JP6908324B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP6908324B2
JP6908324B2 JP2017024730A JP2017024730A JP6908324B2 JP 6908324 B2 JP6908324 B2 JP 6908324B2 JP 2017024730 A JP2017024730 A JP 2017024730A JP 2017024730 A JP2017024730 A JP 2017024730A JP 6908324 B2 JP6908324 B2 JP 6908324B2
Authority
JP
Japan
Prior art keywords
piezoelectric
film
piezoelectric element
piezoelectric film
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017024730A
Other languages
Japanese (ja)
Other versions
JP2018133384A (en
Inventor
王義 山崎
王義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2017024730A priority Critical patent/JP6908324B2/en
Publication of JP2018133384A publication Critical patent/JP2018133384A/en
Application granted granted Critical
Publication of JP6908324B2 publication Critical patent/JP6908324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧電素子に関し、特に、高感度、低雑音の横圧電効果を利用した圧電素子に関するものである。 The present invention relates to a piezoelectric element, and more particularly to a piezoelectric element utilizing a high-sensitivity, low-noise transverse piezoelectric effect.

近年、急速に需要が拡大しているスマートフォンには、小型、薄型で、組立のハンダリフロー工程の高温処理耐性を有するMEMS(Micro Electro Mechanical System)技術を用いたマイクロフォンが多く使われている。また、MEMSマイクロフォンに限らず、その他のMEMS素子が様々な分野で急速に普及してきている。 In recent years, smartphones, whose demand is rapidly expanding, are often used for microphones using MEMS (Micro Electro Mechanical System) technology, which is small and thin and has resistance to high temperature processing in the solder reflow process of assembly. Further, not only MEMS microphones but also other MEMS elements are rapidly becoming widespread in various fields.

この種のMEMS素子の多くは、音響圧力等による振動板の振動変位を対向する固定板との容量変化としてとらえ、電気信号に変換して出力する容量素子である。しかし容量素子は、振動板と固定板との間隙の空気の流動によって生じる音響抵抗のために、信号雑音比の改善が限界になりつつある。 Most of these types of MEMS elements are capacitive elements that capture the vibration displacement of the diaphragm due to acoustic pressure or the like as a capacitance change with the opposing fixed plate, convert it into an electric signal, and output it. However, the improvement of the signal-to-noise ratio of the capacitive element is becoming a limit due to the acoustic resistance caused by the flow of air in the gap between the diaphragm and the fixing plate.

そこで、圧電膜で構成される単一の振動板の歪みにより音響圧力等を電圧変化として取り出すことができる圧電素子が注目されている。 Therefore, a piezoelectric element capable of extracting acoustic pressure or the like as a voltage change due to distortion of a single diaphragm composed of a piezoelectric film has been attracting attention.

ところでこの種の圧電素子では、振動板を構成する圧電膜が音響圧力等により振動変位する場合、圧電膜の厚さ方向で圧電膜に加わる歪みあるいは応力が逆方向となることが知られている。図7は一般的な構造の圧電素子において、圧電膜に加わる歪みあるいは応力を模式的に示した説明図である。図7に示す圧電素子は、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電膜3が積層形成されている。また、図示しないスリットを形成し、両持ち梁構造としている。圧電膜3の表面と裏面には、圧電膜3を挟み込むように一対の電極4が形成され、電極4はそれぞれ配線電極5に接続する構造となっている。 By the way, in this type of piezoelectric element, it is known that when the piezoelectric film constituting the diaphragm is vibrated and displaced due to acoustic pressure or the like, the strain or stress applied to the piezoelectric film in the thickness direction of the piezoelectric film is in the opposite direction. .. FIG. 7 is an explanatory diagram schematically showing strain or stress applied to the piezoelectric film in a piezoelectric element having a general structure. In the piezoelectric element shown in FIG. 7, a piezoelectric film 3 is laminated on a silicon substrate 1 serving as a support substrate via an insulating film 2 made of a silicon oxide film (SiO 2). Further, a slit (not shown) is formed to form a double-sided beam structure. A pair of electrodes 4 are formed on the front surface and the back surface of the piezoelectric film 3 so as to sandwich the piezoelectric film 3, and each of the electrodes 4 is connected to a wiring electrode 5.

