JPH01150825A - Load sensor consisting of pressure sensitive conductive rubber - Google Patents

Load sensor consisting of pressure sensitive conductive rubber

Info

Publication number
JPH01150825A
JPH01150825A JP30850687A JP30850687A JPH01150825A JP H01150825 A JPH01150825 A JP H01150825A JP 30850687 A JP30850687 A JP 30850687A JP 30850687 A JP30850687 A JP 30850687A JP H01150825 A JPH01150825 A JP H01150825A
Authority
JP
Japan
Prior art keywords
conductive rubber
sensitive conductive
load
pressure sensitive
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30850687A
Other languages
Japanese (ja)
Inventor
Yasushi Hattori
泰 服部
Katsuhiko Kanamori
金森 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP30850687A priority Critical patent/JPH01150825A/en
Publication of JPH01150825A publication Critical patent/JPH01150825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a load sensor which has increased the deviation quantity of pressure sensitive conductive rubber by providing a load detecting part which has laminated the pressure sensitive conductive rubber which contains dispersed conductive material grains and whose electric resistance value is varied in accordance with a load. CONSTITUTION:Pressure sensitive conductive rubber 3 consists of two layers 31, 32 and electrodes 2, 4 are provided with projection-like holding parts 81, 82 on the periphery so that the pressure sensitive conductive rubber layers 31, 32 are not shifted. Also, the holding parts 81, 82 are attached by a means for sticking a resin formed part to the electrodes 2, 4 etc. In such a state, a sensor 1 is held so as not to occur that the pressure sensitive conductive rubber layers 31, 32 are shifted from each other and the contact area is varied, by the holding parts 81, 82 and initial pressure. In such a way, by laminating lamellately the pressure sensitive rubber layers 31, 32, the load sensor which has increased effectively the deviation quantity of the pressure sensitive conductive rubber 3 can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は感圧導電ゴムから成る荷重センサに関し、更に
詳細には前記ゴムを変形させる変形量(偏移量)を大き
くしたセンサに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a load sensor made of pressure-sensitive conductive rubber, and more particularly to a sensor in which the amount of deformation (deviation) for deforming the rubber is increased. be.

〔従来技術〕[Prior art]

カーボンなどの導電体粒子を、例えばシリコーンゴムな
どに分散含有させ、圧縮荷重に応じて電気抵抗が変化す
るようにした感圧導電ゴムにより、荷重を測定したり、
押圧力を調節して機器類を制御するためのセンサ素子と
して使用されていることは周知のとおりである。
Load can be measured using pressure-sensitive conductive rubber, in which conductive particles such as carbon are dispersed in silicone rubber, and the electrical resistance changes according to the compressive load.
It is well known that it is used as a sensor element for controlling equipment by adjusting the pressing force.

前記感圧導電ゴムは、シート状成形品としたり、液状と
して電極上に塗布して固化させる塗料としたものなどの
形で市場に供給されている。
The pressure-sensitive conductive rubber is supplied to the market in the form of a sheet-like molded product or a paint that is applied as a liquid onto an electrode and solidified.

該感圧導電ゴムから成る荷重センサには可動部分がなく
、構造が極めて単純であるので各種の分野で実用される
に至っている。
Load sensors made of pressure-sensitive conductive rubber have no moving parts and have an extremely simple structure, so they have come into practical use in various fields.

感圧導電ゴムに荷重を加えるには、該ゴム面に所定の静
荷重を加えればよいが、第6図に示すようなセンサ1が
開発されている。即ち、該センサ1は、電極2の上にチ
ップ状の感圧導電ゴム3を配置し、その上に電極4を固
定部材5で固定したものである。該固定部材5は、通常
は樹脂を使用し画電極2,4を所定の間隔に保持した状
態で固化させる。
To apply a load to the pressure-sensitive conductive rubber, it is sufficient to apply a predetermined static load to the rubber surface, and a sensor 1 as shown in FIG. 6 has been developed. That is, the sensor 1 has a chip-shaped pressure-sensitive conductive rubber 3 arranged on an electrode 2, and an electrode 4 fixed thereon with a fixing member 5. The fixing member 5 is usually made of resin and is solidified while holding the picture electrodes 2 and 4 at a predetermined distance.

