JP2006226858A - Fluctuation load sensor, and tactile sensor using the same - Google Patents

Fluctuation load sensor, and tactile sensor using the same Download PDF

Info

Publication number
JP2006226858A
JP2006226858A JP2005041506A JP2005041506A JP2006226858A JP 2006226858 A JP2006226858 A JP 2006226858A JP 2005041506 A JP2005041506 A JP 2005041506A JP 2005041506 A JP2005041506 A JP 2005041506A JP 2006226858 A JP2006226858 A JP 2006226858A
Authority
JP
Japan
Prior art keywords
electrodes
piezoelectric film
pair
electrode
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005041506A
Other languages
Japanese (ja)
Inventor
Yukio Fujimoto
由紀夫 藤本
Arif Setianto Taufiq
アリフセテイアント タウフィック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2005041506A priority Critical patent/JP2006226858A/en
Publication of JP2006226858A publication Critical patent/JP2006226858A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluctuation load sensor capable of detecting a shearing-directional fluctuation load or/and a compression-directional fluctuation load, by simple structure. <P>SOLUTION: This fluctuation load sensor used attached to a measured object has a pair of same-shaped surface electrodes arranged separately on a surface of a piezoelectric film, a surface strain amplifying member for covering the electrodes and the surface of the piezoelectric film, a load transmission member arranged on an upper face of the surface strain amplifying member, a pair of reverse face electrodes with a projection face overlapped on a reverse face of the piezoelectric film in the shape same to the surface electrodes, and a reverse face strain amplifying member of the quality same to that of the surface strain amplifying member for covering the reverse face electrodes and the reverse face of the piezoelectric film. The paired surface or reverse face electrodes are respectively arranged to be symmetric to a symmetry axis of the load transmission member, and not to be overlapped on the projection face of the load transmission member, and the pair of surface electrodes and the pair of reverse face electrodes are short-circuited in the fellow electrodes existing in diagonal positions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被測定物に付着されて使用される変動荷重センサに関する。とくに、被測定物に負荷される剪断方向の変動荷重又は/及び圧縮方向の変動荷重を検知することができる変動荷重センサに関する。   The present invention relates to a fluctuating load sensor used by being attached to an object to be measured. In particular, the present invention relates to a variable load sensor that can detect a variable load in a shearing direction and / or a variable load in a compression direction applied to an object to be measured.

圧縮や引張等の垂直方向の変動荷重を検知することができるセンサは、歪みゲージをはじめ種々のものが知られている。これに対し、剪断方向の変動荷重を検知することができるセンサの発明例は少ないが、近年ロボットアームの触覚センサが注目されており、触覚センサ等に利用することができる剪断又は/及び圧縮方向の変動荷重を検知することができる変動荷重センサがいくつか提案されている。   Various sensors such as strain gauges are known as sensors capable of detecting a vertically varying load such as compression and tension. On the other hand, there are few examples of sensors that can detect a fluctuating load in the shear direction, but recently, a tactile sensor of a robot arm has attracted attention, and a shearing and / or compression direction that can be used for a tactile sensor or the like. Several fluctuating load sensors that can detect fluctuating loads are proposed.

特許文献1には、計測対象となる物体表面に当接される下板と、この下板と略平行を保ちつつ、前記物体表面に作用するせん断力を受ける上板とが、せん断方向に相対移動可能に一体化され、前記上下板間に内設されるひずみゲージが、せん断力を検知する検知端部の一端を前記上板に、他端を前記下板に連結されたせん断計測センサであって、前記上板と下板とが可撓性を有する剪断計測センサが提案されている。   In Patent Document 1, a lower plate that is in contact with an object surface to be measured and an upper plate that receives a shearing force acting on the object surface while being substantially parallel to the lower plate are relatively aligned in the shear direction. A strain gauge integrated in a movable manner and provided between the upper and lower plates is a shear measurement sensor in which one end of a detection end for detecting a shear force is connected to the upper plate and the other end is connected to the lower plate. A shear measurement sensor has been proposed in which the upper plate and the lower plate are flexible.

特許文献2には、基板上に水平方向に並べて配置された少なくとも2つの感圧素子と、各感圧素子の前記基板と反対側の面と接触し、前記感圧素子の反対側に突出部を有する接触子とを設け、接触子が対象物と接触して圧縮力と剪断力を受けて曲げ変形するときに2つの感圧素子に作用する力を利用して、対象物から受ける圧縮方向の荷重と剪断方向の荷重を検出することができる組み立てロボット等のマニピュレータに用いて好適な皮膚感覚センサが提案されている。   In Patent Document 2, at least two pressure-sensitive elements arranged in a horizontal direction on a substrate and a surface of each pressure-sensitive element on the side opposite to the substrate are in contact with each other, and a protruding portion is formed on the opposite side of the pressure-sensitive element. A compression direction received from an object using a force acting on two pressure-sensitive elements when the contactor is in contact with the object and receives a compressive force and a shearing force to bend and deform. A skin sensation sensor suitable for use in a manipulator such as an assembly robot capable of detecting the load in the shear direction and the load in the shear direction has been proposed.

特許文献3には、円板状の第1の起歪部と、前記第1の起歪部の周縁をほぼ等角度で4分割する位置より板状に延設され、前記第1の起歪部の脚となって前記第1の起歪部を支持する構造の第2ないし第5の起歪部と、前記第2ないし第5の起歪部それぞれより前記第1の起歪部とは異なる側に延設された第1ないし第4の足部と、前記第1の起歪部の円板面上に着設されたダイアフラム状の第1の歪ゲージと、前記第2ないし第5の起歪部の板面上にそれぞれ着設された第2ないし第5の歪ゲージとからなる触圧センサが提案されている。   In Patent Document 3, a first plate-like strain-generating portion and a plate-like shape extending from a position at which the periphery of the first strain-generating portion is divided into four at substantially the same angle are provided. The second to fifth strain-generating portions configured to support the first strain-generating portion as legs of the portion, and the first strain-generating portion from each of the second to fifth strain-generating portions. First to fourth foot portions extending on different sides, a diaphragm-shaped first strain gauge attached on a disk surface of the first strain-generating portion, and the second to fifth portions There has been proposed a tactile pressure sensor comprising second to fifth strain gauges respectively attached on the plate surface of the strain generating portion.

特許文献4には、基板と、該基板上に対象物との接触感覚を検出する検出部と、該検出部に接続され、該検出部から出力された信号を処理する処理回路とを備えた触覚センサにおいて、上記検出部は、引張り力および圧縮力を検出する第1の感圧素子と、上記第1の感圧素子上に形成され、上記対象物と接触する接触面を有する第1の接触子とを備え、さらに、上記第1の接触子において、上記対象物との接触面は、上記第1の感圧素子と接している面と平行であり、かつ、上記対象物との接触面の中心位置は、上記第1の感圧素子と接している面の中心位置からずれている触覚センサが提案されている。   Patent Document 4 includes a substrate, a detection unit that detects a sense of contact with an object on the substrate, and a processing circuit that is connected to the detection unit and processes a signal output from the detection unit. In the tactile sensor, the detection unit includes a first pressure-sensitive element that detects a tensile force and a compressive force, and a first contact surface that is formed on the first pressure-sensitive element and contacts the object. And a contact surface with the object in the first contact is parallel to a surface in contact with the first pressure-sensitive element and is in contact with the object. A tactile sensor has been proposed in which the center position of the surface is deviated from the center position of the surface in contact with the first pressure sensitive element.

特開2000-136970号公報JP 2000-136970 A 特公平04-48597号公報Japanese Patent Publication No. 04-48597 特開2004-245717号公報JP 2004-245717 A 特開2004-226380号公報JP 2004-226380 A

しかし、このような従来の剪断方向又は/及び圧縮方向の荷重を検知することができるセンサは複雑な構造をしている。また、ある程度の厚みを必要とする構造をしており、種々の形状の被測定物に付着して剪断方向の荷重や圧縮方向の荷重を簡便に測定するということはできない。さらに、これらのセンサはそのセンサに作用する非常に狭い範囲の荷重しか検知することができないので、実用的なセンサ、例えばロボットのマニュピュレータ等の触覚センサを構成するには、そのようなセンサを多数配列して触覚センサを構成なければならならず、各センサからの信号を処理するための特別の装置も設けなければならない。このように、従来のセンサは、複雑でサイズの大きいものになるばかりか、高価であるという問題がある。なお、特許文献1に提案されたセンサは、比較的厚さの薄いセンサを構成することができるが、圧縮荷重を測定するセンサを構成するのが構造上困難であるという問題がある。   However, the conventional sensor capable of detecting the load in the shear direction and / or the compression direction has a complicated structure. In addition, it has a structure that requires a certain amount of thickness, and cannot easily measure a load in a shearing direction or a load in a compressing direction by adhering to an object having various shapes. Furthermore, since these sensors can only detect a very narrow range of loads acting on the sensors, such sensors are not suitable for constructing practical sensors, for example tactile sensors such as robot manipulators. A large number of tactile sensors must be constructed, and a special device must be provided for processing the signals from each sensor. As described above, the conventional sensor is not only complicated and large in size but also expensive. Although the sensor proposed in Patent Document 1 can constitute a relatively thin sensor, there is a problem that it is structurally difficult to construct a sensor for measuring a compressive load.

本発明は、係る従来の問題点に鑑み、簡単な構造を有し、様々な形状の被測定物に作用する広い範囲の剪断方向の変動荷重又は/及び圧縮方向の変動荷重を検知することができる変動荷重センサ及びこれを用いた触覚センサを提供することを目的とする。   In view of the conventional problems, the present invention has a simple structure and can detect a wide range of load fluctuations in the shear direction and / or variable load in the compression direction acting on the object to be measured in various shapes. It is an object of the present invention to provide a variable load sensor that can be used and a tactile sensor using the same.

本発明に係る変動荷重センサは、被測定物に付着されて使用される変動荷重センサであって、圧電フィルムの表面上に離間して配設された一対の同一形状の表電極と、該表電極及び前記圧電フィルムの表面を覆う表歪増幅部材と、該表歪増幅部材の上面に配設された荷重伝達部材と、前記圧電フィルムの裏面上に前記表電極と同一形状でその投影面に重なる一対の裏電極と、該裏電極及び前記圧電フィルムの裏面を覆う前記表歪増幅部材と同質の裏歪増幅部材と、を有してなり、前記一対の表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、前記一対の表電極と前記一対の裏電極とは、対角位置に存在する電極同士が短絡されてなる。   A fluctuating load sensor according to the present invention is a fluctuating load sensor that is used while being attached to an object to be measured, and a pair of front electrodes having the same shape and spaced apart on the surface of a piezoelectric film, A surface strain amplifying member covering the surface of the electrode and the piezoelectric film, a load transmitting member disposed on the upper surface of the surface strain amplifying member, and a projection surface having the same shape as the surface electrode on the back surface of the piezoelectric film A pair of overlapping back electrodes, and a back strain amplifying member of the same quality as the surface strain amplifying member covering the back electrode and the back surface of the piezoelectric film, and the pair of front or back electrodes are each loaded with the load The pair of front electrodes and the pair of back electrodes are arranged diagonally with respect to the symmetry axis of the transmission member so as not to overlap the projection surface of the load transmission member. Is short-circuited.

また、上記構成に、さらに、表歪増幅部材の下面側で圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の表電極と重ならない表中央電極と、裏歪増幅部材の下面側で前記圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる裏中央電極とから形成される一対の中央電極を設けてなる。   Further, in the above configuration, a front center electrode provided on the surface of the piezoelectric film on the lower surface side of the front strain amplifying member and symmetric with respect to the symmetry axis of the load transmitting member and not overlapping with the pair of front electrodes, and back strain amplification A pair of central electrodes are provided on the lower surface side of the member on the back surface of the piezoelectric film and are formed of a back central electrode having the same shape as the front central electrode and overlapping the projection surface.

