverting input of the operational amplifier AMP to the negative power supply.

第4図は本発明の一実施例であり発振回路の後
段に従来と同様のコレクタ−エミツタ位相分割回
路、プツシユプル増幅器を接続した例である。こ
こで電圧制御トランジスタFETは、その入力端
子INに与えられる電圧により、抵坑R21、トラン
ジスタFET、抵抗R22の分割比により点、点
の電位を制御する。これにより、演算増幅器
AMPの出力点が正電位側にある場合は、ダイ
オードD1を介して抵抗R23と第1の抵抗R26の分
割比によつて演算増幅器AMPの非反転入力に比
較電圧を与える。又、点が負電位側にある場合
には、ダイオードD2を介して抵抗R24とR26の分
割比によつて演算増幅器AMPの非反転入力に比
較電圧を与える。そこで、演算増幅器AMPの出
力が正電位、+V0ボルトにあるときは、第2の抵
抗R25を介してコンデンサC21に充電電流が流れ、
点の電位が即ち、反転入力の電位が次第に上昇
し、比較電圧に等しくなると、演算増幅器の出力
点が反転し、負電位、−V0ボルトになる。この
点が負電位になると、コンデンサC21は放電を
始め、点の電位が次第に降下し、比較電位に等
しくなると演算増幅器の出力点が再び反転し、
正電位になる。この動作を繰返し、発振回路とな
つている。そこで、第1図で説明したと同様に、
入力端子INに直線的に増加する電圧を加えた場
合の点の電圧波形を第5図に、又、点の電圧
波形を第6図に示す。これら第5図、第6図にお
いて、横軸は時間、縦軸は電位を示している。そ
して、第4図の点、点の電位を夫々+Viボ
ルト、−Viボルトとすると第5図の点線で示す
曲線は、{(+V0)−(Vi)}(r23/r23+r26)ボル
トで ある。但し、r23、r26は夫々抵抗R23,R26の抵抗
値である。又、第5図の点線で示す曲線は
{(−V0)−(−Vi)}(r24/r24+r26)ボルトであ
る。
FIG. 4 shows an embodiment of the present invention in which a conventional collector-emitter phase dividing circuit and push-pull amplifier are connected to the rear stage of the oscillation circuit. Here, the voltage control transistor FET controls the potential at points based on the voltage applied to its input terminal IN by the division ratio of the resistor R 21 , the transistor FET, and the resistor R 22 . This allows the operational amplifier
When the output point of AMP is on the positive potential side, a comparison voltage is applied to the non-inverting input of the operational amplifier AMP via the diode D1 by the division ratio of the resistor R23 and the first resistor R26 . When the point is on the negative potential side, a comparison voltage is applied to the non-inverting input of the operational amplifier AMP via the diode D2 by the division ratio of the resistors R24 and R26 . Therefore, when the output of the operational amplifier AMP is at a positive potential, +V 0 volts, a charging current flows through the second resistor R 25 to the capacitor C 21 ,
When the potential at the point, ie, the potential at the inverting input, gradually increases and becomes equal to the comparison voltage, the output point of the operational amplifier is inverted and becomes a negative potential, −V 0 volts. When this point becomes a negative potential, the capacitor C 21 begins to discharge, the potential at the point gradually drops, and when it becomes equal to the comparison potential, the output point of the operational amplifier is inverted again,
Becomes a positive potential. This operation is repeated to form an oscillation circuit. Therefore, as explained in Figure 1,
FIG. 5 shows the voltage waveform at a point when a linearly increasing voltage is applied to the input terminal IN, and FIG. 6 shows the voltage waveform at a point. In FIGS. 5 and 6, the horizontal axis represents time and the vertical axis represents potential. If the potentials at the points in FIG. 4 are +Vi volts and -Vi volts, respectively, the curve shown by the dotted line in FIG. 5 is {(+V 0 )−(Vi)}(r 23 /r 23 +r 26 ) It's a bolt. However, r 23 and r 26 are the resistance values of the resistors R 23 and R 26 , respectively. Moreover, the curve shown by the dotted line in FIG. 5 is {(-V 0 )-(-Vi)}(r 24 /r 24 +r 26 ) volts.