荷重は、電極4の自由端6側に掛けることによって感圧
導電ゴム3に力を伝達する。このときの感圧導電ゴム3
の抵抗値Rと荷重Wとの関係は、第7図の実線で示す曲
線を画いて変化する。図から明らかなように荷重Wの小
さいときは抵抗Rの変化量が大きくなり測定値がバラツ
クという問題がある。
A force is transmitted to the pressure-sensitive conductive rubber 3 by applying a load to the free end 6 side of the electrode 4. Pressure-sensitive conductive rubber 3 at this time
The relationship between the resistance value R and the load W changes along the curve shown by the solid line in FIG. As is clear from the figure, when the load W is small, the amount of change in the resistance R increases and there is a problem in that the measured values vary.

そこで通常は、センサlを作る際、ある程度感圧導電ゴ
ム3を圧縮した状態(以下初期圧という)で固定し、荷
重W=Oの状態で有限の初期抵抗値ROを与えるように
する。したがって荷重W−抵抗R曲線は、荷重の小さい
側Wsが第7図の点線のように横に寝た形状となる。
Therefore, when the sensor 1 is manufactured, the pressure-sensitive conductive rubber 3 is usually fixed in a compressed state (hereinafter referred to as initial pressure) to a certain extent, and a finite initial resistance value RO is given under the condition that the load W=O. Therefore, the load W-resistance R curve has a shape in which the side Ws with the smaller load lies horizontally as shown by the dotted line in FIG.

又大きな荷重WLでは抵抗Rの変化割合が小さくなるの
で、第7図のaで示す範囲が有効測定範囲となるように
設計する。シート状とした感圧導電ゴム3は、通常はぼ
0.5 mmの厚さtに作られており、前記有効測定範
囲aを与える感圧導電ゴム3の偏移量Δlは、通常30
0μm程度である。
Furthermore, since the rate of change in resistance R becomes small when the load WL is large, the range shown by a in FIG. 7 is designed to be the effective measurement range. The sheet-shaped pressure-sensitive conductive rubber 3 is usually made to have a thickness t of about 0.5 mm, and the deviation amount Δl of the pressure-sensitive conductive rubber 3 that provides the effective measurement range a is usually 30 mm.
It is about 0 μm.

ところで、ワードプロセッサなどの普及によってプリン
ターが普及するに至っているが、ここに使用する紙圧セ
ンサ等に感圧導電ゴムから成るセンサを使用すると、前
記偏移量では不足するという問題がある。すなわち、こ
の紙圧測定の際必要とする測定部6のストローク長さΔ
Lは、電極4の長さしおよび固定部材5、感圧導電ゴム
3間の腕の長さl、および前記偏移量Δlによって決定
されるが、Δlを固定して、L、7!を無制限に決定す
ることができず、大きい偏移量Δlの感圧導電ゴムを作
る必要がある。
By the way, printers have come into widespread use due to the spread of word processors, etc., but if a sensor made of pressure-sensitive conductive rubber is used as a paper pressure sensor or the like used therein, there is a problem that the above-mentioned deviation amount is insufficient. In other words, the stroke length Δ of the measuring section 6 required for this paper pressure measurement
L is determined by the length of the electrode 4, the length l of the arm between the fixing member 5, the pressure-sensitive conductive rubber 3, and the deviation amount Δl, but if Δl is fixed, L, 7! cannot be determined without limit, and it is necessary to create a pressure-sensitive conductive rubber with a large deviation amount Δl.

前記偏移量Δlを増すには、当然前記tを厚くすること
が考えられる。しかしながら、感圧導電ゴム3の厚さt
を2倍にしても、ストローク長さΔlは2倍にならない
という問題があり、又厚さを増すほど工業的に安定した
品質のものを供給することが困難となるという問題があ
る。
Naturally, in order to increase the deviation amount Δl, it is possible to increase the thickness of t. However, the thickness t of the pressure-sensitive conductive rubber 3
Even if the stroke length Δl is doubled, there is a problem that the stroke length Δl is not doubled, and there is also a problem that as the thickness increases, it becomes difficult to supply products of industrially stable quality.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の問題に着目して成されたものであり、
感圧導電ゴムの偏移量を大きくした荷重センサを提供す
ることを目的としている。
The present invention has been made focusing on the above problems,
The object of the present invention is to provide a load sensor in which the amount of deviation of pressure-sensitive conductive rubber is increased.