さらに、被測定物に付着されて使用される変動荷重センサであって、第1圧電フィルムの表面上に離間して配設された一対の同一形状の第1表電極と、前記第1圧電フィルムの裏面上に前記第1表電極と同一形状でその投影面に重なる一対の第1裏電極とを有する第1センサ要素と、該第1センサ要素に直交して接合され、第2圧電フィルムの表面上に離間して配設された一対の同一形状の第2表電極と、前記第2圧電フィルムの裏面上に前記第2表電極と同一形状でその投影面に重なる一対の第2裏電極と、を有する第2センサ要素と、前記第1及び2圧電フィルムの表面と第1及び2表電極を覆う表歪増幅部材と、該表歪増幅部材の上面に配設された荷重伝達部材と、前記第1及び2圧電フィルムの裏面と第1及び2裏電極を覆う前記表歪増幅部材と同質の裏歪増幅部材と、を有してなり、前記第1圧電フィルムと前記第2圧電フィルムとは同等の分極特性を有し、前記一対の第1表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、前記一対の第2表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、前記一対の第1表電極と前記一対の第1裏電極とは対角位置に存在する電極同士が短絡され、前記一対の第2表電極と前記一対の第2裏電極とも対角位置に存在する電極同士が短絡されてなることができる。   Furthermore, it is a variable load sensor that is used by being attached to an object to be measured, and is a pair of first surface electrodes having the same shape and disposed on the surface of the first piezoelectric film, and the first piezoelectric film. A first sensor element having a pair of first back electrodes having the same shape as the first front electrode and overlapping the projection surface on the back surface of the first piezoelectric film, and bonded perpendicularly to the first sensor element. A pair of second front electrodes having the same shape spaced apart on the front surface, and a pair of second back electrodes having the same shape as the second front electrode on the back surface of the second piezoelectric film and overlapping the projection surface A surface strain amplification member that covers the surfaces of the first and second piezoelectric films and the first and second surface electrodes, and a load transmission member disposed on an upper surface of the surface strain amplification member. The front surface covering the back surface of the first and second piezoelectric films and the first and second back electrodes A back strain amplifying member of the same quality as the amplifying member, the first piezoelectric film and the second piezoelectric film have equivalent polarization characteristics, and the pair of first front and back electrodes are respectively Symmetrically with respect to the symmetry axis of the load transmission member, and disposed so as not to overlap the projection surface of the load transmission member, the pair of second front or back electrodes are respectively arranged on the symmetry axis of the load transmission member. The pair of first front electrodes and the pair of first back electrodes are short-circuited with each other, and are symmetrical with respect to the projection surface of the load transmitting member. The pair of second front electrodes and the pair of second back electrodes may be formed by short-circuiting the electrodes present at diagonal positions.

また、さらに、表歪増幅部材の下面側で第1圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第1表電極と重ならない第1表中央電極と、裏歪増幅部材の下面側で前記第1圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる第1裏中央電極とから形成される一対の第1中央電極を設けてなることができる。   Further, a first front center electrode provided on the surface of the first piezoelectric film on the lower surface side of the front strain amplifying member and symmetric with respect to the symmetry axis of the load transmitting member and not overlapping the pair of first front electrodes, A pair of first center electrodes formed on the lower surface side of the strain amplification member on the back surface of the first piezoelectric film and formed from a first back center electrode having the same shape as the front center electrode and overlapping the projection surface are provided. Can be.

また、表歪増幅部材の下面側で前記第2圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第2表電極と重ならない第2表中央電極と、裏歪増幅部材の下面側で第2圧電フィルムの裏面上に設けられ前記第2表中央電極と同一形状でその投影面に重なる第2裏中央電極とから形成される一対の第2中央電極を設けてなることができる。   A second front center electrode which is provided on the lower surface side of the front strain amplifying member on the surface of the second piezoelectric film and which is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with the pair of second front electrodes; A pair of second central electrodes formed on the lower surface side of the amplifying member on the back surface of the second piezoelectric film and formed from a second back central electrode having the same shape as the second front central electrode and overlapping the projection surface; Can be.

さらに、表歪増幅部材の下面側で第1圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第1表電極と重ならない第1表中央電極と、裏歪増幅部材の下面側で前記第1圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる第1裏中央電極とから形成される一対の第1中央電極と、該第1中央電極と同一形状を有し、表歪増幅部材の下面側で前記第2圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第2表電極と重ならない第2表中央電極と、裏歪増幅部材の下面側で第2圧電フィルムの裏面上に設けられ前記第2表中央電極と同一形状でその投影面に重なる第2裏中央電極とから形成される一対の第2中央電極とを有してなり、前記第1表中央電極が、該第1表中央電極と同じ極性を有する第2表又は裏中央電極と短絡され、前記第1裏中央電極が、該第1裏中央電極と同じ極性を有する第2表又は裏中央電極と短絡されてなることができる。   Furthermore, a first front center electrode which is provided on the surface of the first piezoelectric film on the lower surface side of the front strain amplifying member and is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with the pair of first front electrodes, and back strain amplification A pair of first central electrodes formed on the lower surface side of the member on the back surface of the first piezoelectric film and formed from a first back central electrode having the same shape as the front central electrode and overlapping the projection surface; A second electrode having the same shape as the center electrode, provided on the surface of the second piezoelectric film on the lower surface side of the surface strain amplifying member, symmetrical to the symmetry axis of the load transmitting member and not overlapping the pair of second surface electrodes. A pair of front center electrodes and a second back center electrode formed on the back surface of the second piezoelectric film on the lower surface side of the back strain amplifying member and having the same shape as the second front center electrode and overlapping the projection surface A second central electrode, and the first front central electrode has the first central electrode. Short-circuited with a second front or back center electrode having the same polarity as the front center electrode, and the first back center electrode is short-circuited with a second front or back center electrode having the same polarity as the first back center electrode. be able to.

上記発明において、歪増幅部材は、圧電フィルムよりも低弾性率であるのがよく、荷重伝達部材は、歪増幅部材よりも高弾性率であるのがよい。   In the above invention, the strain amplifying member may have a lower elastic modulus than the piezoelectric film, and the load transmitting member may have a higher elastic modulus than the strain amplifying member.

上記変動荷重センサを、湾曲し頂部に荷重伝達部材を配設することができる台座に付着させロボットハンド等に用いて好適な触覚センサを構成することができる。   The fluctuating load sensor can be attached to a pedestal that can be bent and a load transmitting member can be disposed on the top, and can be used for a robot hand or the like to form a suitable tactile sensor.

本発明に係る変動荷重センサは、簡単な構造を有し、薄いシート状のセンサを形成することができる。また、様々な形状の被測定物に作用する広い範囲の変動荷重を容易に検知することもできる。さらに、この変動荷重センサを用いてロボットハンドに好適な触覚センサを構成することができる。   The variable load sensor according to the present invention has a simple structure and can form a thin sheet-like sensor. It is also possible to easily detect a wide range of fluctuating loads acting on the object to be measured having various shapes. Furthermore, a tactile sensor suitable for a robot hand can be configured using this variable load sensor.

以下に本発明に係る変動荷重センサの実施の形態を図面に基づいて説明する。図1は、本変動荷重センサの構成を示す模式図であり、図1(a)が断面図、図1(b)が平面図である。図2は、本変動荷重センサの電気回路図である。図1に示すように、本変動荷重センサ10は、圧電フィルム11と、圧電フィルム11の表裏面に配設された電極12と、圧電フィルム11及び電極12を覆う歪増幅部材16と、歪増幅部材16の上面に配設された荷重伝達部材19を有している。   Embodiments of a variable load sensor according to the present invention will be described below with reference to the drawings. 1A and 1B are schematic views showing the configuration of the variable load sensor, in which FIG. 1A is a sectional view and FIG. 1B is a plan view. FIG. 2 is an electric circuit diagram of the variable load sensor. As shown in FIG. 1, the fluctuating load sensor 10 includes a piezoelectric film 11, electrodes 12 disposed on the front and back surfaces of the piezoelectric film 11, a strain amplification member 16 that covers the piezoelectric film 11 and the electrode 12, and a strain amplification. A load transmitting member 19 is provided on the upper surface of the member 16.

圧電フィルム11は公知のものを使用することができる。例えば、フィルムの厚みが40〜100μm、縦弾性係数が2000〜4000MPa、ポアソン比が0.3〜0.35のPVDF(ポリフッ化ビニリデン、Polyvinylidene fluoride)を使用することができる。   As the piezoelectric film 11, a known film can be used. For example, PVDF (polyvinylidene fluoride) having a film thickness of 40 to 100 μm, a longitudinal elastic modulus of 2000 to 4000 MPa, and a Poisson's ratio of 0.3 to 0.35 can be used.

電極12は、圧電フィルム11の表面に互いに離間して配設された一対の電極13Aと13B、および、圧電フィルム11の裏面に互いに離間して配設された一対の電極14Aと14Bからなり、すべて同一形状を有する。また、圧電フィルム11の裏面の電極14Aは、表面の電極13Aの投影面に重さなるように、電極14Bは、表面の電極13Bの投影面に重さなるように配設されている。   The electrode 12 comprises a pair of electrodes 13A and 13B disposed on the surface of the piezoelectric film 11 and spaced apart from each other, and a pair of electrodes 14A and 14B disposed on the back surface of the piezoelectric film 11 spaced apart from each other. All have the same shape. Further, the electrode 14A on the back surface of the piezoelectric film 11 is disposed so as to overlap the projection surface of the front electrode 13A, and the electrode 14B is disposed so as to overlap the projection surface of the front electrode 13B.

これらの電極12は、圧電フィルム11にアルミニウムを蒸着し、導電性塗料を塗布し又は銅等のスパッタリングにより形成することができる。この電極12は、圧電フィルム11の変形を阻害することなくその変形に追従でき、導電性に優れたものであればよい。以下に説明するように電極の大きさ形状及び配設位置はセンサの感度に関係するから、圧電フィルム11に所定のマスキングを行った後に蒸着又はスパッタリングにより、あるいは、圧電フィルムの面全体に蒸着又はスパッタリングにより電極を形成した後に不要な部分を腐蝕液等で除去して電極12を形成するのがよい。なお、圧電フィルム11の表裏面に設けられる一対の電極13Aと13B及び14Aと14Bは、電極13Aと14A、または、電極13Bと14Bの縁部が接触して短絡しないように、これらの電極12の縁部は、圧電フィルム11の縁部からわずかに内側にくるようにするのがよい。   These electrodes 12 can be formed by vapor-depositing aluminum on the piezoelectric film 11, applying a conductive paint, or sputtering of copper or the like. The electrode 12 may be any electrode as long as it can follow the deformation without inhibiting the deformation of the piezoelectric film 11 and has excellent conductivity. As described below, since the size and arrangement position of the electrodes are related to the sensitivity of the sensor, the piezoelectric film 11 is subjected to predetermined masking by vapor deposition or sputtering, or vapor deposition or entire surface of the piezoelectric film. After forming the electrode by sputtering, it is preferable to form the electrode 12 by removing unnecessary portions with a corrosive solution or the like. It should be noted that the pair of electrodes 13A and 13B and 14A and 14B provided on the front and back surfaces of the piezoelectric film 11 are not connected to the edges of the electrodes 13A and 14A or the electrodes 13B and 14B so that they are not short-circuited. It is preferable that the edge of the film be slightly inward from the edge of the piezoelectric film 11.