このような構造の圧電素子では、例えば図7に示すように音響圧力信号がシリコン基板1側から印加されると、領域Aと領域Cでは圧電膜3のシリコン基板側では引張応力が発生し、表面側では引張応力が発生する。一方、領域Bでは圧電膜のシリコン基板側では圧縮応力が発生し、表面側では引張応力が発生する。 In a piezoelectric element having such a structure, for example, when an acoustic pressure signal is applied from the silicon substrate 1 side as shown in FIG. 7, tensile stress is generated on the silicon substrate side of the piezoelectric film 3 in regions A and C. Tensile stress is generated on the surface side. On the other hand, in region B, compressive stress is generated on the silicon substrate side of the piezoelectric film, and tensile stress is generated on the surface side.

このように一対の電極に挟まれた圧電膜の中で、支持基板(シリコン基板1)に固定された領域(固定部側)と離れた領域(中心側)では、発生する電圧の極性が逆になり、さらにまた、圧電膜の表面側とシリコン基板側とで発生する電圧の極性が逆になり、出力信号が得られない。 In the piezoelectric film sandwiched between the pair of electrodes in this way, the polarities of the generated voltages are opposite in the region fixed to the support substrate (silicon substrate 1) (fixed portion side) and the region distant (center side). Further, the polarities of the voltages generated on the surface side of the piezoelectric film and the silicon substrate side are reversed, and an output signal cannot be obtained.

そこで、圧電膜に生じたエネルギーを有効に活用するため、図8に示すような圧電素子が提案されている(特許文献1)。図8に示す圧電素子は、支持基板となるシリコン基板1上に、絶縁膜2を介して多層構造の圧電膜3a、3bが固定され、圧電膜3aは上下から電極4aと電極4bにより、圧電膜3bは上下から電極4bと電極4cによりそれぞれ挟み込まれた構造となっている。圧電膜および電極はそれぞれ長方形の平面構造を有しており、一端がシリコン基板1に固定され、他端が自由端となる片持ち梁構造となっている。 Therefore, in order to effectively utilize the energy generated in the piezoelectric film, a piezoelectric element as shown in FIG. 8 has been proposed (Patent Document 1). In the piezoelectric element shown in FIG. 8, a multilayer structure piezoelectric film 3a and 3b is fixed on a silicon substrate 1 serving as a support substrate via an insulating film 2, and the piezoelectric film 3a is piezoelectricized by electrodes 4a and 4b from above and below. The film 3b has a structure in which the electrodes 4b and 4c are sandwiched from above and below, respectively. Each of the piezoelectric film and the electrode has a rectangular planar structure, and has a cantilever structure in which one end is fixed to the silicon substrate 1 and the other end is a free end.

このような圧電素子では、音響圧力等を受けて圧電膜3aが歪むとその内部に分極が起こり、電極4aに接続する配線電極5aと、電極4bに接続する配線電極5bから電圧信号をとりだすことが可能となる。同様に圧電膜3bが歪むとその内部に分極が起こり、電極4cに接続する配線電極5aと、電極4bに接続する配線電極5bから圧電信号を取り出すことが可能となる。しかしながら、このような構造の圧電素子を形成する場合、電極の形成と圧電膜の形成を繰り返し行う必要があり、製造工程が長く複雑になってしまう。 In such a piezoelectric element, when the piezoelectric film 3a is distorted by receiving acoustic pressure or the like, polarization occurs inside the piezoelectric film 3a, and a voltage signal is taken out from the wiring electrode 5a connected to the electrode 4a and the wiring electrode 5b connected to the electrode 4b. Is possible. Similarly, when the piezoelectric film 3b is distorted, polarization occurs inside the piezoelectric film 3b, and it becomes possible to extract a piezoelectric signal from the wiring electrode 5a connected to the electrode 4c and the wiring electrode 5b connected to the electrode 4b. However, when forming a piezoelectric element having such a structure, it is necessary to repeatedly form an electrode and a piezoelectric film, which makes the manufacturing process long and complicated.