〔発明の構成〕[Structure of the invention]

以上の目的を達成するための本発明の感圧導電ゴムから
成る荷重センサの構成は、導電体粒子を分散含有して成
り、荷重に応じて電気抵抗値が変化する感圧導電ゴムを
層状に積層して成る荷重検出部を有することを特徴とす
るものである。
To achieve the above object, the load sensor made of pressure-sensitive conductive rubber of the present invention has a structure in which a pressure-sensitive conductive rubber containing dispersed conductive particles and whose electrical resistance value changes depending on the load is layered. The present invention is characterized by having a load detection section formed by laminating layers.

前記感圧導電ゴムを層状に積層する構成は、′感圧導電
ゴムの偏移量を効果的に増大させるように作用する。
The configuration in which the pressure-sensitive conductive rubber is laminated in layers functions to effectively increase the amount of deviation of the pressure-sensitive conductive rubber.

本発明に使用する感圧導電ゴムは、あらかじめシートな
いしフィルム状に成形したもの、溶液状として電極面に
塗布する塗料タイプ(導電インク)のものなど任意のも
のを使用することができる。
Any pressure-sensitive conductive rubber used in the present invention can be used, such as one previously formed into a sheet or film, or a paint type (conductive ink) that is applied as a solution to the electrode surface.

〔実施例〕〔Example〕

以下添付の図面を対照して一実施例により本発明を具体
的に説明する。
Hereinafter, the present invention will be described in detail by way of an embodiment with reference to the accompanying drawings.

第1図は、本実施例の感圧導電ゴムから成るセンサの断
面図であり、基本的構造は前記第6図と同様のものであ
る。したがって、同様の部材には同じ番号を付して説明
を省略する。本実施例の感圧導電ゴム3は2層3.およ
び3□から成っており、電極2.4には感圧導電ゴム層
31.32がずれないように周囲に凸状の保持部81.
82を設けている。該保持部8□、82は、樹脂成形品
を電極2.4に接着するなどの手段で取り付けることが
できる。
FIG. 1 is a cross-sectional view of a sensor made of pressure-sensitive conductive rubber according to this embodiment, and its basic structure is the same as that shown in FIG. 6 above. Therefore, similar members are given the same numbers and their explanations will be omitted. The pressure-sensitive conductive rubber 3 of this embodiment has two layers 3. and 3□, and the electrode 2.4 has a holding portion 81.4 having a convex shape around the periphery to prevent the pressure-sensitive conductive rubber layer 31.32 from slipping.
82 are provided. The holding portions 8□, 82 can be attached by bonding resin molded products to the electrodes 2.4.

本実施例のセンサ1は、保持部81’、82と、前記説
明の初期圧とによって感圧導電ゴム層31゜32が互に
ずれて接触面積が変化しないように保持することができ
る。1辺がlQms+厚さが0゜51真の感圧導電ゴム
を用い、第1図に示す本実施例の偏移量Δlと第6図に
示す従来例の偏移量Δlとを比較した結果を第2図に示
す。第2図において横軸は荷重Wを表わし、縦軸は偏移
量Δlを表わしており、曲線Aは実施例、Bは比較例を
それぞれ示している。図か′ら明らかなとおり、従来例
では最高測定可能荷重約260g、そのときの偏移量約
380μであったものが、2枚重ね合わせたものは、最
大測定可能荷重約530 g’−そのときの偏移量約8
00μであるが、はぼ直線的に変化する部分、即ち、実
施例のaと比較例のbとを比較すると実施例が遥かに大
きくなっていることが分かる。この結果を荷重抵抗値で
表わすと、第3図に示すように直線部分の拡大が2枚重
ねることの効果が著しいことが理解される。
The sensor 1 of this embodiment can be held by the holding parts 81', 82 and the initial pressure described above so that the pressure-sensitive conductive rubber layers 31 and 32 do not shift from each other and the contact area does not change. Results of comparing the deviation amount Δl of this example shown in FIG. 1 with the deviation amount Δl of the conventional example shown in FIG. 6 using a true pressure-sensitive conductive rubber whose side is lQms + thickness 0° is shown in Figure 2. In FIG. 2, the horizontal axis represents the load W, the vertical axis represents the deviation amount Δl, curve A represents the example, and curve B represents the comparative example. As is clear from the figure, the conventional example had a maximum measurable load of about 260 g and a deviation of about 380 μ, but the maximum measurable load of the two stacked sheets was about 530 g' - that time. When the deviation amount is about 8
00μ, but if you compare the portion that changes almost linearly, that is, the portion a of the example and the portion b of the comparative example, it can be seen that the portion of the example is much larger. When this result is expressed as a load resistance value, it can be seen that the enlargement of the straight line portion has a remarkable effect of overlapping two sheets, as shown in FIG.