歪増幅部材16は、圧電フィルム11の表面と一対の電極13Aと13Bを覆う表歪増幅部材17と、圧電フィルム11の裏面と一対の電極14Aと14Bを覆う裏歪増幅部材18とからなり、表歪増幅部材17と裏歪増幅部材18とは縦及び横弾性係数等が等しい同質の弾性体からなる。   The strain amplification member 16 includes a surface strain amplification member 17 that covers the surface of the piezoelectric film 11 and the pair of electrodes 13A and 13B, and a back strain amplification member 18 that covers the back surface of the piezoelectric film 11 and the pair of electrodes 14A and 14B. The front strain amplifying member 17 and the back strain amplifying member 18 are made of the same elastic body having the same longitudinal and transverse elastic coefficients.

歪増幅部材16は、圧電フィルム11の弾性係数よりも小さい弾性係数を有する弾性体を用いる。この歪増幅部材16は、以下に説明するように変動荷重センサ10に変動荷重等が作用するとき、圧電フィルム11に生ずる歪みを増大させてその歪みに伴う分極により発生する電荷量を増大させ、変動荷重センサ10の測定感度を増大させる機能を有する。このため、歪増幅部材16としては、例えば、圧電フィルム11の弾性係数の1/100〜1/1000程度の縦弾性係数が1〜10Mpa(JISK6253に基づくゴム硬度40〜60相当)である弾性体を用いるのがよい。そのような弾性体としては、シリコンゴム、天然ゴム又は合成ゴムがよく、特にPVDFからなる圧電フィルムを用いる場合は、弾性体としてシリコンゴムを用いるのがよい。   As the strain amplifying member 16, an elastic body having an elastic coefficient smaller than that of the piezoelectric film 11 is used. As described below, the strain amplification member 16 increases the amount of charge generated by the polarization accompanying the strain by increasing the strain generated in the piezoelectric film 11 when a variable load or the like acts on the variable load sensor 10. It has a function of increasing the measurement sensitivity of the variable load sensor 10. For this reason, as the strain amplifying member 16, for example, an elastic body having a longitudinal elastic modulus of about 1/100 to 1/1000 of the elastic modulus of the piezoelectric film 11 is 1 to 10 Mpa (equivalent to a rubber hardness of 40 to 60 based on JISK6253). Should be used. As such an elastic body, silicon rubber, natural rubber or synthetic rubber is preferable. In particular, when a piezoelectric film made of PVDF is used, it is preferable to use silicon rubber as the elastic body.

歪増幅部材16は上記のように圧電フィルム11の歪みを増大させるものであるから、歪増幅部材16と圧電フィルム11の接合部分は一体に変形するように接合されていなければならない。この接合手段は特に問わないが、歪増幅部材16と圧電フィルム11の接合は接着によるものでよい。接着による場合は、接着剤として硬化後の硬度が歪増幅部材16と略同じシリコン樹脂系またはゴム系接着剤を使用するのがよく、特に圧電フィルム11にPVDFを用いる場合はシリコン樹脂系接着剤を使用するのがよい。なお、歪増幅部材16として用いるシリコンゴム等は、液体状のシリコンゴム等を圧電フィルム11に一定厚さに塗り、又は圧電フィルムの上面に型枠を取付けて液体状のシリコンゴム等を流し込んで硬化させることにより圧電フィルム11と一体に構成することもできる。   Since the strain amplifying member 16 increases the strain of the piezoelectric film 11 as described above, the joint portion between the strain amplifying member 16 and the piezoelectric film 11 must be joined so as to be integrally deformed. The joining means is not particularly limited, but the joining of the strain amplifying member 16 and the piezoelectric film 11 may be by adhesion. In the case of adhesion, it is preferable to use a silicone resin or rubber adhesive whose hardness after curing is substantially the same as that of the strain amplifying member 16 as an adhesive, and particularly when using PVDF for the piezoelectric film 11, a silicone resin adhesive. It is good to use. Silicon rubber or the like used as the strain amplifying member 16 is formed by applying liquid silicon rubber or the like to the piezoelectric film 11 to a certain thickness, or attaching a mold to the upper surface of the piezoelectric film and pouring the liquid silicon rubber or the like. It can also be configured integrally with the piezoelectric film 11 by curing.

歪増幅部材16の歪み増幅効果を得るには、表又は裏歪増幅部材17、18の厚さは各1mm〜5mmとするのがよい。歪増幅部材16の厚さが1mm未満であると、歪増幅部材16自体の歪み量が小さくなり望ましい歪み増幅効果を得ることができない。一方、歪増幅部材16の厚さが5mmを超えると、歪み増幅効果の程度が飽和するからである。また、歪増幅部材16は、圧電フィルム11の全面を覆いわずかにはみ出す程度の大きさになるようにするがよい。これにより、歪増幅部材16による均一かつ確実な歪み増幅効果を得ることができる。   In order to obtain the strain amplification effect of the strain amplification member 16, the thickness of the front or back strain amplification members 17, 18 is preferably 1 mm to 5 mm. If the thickness of the strain amplifying member 16 is less than 1 mm, the strain amount of the strain amplifying member 16 itself becomes small and a desired strain amplifying effect cannot be obtained. On the other hand, when the thickness of the strain amplification member 16 exceeds 5 mm, the degree of the strain amplification effect is saturated. Further, it is preferable that the strain amplifying member 16 has a size that covers the entire surface of the piezoelectric film 11 and slightly protrudes. Thereby, a uniform and reliable strain amplification effect by the strain amplification member 16 can be obtained.

荷重伝達部材19は、図1に示すように、表歪増幅部材17の上面にあって、一対の表又は裏電極13、14がそれぞれ荷重伝達部材19の対称軸に対して対称になるよう配設されている。すなわち、荷重伝達部材19は対称軸を有し、一対の表又は裏電極13、14はそれぞれその対称軸に対し対称になる形状及び配置を有するようになっている。また、荷重伝達部材19は、表電極13又は裏電極14の投影面に重ならないように配設される。これらにより、以下に説明するように変動荷重を高い精度で検知することができる。なお、荷重伝達部材19が表電極13又は裏電極14の投影面に重ならないようにするため、図1に示す荷重伝達部材19と電極12との圧電フィルム11上の隙間寸法L(L1、L2)は、0.1mm以上であるのがよい。隙間寸法Lが0.1mm以上あれば製造・管理が容易になるからである。隙間寸法Lの上限は被測定物の形状に合わせて決められる。 As shown in FIG. 1, the load transmitting member 19 is arranged on the upper surface of the front strain amplifying member 17 so that the pair of front or back electrodes 13 and 14 are symmetrical with respect to the symmetry axis of the load transmitting member 19, respectively. It is installed. That is, the load transmitting member 19 has a symmetry axis, and the pair of front or back electrodes 13, 14 has a shape and an arrangement that are symmetrical with respect to the symmetry axis. Further, the load transmitting member 19 is disposed so as not to overlap the projection surface of the front electrode 13 or the back electrode 14. As a result, the fluctuating load can be detected with high accuracy as described below. In order to prevent the load transmitting member 19 from overlapping the projection surface of the front electrode 13 or the back electrode 14, a gap dimension L (L 1 , L) on the piezoelectric film 11 between the load transmitting member 19 and the electrode 12 shown in FIG. L 2 ) should be 0.1 mm or more. This is because if the gap dimension L is 0.1 mm or more, manufacturing and management are facilitated. The upper limit of the gap dimension L is determined according to the shape of the object to be measured.

この荷重伝達部材19の機能は、変動荷重の作用点が荷重伝達部材19の面上にあるどのような位置に作用する変動荷重をも歪増幅部材16に直接に伝達することである。このため、荷重伝達部材19は剛性の高いものであること、荷重伝達部材19と歪増幅部材16とは接合されていること等が要求される。荷重伝達部材19自身が歪んで歪増幅部材16の歪み量に影響を与えるものは適当でない。このような荷重伝達部材19として、例えば、アルミニウムや銅の0.1mm厚程度の薄板を使用することができる。また、樹脂シート、金属シート、高硬度ゴムシート等を使用することもできる。このように柔軟性のあるものの場合は、被測定物の形状が曲面状であっても、これに作用する変動荷重を検知することができるセンサを容易に形成することができる。なお、荷重伝達部材19と歪増幅部材16との接合は、上記のゴム系接着剤を使用することができる。また、変動荷重が作用する荷重伝達部材19の表面をスポンジ、ゴム等で覆って滑り止めを設け、変動荷重の作用点がずれないようにし、検知精度を向上させることができる。   The function of the load transmission member 19 is to directly transmit the variable load acting at any position where the action point of the variable load is on the surface of the load transmission member 19 to the strain amplifying member 16. For this reason, it is required that the load transmission member 19 has a high rigidity and that the load transmission member 19 and the strain amplifying member 16 are joined. It is not appropriate that the load transmitting member 19 itself is distorted to affect the strain amount of the strain amplifying member 16. As such a load transmission member 19, for example, a thin plate of about 0.1 mm thickness made of aluminum or copper can be used. Moreover, a resin sheet, a metal sheet, a high hardness rubber sheet, etc. can also be used. In the case of such a flexible thing, even if the shape of a to-be-measured object is a curved surface shape, the sensor which can detect the fluctuating load which acts on this can be formed easily. The above-mentioned rubber adhesive can be used for joining the load transmitting member 19 and the strain amplifying member 16. Further, the surface of the load transmitting member 19 on which the variable load acts can be covered with a sponge, rubber or the like to provide a slip stopper, so that the point of action of the variable load does not shift, and the detection accuracy can be improved.

このような変動荷重センサ10の荷重伝達部材19に剪断変動荷重が作用すると、歪増幅部材16を介して圧電フィル11に歪みを生じ、圧電フィルム11には分極により電荷が生ずる。変動荷重センサ10には、その電荷を取り出すための出力端子が設けられる。すなわち、図2に示すように、一対の表電極13と一対の裏電極14の対角位置に存在する電極同士が短絡されるように、電極13Aと電極14Bとを結線し、また、電極13Bと電極14Aとを結線し、それぞれ出力端子V1、V2に至る配線によって分極により生じた電荷が出力電圧として取り出される。 When a shearing variable load acts on the load transmitting member 19 of the variable load sensor 10 as described above, the piezoelectric film 11 is distorted through the strain amplifying member 16, and the piezoelectric film 11 is charged by polarization. The variable load sensor 10 is provided with an output terminal for taking out the electric charge. That is, as shown in FIG. 2, the electrodes 13A and 14B are connected so that the electrodes existing at the diagonal positions of the pair of front electrodes 13 and the pair of back electrodes 14 are short-circuited, and the electrodes 13B And the electrode 14A are connected to each other, and the charges generated by the polarization by the wires reaching the output terminals V 1 and V 2 are taken out as the output voltage.

なお、図2に示す電気回路図には静電容量C1及び抵抗R1が設けられているが、これらは必要に応じて設けることができる。例えば、圧電フィルムの寸法が小さくて変動荷重の荷重速度が緩やかである場合に、0.5μFから1μF程度の静電容量Clと、1MΩから10MΩ程度の抵抗Rlを接続すると、荷重速度が緩やかであっても変動荷重に比例する出力電圧を得ることができる。 Note that the electric circuit diagram shown in FIG. 2 but the capacitance C 1 and resistor R 1 is provided, it may be provided as needed. For example, if the size of the piezoelectric film is small and the load speed of the fluctuating load is moderate, if the capacitance C l of about 0.5 μF to 1 μF and the resistance R l of about 1 MΩ to 10 MΩ are connected, the load speed will be An output voltage proportional to the fluctuating load can be obtained even if it is moderate.