但し、r24は抵抗R24の抵抗値である。即ち、これ
ら曲線,は演算増幅器AMPの比較電圧曲線
になつている。そこで、第4図の電位はコンデ
ンサC21の充放電に併い、第5図実線で示す状態
となる。これに対し、第4図点の波形は、第6
図に示す様に、第5図の実線が曲線,と一致
する度に+V0からら−V0へ、又、−V0から+V0
へと反転する。又、この図に示す様に第4図の入
力端子INへの入力電圧が高くなるに従つて、−V0
の期間t21,t21′…および+V0の期間t20,…は短か
くなる。即ち、次第に高周波となつてくる。とこ
ろが、入力端子INへの入力電圧が一定であれば、
入力電圧がどのような値であつても常に、+V0
期間と−V0の期間は等しくなる。従つて、第4
図の後段のトランジスタQ2,Q3のオン・オフ時
間は等しくなり、出力OUTから得られる矩形波
もオン・オフ比が1対1の波形が得られる。又、
トランジスタQ2,Q2は互に逆動作ではあるが、
均等に駆動され、駆動時間の差に基づく回路全体
の寿命の短縮化は避けられる。
However, r24 is the resistance value of resistor R24 . That is, these curves serve as comparison voltage curves for the operational amplifier AMP. Therefore, as the capacitor C 21 is charged and discharged, the potential shown in FIG. 4 becomes the state shown by the solid line in FIG. 5. On the other hand, the waveform at the 4th point is the 6th point.
As shown in the figure, each time the solid line in Figure 5 matches the curve, the value changes from +V 0 to -V 0 and from -V 0 to +V 0.
Reverse to . Also, as shown in this figure, as the input voltage to the input terminal IN in Figure 4 increases, -V 0
The periods t 21 , t 21 ′... and the periods t 20 ,... of +V 0 become shorter. That is, the frequency gradually becomes higher. However, if the input voltage to the input terminal IN is constant,
No matter what the input voltage is, the +V 0 and -V 0 periods are always equal. Therefore, the fourth
The on/off times of the transistors Q 2 and Q 3 in the latter stage of the figure are equal, and the rectangular wave obtained from the output OUT has a waveform with an on/off ratio of 1:1. or,
Although transistors Q 2 and Q 2 operate in opposite directions,
They are driven evenly, and shortening of the life of the entire circuit due to differences in driving time can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例であり、第2図、第3図は、
夫々第1図の回路AMP1,AMP2の出力波形
図、第4図は本発明の一実施列、第5図、第6図
は、夫々第4図の点、点の波形図である。 図中、AMP,AMP1,AMP2は演算増幅器、
Q0〜Q3はトランジスタ、Tはトランス、R−は
抵抗、C−はコンデンサ、FETは電圧制御トラ
ンジスタ、D1,D2はダイオード、である。
Figure 1 is a conventional example, and Figures 2 and 3 are
1, FIG. 4 shows one embodiment of the present invention, and FIGS. 5 and 6 show waveform diagrams of the points in FIG. 4, respectively. In the figure, AMP, AMP1, AMP2 are operational amplifiers,
Q0 to Q3 are transistors, T is a transformer, R- is a resistor, C- is a capacitor, FET is a voltage control transistor, and D1 and D2 are diodes.