本実施例の応用として、厚みを与えることが困難な塗料
タイプ(導電インク)を使用する場合には、それぞれの
電極に導電インクを塗布し、重ね合わせる用法がある。
As an application of this embodiment, when using a paint type (conductive ink) that is difficult to give thickness, there is a method in which conductive ink is applied to each electrode and the electrodes are overlapped.

このようにすると、2枚の厚さと同じ厚さに塗布するよ
りも測定範囲を拡大させることができる。
In this way, the measurement range can be expanded compared to applying the same thickness as the two sheets.

更に積層する場合には、電極2.4に凸部部81.82
を設けるのでは、途中の層を保持することができない。
When further laminating, the electrode 2.4 has convex portions 81.82.
, it is not possible to hold intermediate layers.

そこで、4層に積層した実施例を第4図および第5図に
よって説明する。
Therefore, an embodiment in which four layers are laminated will be described with reference to FIGS. 4 and 5.

該センサlの基本的構造は、前記説明と同じ構造のもの
を使用し、4層に積層した感圧導電ゴム層31.32は
、保持具lOによってずれないように保持される。該保
持具10は、例えば軟質ポリウレタン樹脂の高発泡倍率
成形体から成り、感圧導電ゴム層3.〜34を収容する
貫通孔11を設けている。第4図、第5図の実施例では
前記保持具10は、荷重−抵抗特性に影響を与えずに積
層した感圧導電ゴム層31〜34の横ずれを防止するこ
とができる。保持具10の一部を電極2.4のいずれか
に接着することにより、更に保持状態を安定させること
ができる。
The basic structure of the sensor 1 is the same as that described above, and the pressure-sensitive conductive rubber layers 31 and 32, which are laminated in four layers, are held by a holder 1O so as not to shift. The holder 10 is made of, for example, a high expansion ratio molded product of a soft polyurethane resin, and includes a pressure-sensitive conductive rubber layer 3. A through hole 11 for accommodating .about.34 is provided. In the embodiment shown in FIGS. 4 and 5, the holder 10 can prevent the laminated pressure-sensitive conductive rubber layers 31 to 34 from shifting laterally without affecting the load-resistance characteristics. By adhering a part of the holder 10 to one of the electrodes 2.4, the holding state can be further stabilized.

本発明方法によれば、抵抗変化幅が狭い導電ゴムの荷重
による抵抗変化領域を拡大することができ、新しい応用
分野を広げることを可能にする。
According to the method of the present invention, it is possible to expand the range of resistance change due to a load in conductive rubber, which has a narrow resistance change range, making it possible to expand new fields of application.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり本発明の感圧導電ゴムから成る荷重
センサは、導電体粒子を分散含有してなり、荷重に応じ
て電気抵抗値が変化する感圧導電ゴムを層状に積層して
成る荷重検出部を有する構成としたので、感圧導電ゴム
の偏移量(変形量)を同様の厚さのものより大きくして
、直線的に変化する荷重測定範囲を遥かに拡大すること
ができる効果がある。
As explained above, the load sensor made of pressure-sensitive conductive rubber of the present invention is a load sensor made of a layered layer of pressure-sensitive conductive rubber containing dispersed conductive particles and whose electrical resistance value changes according to the load. The structure has the effect of making the amount of deviation (deformation) of the pressure-sensitive conductive rubber larger than that of a similar thickness, and greatly expanding the measurement range of linearly changing loads. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一実施例による荷重センサの断面図、第2図は
第1図のセンサの荷重−偏移量特性グラフ図、第3図は
第1図のセンサの荷重−抵抗特性グラフ図、第4図は別
の実施例による荷重センサの断面図、第5図はその部分
斜視図、第6図は従来の荷重センサの断面図、第7図は
第6図のセンサの荷重−抵抗特性のグラフである。 1・・・荷重センサ、2,4・・・電極、3,3.〜3
4・・・感圧導電ゴム。 代理人 弁理士 小 川 信 −
FIG. 1 is a sectional view of a load sensor according to an embodiment, FIG. 2 is a load-deviation characteristic graph of the sensor in FIG. 1, and FIG. 3 is a load-resistance characteristic graph of the sensor in FIG. 1. FIG. 4 is a sectional view of a load sensor according to another embodiment, FIG. 5 is a partial perspective view thereof, FIG. 6 is a sectional view of a conventional load sensor, and FIG. 7 is a load-resistance characteristic of the sensor shown in FIG. 6. This is a graph of 1... Load sensor, 2, 4... Electrode, 3, 3. ~3
4...Pressure-sensitive conductive rubber. Agent Patent Attorney Nobuo Ogawa −