なお、電極12間の配線は、例えば、導電性粘着剤付き金属箔テープの粘着剤面を電極12に粘着させて形成することができる。電極12と導電ゴムや導電性繊維等の柔軟導電素材とを導電性接着剤で接着し、または、電極12と柔軟導電素材とを金属板で挟みこれをカシメて接続することにより配線を形成することもできる。   The wiring between the electrodes 12 can be formed, for example, by sticking the adhesive surface of a metal foil tape with a conductive adhesive to the electrode 12. The electrode 12 and a flexible conductive material such as conductive rubber or conductive fiber are bonded with a conductive adhesive, or the electrode 12 and the flexible conductive material are sandwiched between metal plates and connected by caulking to form a wiring. You can also.

このような変動荷重センサ10を用いて、被測定物50に作用する剪断変動荷重を以下に説明するように測定することができる。図3は、変動荷重センサ10を被測定物50に付着し、荷重伝達部材19に矢印(X軸)方向の変動荷重(剪断方向の変動荷重)Fを負荷したときの、変動荷重センサ10の変形状態(図3(a))及び弾性力学的に求めた圧電フィルム11のX軸方向の歪みεxの分布曲線(図3(b))を模式的に表した説明図である。 Using such a fluctuating load sensor 10, the shear fluctuating load acting on the measurement object 50 can be measured as described below. FIG. 3 shows the variable load sensor 10 when the load sensor 10 is attached to the object to be measured 50 and the load transmission member 19 is loaded with a variable load F in the arrow (X-axis) direction (a variable load in the shear direction) F. It is explanatory drawing which represented typically the deformation | transformation state (FIG.3 (a)) and the distribution curve (FIG.3 (b)) of distortion | strain (epsilon) x of the X-axis direction of the piezoelectric film 11 calculated | required elastically.

上述のように、荷重伝達部材19は剛性が高く、荷重伝達部材19及び一対の表又は裏電極13、14は、対称軸ZZに対して対称の形状・配置を有している。また、歪増幅部材16は圧電フィルム11の弾性係数よりも小さい弾性係数を有し、電極12はすべて同一の形状をしている。したがって、荷重伝達部材19に変動荷重Fが作用するとき、歪増幅部材16には剪断方向の歪みを生じるが、これが圧電フィルム11にX軸方向の軸歪みを生じさせて、図3(a)に示すLe部には伸び歪みを、Lc部にはLe部と絶対値が等しい圧縮歪みを生じる。そして、歪増幅部材16の弾性係数が圧電フィルム11の弾性係数より小さく、歪増幅部材16の歪みが圧電フィルム11の歪みより大きいから、圧電フィルム11に生ずる歪みは歪増幅部材16により増幅され、図2に示す出力端子V1、V2から増幅された歪みεxに相当する出力電圧が検知される。このように本変動荷重センサによれば、剪断方向の変動荷重を高感度で検知することができる。 As described above, the load transmitting member 19 has high rigidity, and the load transmitting member 19 and the pair of front or back electrodes 13 and 14 have a symmetrical shape and arrangement with respect to the symmetry axis ZZ. Further, the strain amplifying member 16 has an elastic coefficient smaller than that of the piezoelectric film 11, and all the electrodes 12 have the same shape. Therefore, when the variable load F acts on the load transmitting member 19, the strain amplifying member 16 is distorted in the shear direction. This causes the piezoelectric film 11 to be axially distorted in the X-axis direction, and FIG. elongation distortion in the L e part shown in a, the L c unit produce L e portion equal compressive strain magnitude. Then, since the elastic coefficient of the strain amplifying member 16 is smaller than the elastic coefficient of the piezoelectric film 11, and the distortion of the strain amplifying member 16 is larger than the distortion of the piezoelectric film 11, the distortion generated in the piezoelectric film 11 is amplified by the strain amplifying member 16. An output voltage corresponding to the distortion ε x amplified from the output terminals V 1 and V 2 shown in FIG. 2 is detected. Thus, according to this variable load sensor, the variable load in the shear direction can be detected with high sensitivity.

圧電フィルム11に生ずるεx(圧電フィルムのx位置におけるX軸方向の歪み)は、図3(b)に示す歪み分布曲線により表される。図3(b)に示すように、歪み分布曲線はZZ軸とX軸の交点Oに対し点対称の曲線になっている。そして、圧電フィルム11の電極13A、14Aが配設された部分には、図3(b)に示す斜線部S+に比例する+の電荷Q+を生じ、電極13B、14Bが配設された部分には電荷Q+と絶対値が等しく斜線部S-に比例する−の電荷Q-を生じる。すなわち、電荷Q+と電荷Q-との差分を図2に示す電気回路により電圧変動として検知することによって剪断変動荷重Fを検知することができる。 Ε x (strain in the X-axis direction at the x position of the piezoelectric film) generated in the piezoelectric film 11 is represented by a strain distribution curve shown in FIG. As shown in FIG. 3B, the strain distribution curve is a point-symmetrical curve with respect to the intersection O of the ZZ axis and the X axis. Then, in the portion of the piezoelectric film 11 where the electrodes 13A and 14A are disposed, a positive charge Q + proportional to the hatched portion S + shown in FIG. 3B is generated, and the electrodes 13B and 14B are disposed. proportional to - - the charge Q + and the absolute value is equal to the hatched portion S in part results in a - charge Q of. That is, the shear fluctuation load F can be detected by detecting the difference between the charge Q + and the charge Q as a voltage fluctuation by the electric circuit shown in FIG.

上述のように、本変動荷重センサ10による剪断変動荷重を検知する原理は、荷重伝達部材19に作用する変動荷重により圧電フィルム11の内部に生ずる歪みが、図3(b)に示す交点Oに対し点対称の分布になっているということが前提になっている。すなわち、電極13A、13B、14A、14Bや荷重伝達部材19の形状及び配設位置に関する精度が重要であり、それらの精度は変動荷重の検知精度に影響する。したがって、必要以上の精度を要求することはないが、要求される変動荷重の検知精度に応じて電極12及び荷重伝達部材19の形状及び配設位置等の精度を決める必要がある。   As described above, the principle of detecting the shearing variable load by the variable load sensor 10 is that the distortion generated in the piezoelectric film 11 due to the variable load acting on the load transmitting member 19 is at the intersection O shown in FIG. It is assumed that the distribution is point-symmetric. That is, the accuracy regarding the shapes and arrangement positions of the electrodes 13A, 13B, 14A, 14B and the load transmission member 19 is important, and the accuracy affects the detection accuracy of the fluctuating load. Therefore, although the accuracy more than necessary is not required, it is necessary to determine the accuracy of the shape and arrangement position of the electrode 12 and the load transmission member 19 according to the required detection accuracy of the fluctuating load.

荷重伝達部材19と電極12との配置関係において、荷重伝達部材19が表電極13又は裏電極14の投影面に重なるように配設されるときは、上記歪み分布曲線の形状が荷重伝達部材19の影響を受けて理論曲線と異なるものになる。このため、荷重伝達部材19は、表電極13又は裏電極14の投影面に入らないように配設すべきである。   When the load transmission member 19 is arranged so as to overlap the projection surface of the front electrode 13 or the back electrode 14 in the arrangement relationship between the load transmission member 19 and the electrode 12, the shape of the strain distribution curve is the load transmission member 19. It becomes different from the theoretical curve under the influence of. For this reason, the load transmitting member 19 should be disposed so as not to enter the projection surface of the front electrode 13 or the back electrode 14.

以上説明したように、本発明に係る変動荷重センサは、全体の厚さが2〜10mmの薄シート状のセンサを形成することができ、簡単な構造であるという利点を有する。また、種々の形状を有する被測定物に作用する広い範囲の剪断方向の変動荷重を容易に検知することができる。しかしながら、本発明に係る変動荷重センサは、上記の実施例に限定されない。剪断方向の変動荷重のみならず圧縮方向の変動荷重を同時に検知することができる2軸変動荷重センサを容易に構成することができる。   As described above, the variable load sensor according to the present invention can form a thin sheet sensor having an overall thickness of 2 to 10 mm, and has an advantage of a simple structure. Further, it is possible to easily detect a wide range of fluctuating loads in the shearing direction acting on the object to be measured having various shapes. However, the variable load sensor according to the present invention is not limited to the above embodiment. A biaxial variable load sensor that can simultaneously detect not only the variable load in the shearing direction but also the variable load in the compression direction can be easily configured.

図4に、剪断変動荷重及び圧縮変動荷重を同時に検知することができる2軸変動荷重センサの模式図を示す。図4(a)は2軸変動荷重センサ110の断面図、図4(b)は平面図である。図5はこの2軸変動荷重センサ110の電気回路図である。2軸変動荷重センサ110は、図4(a)に示すように、図1に示す変動荷重センサ10の構成に加えて、さらに、圧電フィルム11の表裏面上に一対の中央電極22を有している。すなわち、表歪増幅部材17の下面側で圧電フィルム11の表面上に設けられ荷重伝達部材19の対称軸に対称、かつ、一対の表電極13と重ならない表中央電極22Aと、裏歪増幅部材18の下面側で圧電フィルム11の裏面上に設けられ表中央電極22Aと同一形状でその投影面に重なる裏中央電極22Bとから形成される一対の中央電極22を有している。なお、表電極13の投影面に重ならないとは、圧電フィルム11上の中央電極22と電極12との隙間寸法が0.1mm以上あることをいう。   FIG. 4 is a schematic diagram of a biaxial variable load sensor that can simultaneously detect a shear variable load and a compressive variable load. 4A is a cross-sectional view of the biaxial variable load sensor 110, and FIG. 4B is a plan view. FIG. 5 is an electric circuit diagram of the biaxial variable load sensor 110. As shown in FIG. 4 (a), the biaxial variable load sensor 110 has a pair of central electrodes 22 on the front and back surfaces of the piezoelectric film 11 in addition to the configuration of the variable load sensor 10 shown in FIG. ing. That is, the front center electrode 22A provided on the surface of the piezoelectric film 11 on the lower surface side of the front strain amplifying member 17 and symmetric with respect to the symmetry axis of the load transmission member 19, and not overlapping the pair of front electrodes 13, and the back strain amplifying member 18 has a pair of central electrodes 22 formed on the back surface of the piezoelectric film 11 on the lower surface side of 18 and formed from a back central electrode 22B having the same shape as the front central electrode 22A and overlapping the projection surface. The phrase “not overlapping the projection surface of the surface electrode 13” means that the gap between the central electrode 22 and the electrode 12 on the piezoelectric film 11 is 0.1 mm or more.

この2軸変動荷重センサ110は、図5に示すように、電極12部分の電気配線は図2と同様の出力端子V1、V2を有し、さらに、中央電極22A、22Bにそれぞれ結線された出力端子V3、V4を有する。なお、図5の場合も図2の場合と同様に、電極12側及び中央電極22側の電気回路にそれぞれ静電容量C1及び抵抗R1と、静電容量C2及び抵抗R2とを設けることができる。 In the biaxial variable load sensor 110, as shown in FIG. 5, the electrical wiring of the electrode 12 portion has the same output terminals V 1 and V 2 as in FIG. 2, and is further connected to the center electrodes 22A and 22B, respectively. Output terminals V 3 and V 4 . In the case of FIG. 5, as in the case of FIG. 2, the capacitance C 1 and the resistance R 1 , the capacitance C 2 and the resistance R 2 are respectively added to the electric circuits on the electrode 12 side and the central electrode 22 side. Can be provided.