Claims (1)

【特許請求の範囲】 1 演算増幅器AMPの比較電流が入力される非
反転入力を該演算増幅器AMPの出力端子に接続
する第1の抵抗R26と、 外部から得られる電圧により該演算増幅器
AMPの0電位を中心として対称な正負の比較電
圧を与える比較電圧源と、 該比較電圧源の正の比較電圧を与える端子と該
演算増幅器AMPの非反転入力の間に、該演算増
幅器AMPの出力が正電圧の時に導通するダイオ
ードD1と、 該比較電圧源の負の比較電圧を与える端子と該
演算増幅器AMPの非反転入力の間に、該演算増
幅器AMPの出力が負電圧の時に導通するダイオ
ードD2と、 該演算増幅器AMPの反転入力を該演算増幅器
AMPの出力端子を接続する抵抗R25と、 該演算増幅器AMPの反転入力と負電源を接続
するコンデンサC21を設けたことを特徴とする
電圧制御式矩形波発振器。
[Claims] 1. A first resistor R26 that connects the non-inverting input of the operational amplifier AMP, into which the comparison current is input, to the output terminal of the operational amplifier AMP;
A comparison voltage source that provides positive and negative comparison voltages that are symmetrical about the zero potential of AMP, and a terminal of the operational amplifier AMP between the terminal that provides the positive comparison voltage of the comparison voltage source and the non-inverting input of the operational amplifier AMP. A diode D1 conducts when the output is a positive voltage, and a diode D1 conducts when the output of the operational amplifier AMP is a negative voltage, between a terminal that provides a negative comparison voltage of the comparison voltage source and the non-inverting input of the operational amplifier AMP. Diode D2 and the inverting input of the operational amplifier AMP are connected to the operational amplifier.
A voltage-controlled rectangular wave oscillator comprising: a resistor R25 that connects the output terminal of the AMP; and a capacitor C21 that connects the inverting input of the operational amplifier AMP to a negative power supply.
JP56032076A 1981-03-06 1981-03-06 Voltage-controlled oscillator for rectangular wave Granted JPS57147322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56032076A JPS57147322A (en) 1981-03-06 1981-03-06 Voltage-controlled oscillator for rectangular wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56032076A JPS57147322A (en) 1981-03-06 1981-03-06 Voltage-controlled oscillator for rectangular wave

Publications (2)

Publication Number Publication Date
JPS57147322A JPS57147322A (en) 1982-09-11
JPH026454B2 true JPH026454B2 (en) 1990-02-09

Family

ID=12348781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56032076A Granted JPS57147322A (en) 1981-03-06 1981-03-06 Voltage-controlled oscillator for rectangular wave

Country Status (1)

Country Link
JP (1) JPS57147322A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241319A (en) * 1984-05-16 1985-11-30 Nec Corp Voltage controlled oscillator
JPS6242334U (en) * 1985-08-30 1987-03-13

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853654A (en) * 1971-11-08 1973-07-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853654A (en) * 1971-11-08 1973-07-27

Also Published As

Publication number Publication date
JPS57147322A (en) 1982-09-11

Similar Documents

Publication Publication Date Title
JPH05111241A (en) Dc/dc converter
JP3532237B2 (en) Voltage / frequency converter
JPH026454B2 (en)
JP2614938B2 (en) Charge pump device
CA2052248C (en) Constant current circuit and an oscillating circuit controlled by the same
EP0641078A1 (en) Ring oscillator circuit for VCO
US4550308A (en) Signal converting apparatus
JP3697678B2 (en) V / F conversion circuit
US4667171A (en) Voltage controlled oscillator with temperature compensation
US4255722A (en) Voltage controlled multivibrator having variable frequency and duty cycle
US4631501A (en) Voltage controlled oscillator
US3665216A (en) Pulse width modulation detector
JPH0421393A (en) Pwm control circuit
JPH03121614A (en) Oscillating circuit
JP3192226B2 (en) Pulse width / voltage conversion circuit
JPS59194378A (en) Drive circuit of magnetron
JPS6016017A (en) Pulse width voltage converter
JPS6312590Y2 (en)
JPS6016121Y2 (en) Diode gate type phase detection circuit
KR860001483B1 (en) Power circuit
JPS6142014A (en) Digital speed controller
KR900003415Y1 (en) Tuning voltage transformation circuit
JPH1174761A (en) Oscillation circuit
JPS5918745Y2 (en) Variable frequency generator circuit
JP2760671B2 (en) Horizontal oscillation circuit