Claims (1)

【特許請求の範囲】[Claims] 導電体粒子を分散含有して成り、荷重に応じて電気抵抗
値が変化する感圧導電ゴムを層状に積層して成る荷重検
出部を有すること特徴とする感圧導電ゴムから成る荷重
センサ。
1. A load sensor made of pressure-sensitive conductive rubber, characterized in that it has a load detection section made of layered pressure-sensitive conductive rubber that contains conductor particles dispersed therein and whose electrical resistance value changes according to the load.
JP30850687A 1987-12-08 1987-12-08 Load sensor consisting of pressure sensitive conductive rubber Pending JPH01150825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30850687A JPH01150825A (en) 1987-12-08 1987-12-08 Load sensor consisting of pressure sensitive conductive rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30850687A JPH01150825A (en) 1987-12-08 1987-12-08 Load sensor consisting of pressure sensitive conductive rubber

Publications (1)

Publication Number Publication Date
JPH01150825A true JPH01150825A (en) 1989-06-13

Family

ID=17981841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30850687A Pending JPH01150825A (en) 1987-12-08 1987-12-08 Load sensor consisting of pressure sensitive conductive rubber

Country Status (1)

Country Link
JP (1) JPH01150825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779081B1 (en) * 2005-12-07 2007-11-27 한국전자통신연구원 Pressure sensor for electronic skin and fabrication method of pressure sensor for electronic skin
JP2010281824A (en) * 2003-01-23 2010-12-16 William Marsh Rice Univ Smart materials: strain sensing and stress determination by means of nanotube sensing system, nanotube sensing composite material, and nanotube sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281824A (en) * 2003-01-23 2010-12-16 William Marsh Rice Univ Smart materials: strain sensing and stress determination by means of nanotube sensing system, nanotube sensing composite material, and nanotube sensing device
KR100779081B1 (en) * 2005-12-07 2007-11-27 한국전자통신연구원 Pressure sensor for electronic skin and fabrication method of pressure sensor for electronic skin

Similar Documents

Publication Publication Date Title
EP0658248B1 (en) Conductive particulate force transducer
US7464613B2 (en) Pressure sensor comprising an elastic sensor layer with a microstructured surface
CN108291797B (en) High sensitivity sensor containing linear induced cracking and method of making same
JPS62191730A (en) Pressure sensor
US20030000821A1 (en) Membrane switch and pressure sensitive sensor
JPS5918586B2 (en) diaphragm
EP1965187A2 (en) Semiconductive diaphragm-type pressure sensor
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
JPH0755598A (en) Tactile sensor and tactile imager
JPH01150825A (en) Load sensor consisting of pressure sensitive conductive rubber
JP3089455B2 (en) Pressure distribution sensor
JPH02193030A (en) Pressure detector
JPH05149773A (en) Using method of strain gage
JPS6441803A (en) Apparatus for measuring angle and displacement quantity using electric resistor piece
GB1585549A (en) Temperature and stress compensated sensing apparatus
JP2008070169A (en) Surface projecting part detection device and surface projecting part detection method
JPS62130321A (en) Pressure detector
JP2638714B2 (en) High-speed dynamic pressure measuring device
JPH0235324A (en) Pressure detecting element
JPS6037401B2 (en) Method for detecting center of gravity position of surface pressure
JPH0559756U (en) Anisotropic pressure-sensitive conductive elastomer sheet
US3396577A (en) Measuring and comparator device
JPH05248971A (en) Sensor for measurement of pressure distribution
JPH06103232B2 (en) Pressure sensitive foil
JPS6132601B2 (en)