2軸変動荷重センサ110は、剪断方向の変動荷重を出力端子V1、V2からの出力電圧により、圧縮方向の変動荷重を出力端子V3、V4からの出力電圧により検知することができる。なお、圧電フィルム11の中央電極22A、22B部分に生ずる歪みは、歪増幅部材16(17、18)の圧縮に伴うポアソン効果により増幅されているので、出力端子V3、V4から得られる出力電圧はその増幅された歪みに伴う出力電圧が検知される。これにより、圧縮方向の変動荷重も上述の剪断方向の変動荷重と同様に高感度で検知することができる。 The biaxial fluctuating load sensor 110 can detect fluctuating load in the shearing direction from the output voltage from the output terminals V 1 and V 2 and detecting fluctuating load in the compressing direction from the output voltage from the output terminals V 3 and V 4. . The distortion generated in the central electrodes 22A and 22B of the piezoelectric film 11 is amplified by the Poisson effect accompanying the compression of the distortion amplifying member 16 (17, 18), so that the output obtained from the output terminals V 3 and V 4 As the voltage, an output voltage associated with the amplified distortion is detected. Thereby, the variable load in the compression direction can be detected with high sensitivity in the same manner as the variable load in the shearing direction.

また、本発明に係る変動荷重センサは、互いに直角方向の剪断変動荷重を同時に検知することができる2軸変動荷重センサを容易に構成することができる。図6にその2軸変動荷重センサ120の模式図を示す。図6(a)は2軸変動荷重センサ120の平面図、図6(b)は図6(a)のXX断面図である。図7はこの2軸変動荷重センサ120の電気回路図である。   Further, the variable load sensor according to the present invention can easily constitute a biaxial variable load sensor that can simultaneously detect a shear variable load in a direction perpendicular to each other. FIG. 6 shows a schematic diagram of the biaxial variable load sensor 120. 6A is a plan view of the biaxial variable load sensor 120, and FIG. 6B is a sectional view taken along line XX in FIG. 6A. FIG. 7 is an electric circuit diagram of the biaxial variable load sensor 120.

2軸変動荷重センサ120は、図6に示すように、第1センサ要素100と第2センサ要素101とが互いに直交して接合された形状をしている。第1センサ要素100は、図1に示す変動荷重センサ10と同様の構成を有する。すなわち、第1圧電フィルム11の表面上に離間して配設された一対の同一形状の第1表電極13(13A、13B)と、第1圧電フィルム11の裏面上に第1表電極13と投影面が重なるように設けられた第1表電極13と同一形状の一対の第1裏電極14(14A、14B)とを有する。第2センサ要素101は、第2圧電フィルム111の表面上に離間して配設された一対の同一形状の第2表電極131(131A、131B)と、第2圧電フィルム111の裏面上に第2表電極131と投影面が重なるように設けられた第2表電極131と同一形状の一対の第2裏電極141(141A、141B)とを有する。なお、第1センサ要素100と第2センサ要素101との接合には、接着又は溶着法を用いることができる。接着法で接合する場合は、上述のシリコン樹脂系又はゴム系接着剤を使用することができる。その場合の接着剤層の厚さは、圧電フィルムへの荷重伝達ロス少なくするために薄いほどよく、0.1mm以下とするのがよい。   As shown in FIG. 6, the biaxial variable load sensor 120 has a shape in which a first sensor element 100 and a second sensor element 101 are joined orthogonally to each other. The first sensor element 100 has the same configuration as the variable load sensor 10 shown in FIG. That is, a pair of first surface electrodes 13 (13A, 13B) having the same shape and spaced apart from each other on the surface of the first piezoelectric film 11, and the first surface electrode 13 on the back surface of the first piezoelectric film 11 It has a pair of first back electrodes 14 (14A, 14B) having the same shape as the first front electrode 13 provided so that the projection surfaces overlap. The second sensor element 101 includes a pair of second surface electrodes 131 (131A, 131B) having the same shape and spaced apart on the surface of the second piezoelectric film 111, and the second sensor element 101 on the back surface of the second piezoelectric film 111. The second front electrode 131 has a pair of second back electrodes 141 (141A, 141B) having the same shape as the second front electrode 131 provided so as to overlap the projection surface. For bonding the first sensor element 100 and the second sensor element 101, an adhesion or welding method can be used. When joining by the adhesion method, the above-mentioned silicon resin-based or rubber-based adhesive can be used. In this case, the thickness of the adhesive layer is preferably as thin as possible in order to reduce the load transmission loss to the piezoelectric film, and is preferably 0.1 mm or less.

また、本2軸変動荷重センサ120は、第1及び2圧電フィルム11、111の表面と第1及び2表電極13、131を覆う表歪増幅部材17と、表歪増幅部材17の上面に配設された荷重伝達部材19と、第1及び2圧電フィルム11、111の裏面と第1及び2裏電極14、141を覆う表歪増幅部材17と同質の裏歪増幅部材18とを有している。   The biaxial variable load sensor 120 is disposed on the surface of the first and second piezoelectric films 11 and 111 and the surface strain amplification member 17 that covers the first and second surface electrodes 13 and 131, and on the upper surface of the surface strain amplification member 17. A load transmitting member 19 provided; a back strain amplifying member 17 covering the back surface of the first and second piezoelectric films 11 and 111 and the first and second back electrodes 14 and 141; Yes.

上記2軸変動荷重センサ120において、一対の第1表電極13又は裏電極14は、それぞれ荷重伝達部材19の対称軸に対して対称、かつ、荷重伝達部材19の投影面に重ならないように配設されている。また、一対の第2表電極131又は裏電極141は、それぞれ荷重伝達部材19の対称軸に対して対称、かつ、荷重伝達部材19の投影面に重ならないように配設されている。さらに、図7に示すように、一対の第1表電極13と一対の第1裏電極14とは対角位置に存在する電極同士が短絡され、一対の第2表電極131と一対の第2裏電極141とも対角位置に存在する電極同士が短絡されている。   In the biaxial variable load sensor 120, the pair of first front electrodes 13 or back electrodes 14 are symmetrical with respect to the symmetry axis of the load transmission member 19 and do not overlap the projection surface of the load transmission member 19. It is installed. Further, the pair of second front electrodes 131 or back electrodes 141 are arranged so as to be symmetrical with respect to the symmetry axis of the load transmission member 19 and not overlap the projection surface of the load transmission member 19. Further, as shown in FIG. 7, the pair of first front electrodes 13 and the pair of first back electrodes 14 are short-circuited with each other at the diagonal positions, and the pair of second front electrodes 131 and the pair of second electrodes. In the back electrode 141, the electrodes existing diagonally are short-circuited.

この2軸変動荷重センサ120を、被測定物に付着し、図6(a)に示すXX方向の剪断変動荷重を荷重伝達部材19に作用させると、図7に示す出力端子V1、V2からの出力電圧によってXX方向の剪断変動荷重を検知することができる。また、図6(a)に示すYY方向の剪断変動荷重を荷重伝達部材19に作用させると、図7に示す出力端子V5、V6からの出力電圧によってYY方向の剪断変動荷重を検知することができる。 When the biaxial variable load sensor 120 is attached to the object to be measured and the shear variable load in the XX direction shown in FIG. 6A is applied to the load transmitting member 19, the output terminals V 1 and V 2 shown in FIG. The shear fluctuation load in the XX direction can be detected by the output voltage from. When the YY-direction shear fluctuation load shown in FIG. 6A is applied to the load transmission member 19, the YY-direction shear fluctuation load is detected by the output voltages from the output terminals V 5 and V 6 shown in FIG. be able to.

このようにXX及びYY方向の剪断変動荷重を同時に検知できる理由は以下の通りである。先ず第1センサ要素100について説明する。図6(a)において、第1圧電フィム11がXX方向の剪断変動荷重を受けている場合、第1圧電フィム11は分極により帯電する。第1圧電フィム11に生ずるXX及びYY方向の歪みをそれぞれεx、εyとすると、このとき生ずる電荷量Qxは、Qx=blεx+b2εy(但しbl、b2は比例定数)と表される。圧電フィムは一般に異方性を有し、延伸方向の分極が延伸方向と直角方向の分極より大きい。たとえば、厚さ40μmのPVDF(呉羽化学製)の圧電フィルムでは、約b2=0.5blであり、また、歪増幅部材16に用いるシリコンゴム等の弾性体のポアソン比は約0.5であるので、εy=−0.5εxとすると、上記電荷量Qxは、Q=0.75blεxとなる。 The reason why the shearing load in the XX and YY directions can be detected simultaneously is as follows. First, the first sensor element 100 will be described. In FIG. 6A, when the first piezoelectric film 11 receives a shearing variation load in the XX direction, the first piezoelectric film 11 is charged by polarization. Assuming that strains in the XX and YY directions generated in the first piezoelectric film 11 are ε x and ε y , respectively, the amount of charge Q x generated is Q x = b 1 ε x + b 2 ε y (where b 1 , b 2 Is a proportionality constant). Piezoelectric films generally have anisotropy, and the polarization in the stretching direction is larger than the polarization in the direction perpendicular to the stretching direction. For example, the piezoelectric film having a thickness of 40 [mu] m PVDF (Kureha Chemical), about b 2 = 0.5b l, also, because Poisson's ratio of the elastic body of silicone rubber or the like used in the distortion amplification member 16 is approximately 0.5 , Ε y = −0.5ε x , the charge amount Q x is Q = 0.75b 1 ε x .

一方、第1圧電フィム11がYY方向の剪断変動荷重を受けている場合、第1圧電フィム11に生ずる電荷量Qyは、Qy=b1εy+b2εxと表される。この式に上記のb2=0.5bl、εy=−0.5εxを代入するとQy=0となる。すなわち、第1センサ要素100は、XX方向の剪断変動荷重のみ検知することができ、YY方向の剪断変動荷重は検知できないことが分かる。 On the other hand, when the first piezoelectric film 11 is subjected to a shearing variable load in the YY direction, the charge amount Q y generated in the first piezoelectric film 11 is expressed as Q y = b 1 ε y + b 2 ε x . Substituting the above b 2 = 0.5b l and ε y = −0.5ε x into this equation gives Q y = 0. That is, it can be seen that the first sensor element 100 can detect only the shear fluctuation load in the XX direction and cannot detect the shear fluctuation load in the YY direction.

同様に、第2センサ要素101は、YY方向の剪断変動荷重のみ検知することができ、XX方向の剪断変動荷重は検知することができない。すなわち、第1センサ要素100と第2センサ要素101とを直交させて一体に形成した本2軸変動荷重センサ120により、いずれの方向の剪断変動荷重も検知することができることが分かる。   Similarly, the second sensor element 101 can detect only the shear fluctuation load in the YY direction and cannot detect the shear fluctuation load in the XX direction. That is, it can be seen that the shear variable load in any direction can be detected by the biaxial variable load sensor 120 in which the first sensor element 100 and the second sensor element 101 are integrally formed orthogonally.

上述のように、圧電フィルムは異方性を有する。このため、2軸変動荷重センサ120の感度は、第1センサ要素100及び第2センサ要素101を構成する圧電フィルムの影響を受ける。したがって、それらのセンサに用いる圧電フィルムは、同質でXX方向又はYY方向の歪みに対し分極特性が同等であるものがよい。   As described above, the piezoelectric film has anisotropy. For this reason, the sensitivity of the biaxial variable load sensor 120 is affected by the piezoelectric films constituting the first sensor element 100 and the second sensor element 101. Therefore, the piezoelectric films used for these sensors are preferably the same and have the same polarization characteristics with respect to strain in the XX direction or the YY direction.

図7に示すように、この2軸変動荷重センサ120の電極回りの配線は、第1センサ要素100と第2センサ要素101ともそれぞれ図2に示す配線と同様になっている。すなわち、第1センサ要素100について、一対の表電極13と一対の裏電極14の対角位置に存在する電極同士が短絡されるように、電極13Aと電極14Bとが結線され、また、電極13Bと電極14Aとが結線され、それぞれ出力端子V1、V2に至る配線が形成されている。また、第2センサ要素101について、一対の表電極131と一対の裏電極141の対角位置に存在する電極同士が短絡されるように、電極131Aと電極141Bとが結線され、また、電極131Bと電極141Aとが結線され、それぞれ出力端子V5、V6に至る配線が形成されている。 As shown in FIG. 7, the wiring around the electrodes of the biaxial variable load sensor 120 is the same as the wiring shown in FIG. 2 for both the first sensor element 100 and the second sensor element 101. That is, for the first sensor element 100, the electrode 13A and the electrode 14B are connected so that the electrodes existing at the diagonal positions of the pair of front electrodes 13 and the pair of back electrodes 14 are short-circuited, and the electrode 13B And the electrode 14A are connected, and wirings reaching the output terminals V 1 and V 2 are formed. In addition, for the second sensor element 101, the electrode 131A and the electrode 141B are connected so that the electrodes existing at the diagonal positions of the pair of front electrodes 131 and the pair of back electrodes 141 are short-circuited, and the electrode 131B And the electrode 141A are connected, and wirings reaching the output terminals V 5 and V 6 are formed.

さらに、本発明に係る変動荷重センサは、直交する2方向の剪断変動荷重及び圧縮変動荷重を同時に検知することができる3軸変動荷重センサを容易に構成することができる。すなわち、図6に示す2軸変動荷重センサ120に、さらに、以下に説明する中央電極を付加することによって容易に3軸変動荷重センサ130を構成することができる。   Furthermore, the variable load sensor according to the present invention can easily constitute a three-axis variable load sensor capable of simultaneously detecting a shear variable load and a compression variable load in two orthogonal directions. That is, the triaxial variable load sensor 130 can be easily configured by adding a central electrode described below to the biaxial variable load sensor 120 shown in FIG.

図8に、本3軸変動荷重センサ130の中央電極部分の構成を模式的に示す。図9に電気回路図を示す。本3軸変動荷重センサ130は、図8に示すように、表歪増幅部材17の下面側で第1圧電フィルム11の表面上に設けられた第1表中央電極22Aと、裏歪増幅部材18の下面側で第1圧電フィルムの裏面上に設けられた第1裏中央電極22Bとから形成される一対の第1中央電極22を有する。そして、第1表中央電極22Aは、荷重伝達部材19の対称軸に対称で、かつ、一対の第1表電極13と重ならないように配設され、第1裏中央電極22Bは、第1表中央電極22Aと同一形状でその投影面に重なるように配設されている。なお、本3軸変動荷重センサ130は、上記第1中央電極22部分を除いて2軸変動荷重センサ120と同様の構成を有する。   FIG. 8 schematically shows the configuration of the central electrode portion of the triaxial variable load sensor 130. FIG. 9 shows an electric circuit diagram. As shown in FIG. 8, the three-axis variable load sensor 130 includes a first front center electrode 22A provided on the surface of the first piezoelectric film 11 on the lower surface side of the front strain amplifying member 17, and a back strain amplifying member 18. And a pair of first center electrodes 22 formed from a first back center electrode 22B provided on the back surface of the first piezoelectric film. The first front center electrode 22A is disposed symmetrically with respect to the symmetry axis of the load transmitting member 19 and does not overlap the pair of first front electrodes 13. The first back center electrode 22B The same shape as the central electrode 22A is arranged so as to overlap the projection surface. The triaxial variable load sensor 130 has the same configuration as the biaxial variable load sensor 120 except for the first central electrode 22 portion.

この第1中央電極22の代わりに、第2圧電フィルム111の表裏面に中央電極を設けるものであってもよい。すなわち、表歪増幅部材17の下面側で第2圧電フィルム111の表面上に設けられた第2表中央電極221Aと、裏歪増幅部材18の下面側で第2圧電フィルム111の裏面上に設けられた第2裏中央電極221Bとから形成される一対の第2中央電極221を有し、第2表中央電極221Aは、荷重伝達部材19の対称軸に対称で、かつ、一対の第2表電極131と重ならないように配設され、第2裏中央電極221Bは、第2表中央電極221Aと同一形状でその投影面に重なるように配設されているものであってもよい。   Instead of the first central electrode 22, a central electrode may be provided on the front and back surfaces of the second piezoelectric film 111. That is, the second front center electrode 221A provided on the surface of the second piezoelectric film 111 on the lower surface side of the front strain amplifying member 17 and the rear surface of the second piezoelectric film 111 on the lower surface side of the back strain amplifying member 18 are provided. The second back center electrode 221B is formed with a pair of second center electrodes 221. The second table center electrode 221A is symmetric with respect to the symmetry axis of the load transmitting member 19 and has a pair of second table electrodes 221B. The second back center electrode 221B may be disposed so as not to overlap the electrode 131, and may be disposed so as to overlap the projection surface in the same shape as the second front center electrode 221A.

さらに、上記第1中央電極22及び第2中央電極221をともに有するものであってもよい。この場合、第1中央電極22と第2中央電極221とは投影面が重さなるように配設される。そのような場合の電気回路図の一例を図9に示す。本例では、互いに接触する第1裏中央電極22Bと第2表中央電極221Aとの接触面は絶縁されており、第1圧電フィルム11と第2圧電フィルム111の互いに異なる電荷を帯電する面同士が接合されるように直交位置した場合で、第1表中央電極22Aと第2表中央電極221Aとは短絡され、第1裏中央電極22Bと第2裏中央電極221Bとは短絡されている。   Further, both the first central electrode 22 and the second central electrode 221 may be included. In this case, the first center electrode 22 and the second center electrode 221 are disposed so that the projection surfaces overlap each other. An example of an electric circuit diagram in such a case is shown in FIG. In this example, the contact surfaces of the first back center electrode 22B and the second front center electrode 221A that are in contact with each other are insulated, and the surfaces of the first piezoelectric film 11 and the second piezoelectric film 111 that charge different charges from each other. The first front center electrode 22A and the second front center electrode 221A are short-circuited, and the first back center electrode 22B and the second back center electrode 221B are short-circuited.

図10は、上記各種の中央電極を有する3軸変動荷重センサ130にそれぞれ等しい圧縮変動荷重を作用させたときの出力電圧を求めたグラフである。図のパラメータで下側とは、第2中央電極221のみを有する3軸変動荷重センサ130、上側とは、第1中央電極22のみを有する3軸変動荷重センサ130の場合を示す。並列接続とは、第1中央電極22と第2中央電極221との2つを設けた図9の電気回路を有する3軸変動荷重センサ130の場合を示す。なお、比較のため、第1裏中央電極22Bと第2表中央電極221Aとを短絡させた場合の結果を直列接続として示した。並列接続では、電荷が蓄積される圧電フィルムの中央電極部分の面積が他のものの2倍になるから出力電圧が他のものの2倍になっており、感度が2倍に向上している。   FIG. 10 is a graph showing the output voltage obtained when an equal compression fluctuating load is applied to each of the three-axis fluctuating load sensors 130 having the various center electrodes. In the illustrated parameters, the lower side indicates a triaxial variable load sensor 130 having only the second central electrode 221, and the upper side indicates a triaxial variable load sensor 130 having only the first central electrode 22. The parallel connection indicates the case of the triaxial variable load sensor 130 having the electric circuit of FIG. 9 provided with two of the first center electrode 22 and the second center electrode 221. For comparison, the results when the first back center electrode 22B and the second front center electrode 221A are short-circuited are shown as series connection. In the parallel connection, the area of the central electrode portion of the piezoelectric film where charges are accumulated is twice that of the other, so the output voltage is twice that of the other, and the sensitivity is improved twice.

以上本発明に係る変動荷重センサについて説明した。本変動荷重センサは上述のように、厚さの薄いセンサを構成することができ、曲面状等の湾曲又は屈曲した形状のセンサを容易に構成することができる。また、検知する変動荷重の作用面の大きさに応じた最適な大きさのセンサを構成することができる。たとえば、図11に示すような3軸変動荷重センサ130を構成し、ロボットハンドの指先に設けて好適な小型の触覚センサを構成することができる。この触覚センサは、ロボットハンドの指先と一体に設けられ平らな頂部から下方に湾曲する脚部を有する台形状の指先部材51に3軸変動荷重センサ130を付着させて構成される。指先部材51の平らな頂部には荷重伝達部材19が配設されている。このような触覚センサをロボットハンドの各指先に設けることによって、ロボットに細かい作業をさせることができる。   The variable load sensor according to the present invention has been described above. As described above, the fluctuating load sensor can constitute a thin sensor, and can easily form a curved or bent sensor such as a curved surface. In addition, it is possible to configure a sensor having an optimum size according to the size of the acting surface of the variable load to be detected. For example, a three-axis fluctuating load sensor 130 as shown in FIG. 11 can be configured, and a suitable small tactile sensor can be configured by being provided at the fingertip of the robot hand. This tactile sensor is configured by attaching a three-axis variable load sensor 130 to a trapezoidal fingertip member 51 which is provided integrally with a fingertip of a robot hand and has a leg portion curved downward from a flat top. A load transmission member 19 is disposed on the flat top of the fingertip member 51. By providing such a tactile sensor at each fingertip of the robot hand, the robot can be made to perform fine work.

また、図12は、物(例えばコップ)を把持して移動させるロボットハンドの把持部材52に2軸変動荷重センサ140を利用する例を示す。この例では、半円柱形状の把持部材52の周囲に2軸変動荷重センサ140を付着させて、物を把持したときの重さを剪断方向の変動荷重として検出し、物を把持したときの柔らかさを圧縮変動荷重として検出することにより、皮膚感覚に近い把持機能を有する触覚センサが構成されている。   FIG. 12 shows an example in which a biaxial variable load sensor 140 is used for a grip member 52 of a robot hand that grips and moves an object (for example, a cup). In this example, a biaxial variable load sensor 140 is attached around the semi-cylindrical gripping member 52, the weight when the object is gripped is detected as a variable load in the shear direction, and the softness when the object is gripped is detected. A tactile sensor having a gripping function close to a skin sensation is configured by detecting the thickness as a compression fluctuation load.

このような触覚センサを予め準備しておくならば、迅速かつ高感度に剪断方向又は/及び圧縮方向の変動荷重を検知することができるロボットハンド等を容易に構成することができる。すなわち、指先部材51、把持部材52のような湾曲し頂部に荷重伝達部材を配設することができる所定の台座を何種類か準備し、これに2又は3軸変動荷重センサを付着した触覚センサを予め準備しておくならば、この触覚センサを所要の部位に接着又は機械的に固定し、当該部位に作用する剪断方向又は/及び圧縮方向の変動荷重を容易、迅速かつ高感度に検知することができる。   If such a tactile sensor is prepared in advance, a robot hand or the like that can quickly and highly sensitively detect a fluctuating load in the shearing direction and / or the compressing direction can be easily configured. That is, a tactile sensor in which several kinds of predetermined pedestals such as fingertip member 51 and gripping member 52 that can be curved and can be provided with a load transmitting member on the top are prepared, and a two- or three-axis variable load sensor is attached thereto. If the tactile sensor is prepared in advance, the tactile sensor is bonded or mechanically fixed to a required part, and a fluctuating load in the shearing direction and / or compression direction acting on the part is easily, rapidly and highly sensitively detected. be able to.

図8及び9に示す3軸変動荷重センサ130をロードセルの上に垂直に固定し、指先で図13(a)に示す矢印方向(45°方向)に剪断変動荷重を作用させたときの剪断荷重と3軸変動荷重センサ130の出力電圧との関係を求めた。圧電フィルム11及び111は、それぞれ厚さ40μmで縦30mm、横60mmのアルミの蒸着電極のついたPVDFを用いた。これにマスキングを行って電極部分以外の蒸着金属を剥がし取って、中央部表裏面に一辺30mmの正方形の中央電極22、221と、中央電極22、221から左右にそれぞれ5mmの間隔を空けた位置の表裏面に、縦30mmで横10mmの長方形の一対の電極13、14、131、141を取り付けた。各電極には導電性粘着剤付き金属箔テープの一方の端を粘着して固定し、もう一方の端をそれらの電極から引き出して出力端子V1〜V6に至る配線を行った。各端子には電気配線を半田付けで接続した。 8 and 9 is fixed vertically on the load cell, and the shear load is applied when the shear load is applied in the arrow direction (45 ° direction) shown in FIG. And the output voltage of the triaxial variable load sensor 130 were obtained. As the piezoelectric films 11 and 111, PVDF having a thickness of 40 μm, 30 mm in length, and 60 mm in width with aluminum vapor deposition electrodes was used. Mask this to peel off the deposited metal other than the electrode part, and place the central electrode 22 and 221 with a side of 30mm on the front and back sides of the central part, and 5mm apart from the central electrode 22 and 221, respectively. A pair of rectangular electrodes 13, 14, 131, and 141 having a length of 30 mm and a width of 10 mm were attached to the front and back surfaces of the plate. To each electrode, one end of a metal foil tape with a conductive adhesive was adhered and fixed, and the other end was drawn out from these electrodes and wired to output terminals V 1 to V 6 . Electrical wiring was connected to each terminal by soldering.

つぎに、歪弾性部材16にはゴム硬度約50のシリコンゴム板(厚さ3mm)を圧電フィルム11、111の両面全体にシリコン樹脂系の接着剤で接着し、出力端子の取付け部も接着剤で固定した。つぎに、中央電極22、221上方のシリコンゴム板上面に、厚さ0.1mm、一辺30mmの正方形の真鍮板の荷重伝達部材19を前記の接着剤で接着し、その上に0.5mm厚の滑り止めのゴム板の接触部材を接着した。3軸変動荷重センサ130の全体厚さは約6.7mmであった。   Next, a silicon rubber plate (thickness 3 mm) having a rubber hardness of about 50 is adhered to the entire surface of the piezoelectric films 11 and 111 with a silicone resin adhesive on the strain elastic member 16, and the mounting portion of the output terminal is also an adhesive. Fixed with. Next, a load transmission member 19 of a square brass plate having a thickness of 0.1 mm and a side of 30 mm is adhered to the upper surface of the silicon rubber plate above the central electrodes 22 and 221 with the above-mentioned adhesive, and a slip of 0.5 mm thickness is formed thereon. The contact member of the stop rubber plate was adhered. The total thickness of the triaxial variable load sensor 130 was about 6.7 mm.

出力端子からの電気配線には、それぞれ0.47μFの静電容量を並列接続し、これを内部抵抗1MΩの電圧記録計(NEC三栄株式会社製オムニエース)を用いて、ロードセルの荷重波形と同じ時間タイミングで記録した。試験結果を図13(b)に示す。横軸は、ロードセルの測定荷重を示し、縦軸にXX及びYY方向の出力電圧を示す。図13(b)によると、XX及びYY方向の出力電圧ともよく一致しており、それらの出力電圧は、剪断荷重に比例していることが分かる。   Each electric wiring from the output terminal is connected in parallel with a capacitance of 0.47μF, and this is the same time as the load waveform of the load cell using a voltage recorder with an internal resistance of 1MΩ (NEC Sanei Co., Ltd. Omniace). Recorded at the timing. The test results are shown in FIG. The horizontal axis shows the load measured by the load cell, and the vertical axis shows the output voltage in the XX and YY directions. According to FIG. 13B, the output voltages in the XX and YY directions also agree well, and it can be seen that these output voltages are proportional to the shear load.

本発明に係る変動荷重センサの模式図である。It is a schematic diagram of the variable load sensor which concerns on this invention. 上記変動荷重センサの電気回路図である。It is an electric circuit diagram of the variable load sensor. 上記変動荷重センサの作動原理説明図であるIt is operation | movement principle explanatory drawing of the said fluctuating load sensor. 本発明に係る2軸変動荷重センサの模式図である。It is a schematic diagram of a biaxial variable load sensor according to the present invention. 上記2軸変動荷重センサの電気回路である。It is an electric circuit of the said biaxial fluctuation load sensor. 本発明に係る他の2軸変動荷重センサの模式図である。It is a schematic diagram of another biaxial variable load sensor according to the present invention. 図6に示す2軸変動荷重センサの電気回路である。It is an electric circuit of the biaxial fluctuation load sensor shown in FIG. 本発明に係る3軸変動荷重センサの中央電極部分の模式図である。It is a schematic diagram of the center electrode part of the triaxial variable load sensor which concerns on this invention. 上記3軸変動荷重センサの電気回路である。3 is an electric circuit of the three-axis variable load sensor. 3軸変動荷重センサにおいて種々の中央電極を有する場合の出力電圧を示すグラフである。It is a graph which shows an output voltage at the time of having a various center electrode in a triaxial variable load sensor. 3軸変動荷重センサをロボットハンドの指先に利用した実施例の説明図である。It is explanatory drawing of the Example which utilized the triaxial fluctuation load sensor for the fingertip of the robot hand. 2軸変動荷重センサを利用したロボットハンドによりコップを把持した状態を示す説明図である。It is explanatory drawing which shows the state which hold | gripped the cup with the robot hand using a biaxial fluctuation load sensor. 実施例1の変動荷重の方向を示す図(a)と、試験結果を示すグラフ図(b)である。It is the figure (a) which shows the direction of the fluctuating load of Example 1, and the graph (b) which shows a test result.

符号の説明Explanation of symbols

10 変動荷重センサ
11 圧電フィルム
12 電極
13 表電極
14 裏電極
16 歪増幅部材
17 表歪増幅部材
18 裏歪増幅部材
19 荷重伝達部材
22、22A、22B 中央電極、表中央電極、裏中央電極
50 被測定物
51 指先部材
52 把持部材
100 第1センサ要素
101 第2センサ要素
110 2軸変動荷重センサ
120 2軸変動荷重センサ
130 3軸変動荷重センサ
140 2軸変動荷重センサ
10 Fluctuating load sensor
11 Piezoelectric film
12 electrodes
13 Front electrode
14 Back electrode
16 Strain amplification member
17 Surface strain amplification member
18 Back strain amplification member
19 Load transmitting member
22, 22A, 22B Center electrode, front center electrode, back center electrode
50 DUT
51 Fingertip material
52 Grip member
100 First sensor element
101 Second sensor element
110 Biaxial variable load sensor
120 Biaxial variable load sensor
130 3-axis variable load sensor
140 Biaxial variable load sensor

Claims (9)

被測定物に付着されて使用される変動荷重センサであって、
圧電フィルムの表面上に離間して配設された一対の同一形状の表電極と、該表電極及び前記圧電フィルムの表面を覆う表歪増幅部材と、該表歪増幅部材の上面に配設された荷重伝達部材と、前記圧電フィルムの裏面上に前記表電極と同一形状でその投影面に重なる一対の裏電極と、該裏電極及び前記圧電フィルムの裏面を覆う前記表歪増幅部材と同質の裏歪増幅部材と、を有してなり、
前記一対の表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、
前記一対の表電極と前記一対の裏電極とは、対角位置に存在する電極同士が短絡されてなる変動荷重センサ。
A fluctuating load sensor used by being attached to an object to be measured,
A pair of identically shaped front electrodes disposed on the surface of the piezoelectric film, a surface strain amplification member that covers the surface electrode and the surface of the piezoelectric film, and an upper surface of the surface strain amplification member A load transmitting member, a pair of back electrodes that have the same shape as the front electrode on the back surface of the piezoelectric film and overlap the projection surface, and the same quality as the front strain amplification member that covers the back electrode and the back surface of the piezoelectric film. A back distortion amplifying member,
The pair of front or back electrodes are respectively arranged symmetrically with respect to the symmetry axis of the load transmission member and not overlapping the projection surface of the load transmission member,
The pair of front electrodes and the pair of back electrodes are fluctuating load sensors in which electrodes existing at diagonal positions are short-circuited.
表歪増幅部材の下面側で圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の表電極と重ならない表中央電極と、裏歪増幅部材の下面側で前記圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる裏中央電極とから形成される一対の中央電極を設けてなる請求項1に記載の変動荷重センサ。   A front center electrode that is provided on the surface of the piezoelectric film on the lower surface side of the front strain amplifying member and is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with a pair of front electrodes, and the piezoelectric film on the lower surface side of the back strain amplifying member The variable load sensor according to claim 1, further comprising a pair of center electrodes formed on the back surface of the back surface center electrode and having the same shape as the front center electrode and overlapping the projection surface. 被測定物に付着されて使用される変動荷重センサであって、
第1圧電フィルムの表面上に離間して配設された一対の同一形状の第1表電極と、前記第1圧電フィルムの裏面上に前記第1表電極と同一形状でその投影面に重なる一対の第1裏電極とを有する第1センサ要素と、
該第1センサ要素に直交して接合され、第2圧電フィルムの表面上に離間して配設された一対の同一形状の第2表電極と、前記第2圧電フィルムの裏面上に前記第2表電極と同一形状でその投影面に重なる一対の第2裏電極と、を有する第2センサ要素と、
前記第1及び2圧電フィルムの表面と第1及び2表電極を覆う表歪増幅部材と、
該表歪増幅部材の上面に配設された荷重伝達部材と、
前記第1及び2圧電フィルムの裏面と第1及び2裏電極を覆う前記表歪増幅部材と同質の裏歪増幅部材と、を有してなり、
前記第1圧電フィルムと前記第2圧電フィルムとは同等の分極特性を有し、
前記一対の第1表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、
前記一対の第2表又は裏電極は、それぞれ前記荷重伝達部材の対称軸に対して対称、かつ、該荷重伝達部材の投影面に重ならないように配設され、
前記一対の第1表電極と前記一対の第1裏電極とは対角位置に存在する電極同士が短絡され、
前記一対の第2表電極と前記一対の第2裏電極とも対角位置に存在する電極同士が短絡されてなる変動荷重センサ。
A fluctuating load sensor used by being attached to an object to be measured,
A pair of first surface electrodes having the same shape and spaced apart from each other on the surface of the first piezoelectric film, and a pair overlapping the projection surface in the same shape as the first surface electrode on the back surface of the first piezoelectric film. A first sensor element having a first back electrode of
A pair of second surface electrodes of the same shape joined orthogonally to the first sensor element and spaced apart on the surface of the second piezoelectric film, and the second surface electrode on the back surface of the second piezoelectric film A second sensor element having a pair of second back electrodes having the same shape as the front electrode and overlapping the projection surface;
A surface strain amplification member that covers the surfaces of the first and second piezoelectric films and the first and second surface electrodes;
A load transmission member disposed on the upper surface of the surface strain amplification member;
A back strain amplifying member of the same quality as the surface strain amplifying member covering the back surface of the first and second piezoelectric films and the first and second back electrodes;
The first piezoelectric film and the second piezoelectric film have equivalent polarization characteristics,
The pair of first front or back electrodes are respectively arranged symmetrically with respect to the symmetry axis of the load transmitting member and not overlapping the projection surface of the load transmitting member,
The pair of second front or back electrodes are respectively arranged symmetrically with respect to the symmetry axis of the load transmission member and not overlapping the projection surface of the load transmission member,
The pair of first front electrodes and the pair of first back electrodes are short-circuited between the electrodes present at diagonal positions,
A variable load sensor in which the pair of second front electrodes and the pair of second back electrodes are short-circuited to each other at the diagonal positions.
表歪増幅部材の下面側で第1圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第1表電極と重ならない第1表中央電極と、裏歪増幅部材の下面側で前記第1圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる第1裏中央電極とから形成される一対の第1中央電極を設けてなることを特徴とする請求項3に記載の変動荷重センサ。   A first front center electrode which is provided on the surface of the first piezoelectric film on the lower surface side of the front strain amplifying member and which is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with the pair of first front electrodes; A pair of first central electrodes formed on the lower surface side of the first piezoelectric film is formed on the back surface of the first piezoelectric film and is formed of a first back central electrode having the same shape as the front central electrode and overlapping the projection surface. The variable load sensor according to claim 3. 表歪増幅部材の下面側で第2圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第2表電極と重ならない第2表中央電極と、裏歪増幅部材の下面側で第2圧電フィルムの裏面上に設けられ前記第2表中央電極と同一形状でその投影面に重なる第2裏中央電極とから形成される一対の第2中央電極を設けてなる請求項3に記載の変動荷重センサ。   A second front center electrode which is provided on the lower surface side of the front strain amplifying member on the surface of the second piezoelectric film and which is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with the pair of second front electrodes; A pair of second center electrodes formed on the back surface of the second piezoelectric film on the back surface of the second piezoelectric film and formed of a second back center electrode having the same shape as the second front center electrode and overlapping the projection surface. 3. The variable load sensor according to 3. 表歪増幅部材の下面側で第1圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第1表電極と重ならない第1表中央電極と、裏歪増幅部材の下面側で前記第1圧電フィルムの裏面上に設けられ前記表中央電極と同一形状でその投影面に重なる第1裏中央電極とから形成される一対の第1中央電極と、
該第1中央電極と同一形状を有し、表歪増幅部材の下面側で前記第2圧電フィルムの表面上に設けられ荷重伝達部材の対称軸に対称、かつ、一対の第2表電極と重ならない第2表中央電極と、裏歪増幅部材の下面側で第2圧電フィルムの裏面上に設けられ前記第2表中央電極と同一形状でその投影面に重なる第2裏中央電極とから形成される一対の第2中央電極とを有してなり、
前記第1表中央電極が、該第1表中央電極と同じ極性を有する第2表又は裏中央電極と短絡され、
前記第1裏中央電極が、該第1裏中央電極と同じ極性を有する第2表又は裏中央電極と短絡されてなる請求項3に記載の変動荷重センサ。
A first front center electrode which is provided on the surface of the first piezoelectric film on the lower surface side of the front strain amplifying member and which is symmetric with respect to the symmetry axis of the load transmitting member and does not overlap with the pair of first front electrodes; A pair of first center electrodes formed on the lower surface side on the back surface of the first piezoelectric film and formed from a first back center electrode having the same shape as the front center electrode and overlapping the projection surface;
It has the same shape as the first central electrode, is provided on the surface of the second piezoelectric film on the lower surface side of the surface strain amplifying member, is symmetric with respect to the symmetry axis of the load transmitting member, and overlaps with the pair of second surface electrodes. A second front center electrode which is formed on the back surface of the second piezoelectric film on the lower surface side of the back strain amplifying member and has the same shape as the second front center electrode and which overlaps the projection surface. A pair of second central electrodes,
The first front center electrode is short-circuited with a second front or back center electrode having the same polarity as the first front center electrode;
The variable load sensor according to claim 3, wherein the first back center electrode is short-circuited with a second front or back center electrode having the same polarity as the first back center electrode.
歪増幅部材は、圧電フィルムよりも低弾性率であることを特徴とする請求項1〜6のいずれかに記載の変動荷重センサ。   The variable load sensor according to claim 1, wherein the strain amplifying member has a lower elastic modulus than that of the piezoelectric film. 荷重伝達部材は、歪増幅部材よりも高弾性率であることを特徴とする請求項1〜7のいずれかに記載の変動荷重センサ。   The variable load sensor according to claim 1, wherein the load transmitting member has a higher elastic modulus than the strain amplifying member. 湾曲し頂部に荷重伝達部材を配設することができる台座に請求項1〜8のいずれかに記載の変動荷重センサを付着させてなる触覚センサ。   A tactile sensor comprising the fluctuating load sensor according to any one of claims 1 to 8 attached to a pedestal that is curved and on which a load transmitting member can be disposed.
JP2005041506A 2005-02-18 2005-02-18 Fluctuation load sensor, and tactile sensor using the same Pending JP2006226858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041506A JP2006226858A (en) 2005-02-18 2005-02-18 Fluctuation load sensor, and tactile sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041506A JP2006226858A (en) 2005-02-18 2005-02-18 Fluctuation load sensor, and tactile sensor using the same

Publications (1)

Publication Number Publication Date
JP2006226858A true JP2006226858A (en) 2006-08-31

Family

ID=36988363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041506A Pending JP2006226858A (en) 2005-02-18 2005-02-18 Fluctuation load sensor, and tactile sensor using the same

Country Status (1)

Country Link
JP (1) JP2006226858A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082947A (en) * 2006-09-28 2008-04-10 Hiroshima Univ Clip shearing force sensor and clip shearing force measuring device
JP2009192335A (en) * 2008-02-13 2009-08-27 Aisin Seiki Co Ltd Load detection device
JP2009222556A (en) * 2008-03-17 2009-10-01 Hiroshima Univ Shearing stress sensor and distribution type shearing stress sensor
JP2010054359A (en) * 2008-08-28 2010-03-11 Honda Motor Co Ltd Optical fiber sensor
JP2011112459A (en) * 2009-11-25 2011-06-09 Seiko Epson Corp Shear force detection element, tactile sensor, and gripping device
JP2011163945A (en) * 2010-02-10 2011-08-25 Seiko Epson Corp Stress sensing device, tactile sensor, and grasping apparatus
JP2014062918A (en) * 2013-12-25 2014-04-10 Seiko Epson Corp Stress detection element, tactile sensor, and gripping device
JP2014146269A (en) * 2013-01-30 2014-08-14 Kyocera Corp Input device and electronic apparatus
JP2014240842A (en) * 2011-04-08 2014-12-25 株式会社村田製作所 Operation device
WO2015053089A1 (en) * 2013-10-07 2015-04-16 三井化学株式会社 Pressing-force detection device, and pressing-force-detecting touch panel
JPWO2013175848A1 (en) * 2012-05-24 2016-01-12 株式会社村田製作所 Sensor devices and electronics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034295A (en) * 1983-08-03 1985-02-21 株式会社日立製作所 Sensor for cutaneous sensation
JPH05118942A (en) * 1991-10-25 1993-05-14 Kazuhiro Okada Device for detecting force, acceleration, magnetism related with multidimensional direction
JPH06229848A (en) * 1993-02-02 1994-08-19 Shigeru Sakai Sensor for simultaneously detecting pressure and heat quantity by using ferroelectric polymer film
JPH09280970A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Shearing force detector
JPH10249768A (en) * 1997-03-12 1998-09-22 Tokai Rubber Ind Ltd Force sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034295A (en) * 1983-08-03 1985-02-21 株式会社日立製作所 Sensor for cutaneous sensation
JPH05118942A (en) * 1991-10-25 1993-05-14 Kazuhiro Okada Device for detecting force, acceleration, magnetism related with multidimensional direction
JPH06229848A (en) * 1993-02-02 1994-08-19 Shigeru Sakai Sensor for simultaneously detecting pressure and heat quantity by using ferroelectric polymer film
JPH09280970A (en) * 1996-04-09 1997-10-31 Mitsubishi Heavy Ind Ltd Shearing force detector
JPH10249768A (en) * 1997-03-12 1998-09-22 Tokai Rubber Ind Ltd Force sensor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082947A (en) * 2006-09-28 2008-04-10 Hiroshima Univ Clip shearing force sensor and clip shearing force measuring device
JP2009192335A (en) * 2008-02-13 2009-08-27 Aisin Seiki Co Ltd Load detection device
JP2009222556A (en) * 2008-03-17 2009-10-01 Hiroshima Univ Shearing stress sensor and distribution type shearing stress sensor
JP2010054359A (en) * 2008-08-28 2010-03-11 Honda Motor Co Ltd Optical fiber sensor
JP2011112459A (en) * 2009-11-25 2011-06-09 Seiko Epson Corp Shear force detection element, tactile sensor, and gripping device
JP2011163945A (en) * 2010-02-10 2011-08-25 Seiko Epson Corp Stress sensing device, tactile sensor, and grasping apparatus
JP2014240842A (en) * 2011-04-08 2014-12-25 株式会社村田製作所 Operation device
JPWO2013175848A1 (en) * 2012-05-24 2016-01-12 株式会社村田製作所 Sensor devices and electronics
JP2014146269A (en) * 2013-01-30 2014-08-14 Kyocera Corp Input device and electronic apparatus
WO2015053089A1 (en) * 2013-10-07 2015-04-16 三井化学株式会社 Pressing-force detection device, and pressing-force-detecting touch panel
CN105556268A (en) * 2013-10-07 2016-05-04 三井化学株式会社 Pressing-force detection device, and pressing-force-detecting touch panel
EP3035022A1 (en) * 2013-10-07 2016-06-22 Mitsui Chemicals, Inc. Pressing-force detection device, and pressing-force-detecting touch panel
JPWO2015053089A1 (en) * 2013-10-07 2017-03-09 三井化学株式会社 Press detection device and press detection touch panel
EP3035022A4 (en) * 2013-10-07 2017-04-05 Mitsui Chemicals, Inc. Pressing-force detection device, and pressing-force-detecting touch panel
US10190924B2 (en) 2013-10-07 2019-01-29 Murata Manufacturing Co., Ltd. Pressure-sensing device and pressure-sensing touch panel
JP2014062918A (en) * 2013-12-25 2014-04-10 Seiko Epson Corp Stress detection element, tactile sensor, and gripping device

Similar Documents

Publication Publication Date Title
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
US11740142B2 (en) Piezoelectric thin-film sensor and use thereof
US10564744B2 (en) Flexible display device
US7508040B2 (en) Micro electrical mechanical systems pressure sensor
JP4427665B2 (en) Bending deformation sensor and deformation measuring apparatus
WO2004113858A3 (en) Flexible thin film pressure sensor
JP5854143B2 (en) Pressure sensor
JP7128506B2 (en) pressure sensor
US7536919B2 (en) Strain gauge
JP5408687B2 (en) Shear stress sensor and distributed shear stress sensor
WO2009007047A2 (en) Piezoelectric device for detecting or generating forces and torques in multiple directions
Sohgawa et al. Tactle array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer
Nakashima et al. Multi-axial tactile sensor using standing LIG cantilevers on polyimide film
KR102256241B1 (en) Shear and Normal Force Sensor and Manufacturing Method thereof
JP7234750B2 (en) Physical quantity sensor elements, pressure sensors, microphones, ultrasonic sensors and touch panels
JP3355341B2 (en) Semiconductor pressure sensor
JPH0238830A (en) Contact sensor
JP2001153735A (en) Load cell
JP2003262502A (en) Strain sensor and stress sensor using anisotropic piezoelectric
JP2006294892A (en) Uniaxial semiconductor acceleration sensor
WO2014136388A1 (en) Strain-detection device
JPS639801A (en) Tactile sensor
WO2021064810A1 (en) Expansion/contraction detecting device
JP2023074771A (en) Pressure detection device
Elbestawi 20.3 Force Measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330