特許第5707323号公報Japanese Patent No. 5707323

図7に示す構造の圧電素子は、圧電薄膜の変位によって圧電膜に発生するエネルギーを有効に活用できないという問題があった。また図8に示す構造の圧電素子は、電極の形成と圧電膜の形成を繰り返し行う必要があり、製造工程が長く複雑になるという問題があった。本発明はこのような問題を解消し、圧電膜に発生するエネルギーを有効に活用でき、簡便に形成することができる圧電素子を提供することを目的とする。 The piezoelectric element having the structure shown in FIG. 7 has a problem that the energy generated in the piezoelectric film due to the displacement of the piezoelectric thin film cannot be effectively utilized. Further, the piezoelectric element having the structure shown in FIG. 8 needs to repeatedly form an electrode and a piezoelectric film, which causes a problem that the manufacturing process becomes long and complicated. An object of the present invention is to solve such a problem and to provide a piezoelectric element which can effectively utilize the energy generated in the piezoelectric film and can be easily formed.

上記目的を達成するため、本願請求項1に係る発明は、支持基板に周囲が固定された圧電膜と、該圧電膜を挟んで配置された一対の電極とを備えた横圧電効果を利用した圧電素子において、前記圧電膜は、少なくとも第1の圧電膜と第2の圧電膜が直接重なる積層構造からなり、前記第1の圧電膜と前記第2の圧電膜のそれぞれの圧電性を示す結晶配向方向が、一方が上向きのとき、他方は下向きであることと、前記積層構造の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子および第2の圧電素子が形成されていることと、前記支持基板に周囲が固定された圧電膜の固定部側に前記第1の圧電素子を配置し、前記圧電膜の中心側に前記第2の圧電素子を配置していることと、前記第1の圧電素子と前記第2の圧電素子は、前記圧電素子の電極から連続する延長部により直列接続されていることを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application utilizes a transverse piezoelectric effect including a piezoelectric film whose circumference is fixed to a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric film. In the piezoelectric element, the piezoelectric film has a laminated structure in which at least the first piezoelectric film and the second piezoelectric film are directly overlapped with each other, and is a crystal exhibiting the piezoelectricity of each of the first piezoelectric film and the second piezoelectric film. When one of the orientation directions is upward and the other is downward, a plurality of sets of the pair of electrodes arranged so as to sandwich the piezoelectric film of the laminated structure are provided, and at least the first piezoelectric element and the second piezoelectric element are provided. The first piezoelectric element is arranged on the fixed portion side of the piezoelectric film whose circumference is fixed to the support substrate, and the second piezoelectric element is arranged on the center side of the piezoelectric film. The first piezoelectric element and the second piezoelectric element are connected in series by an extension portion continuous from the electrode of the piezoelectric element.

本願請求項2に係る発明は、請求項1記載の圧電素子において、前記圧電膜は、音響圧力によって振動する膜であることを特徴とする。 The invention according to claim 2 of the present application is characterized in that, in the piezoelectric element according to claim 1, the piezoelectric film is a film that vibrates due to acoustic pressure .

本発明の圧電素子は、圧電性を示す結晶配向方向が異なる(一方が上向きのとき、他方が下向き)圧電膜を積み重ねた構造とすることで、圧電膜の厚さ方向で極性が逆の電圧が発生した場合でも、結晶配向方向が上向きの圧電膜に発生する電圧と、結晶配向方向が下向きの圧電膜で発生する電圧を重畳して取り出すことが可能となり、圧電性を有する結晶配向方向が一方の向きとなる単層膜構造とした場合と比較して大きな出力信号を得ることができるという利点がある。 The piezoelectric element of the present invention has a structure in which piezoelectric films having different crystal orientation directions indicating piezoelectricity (one is upward and the other is downward) are stacked, so that the voltage has opposite polarity in the thickness direction of the piezoelectric film. Even when the above occurs, the voltage generated in the piezoelectric film whose crystal orientation direction is upward and the voltage generated in the piezoelectric film whose crystal orientation direction is downward can be superimposed and extracted, and the crystal orientation direction having piezoelectricity can be determined. There is an advantage that a large output signal can be obtained as compared with the case of using a single-layer film structure in one direction.

特に本発明では、複数の圧電素子を接続した圧電素子の組を複数接続する構成とすることで、圧電電圧が重畳され、出力信号のレベルを上げることを可能としている。 In particular, in the present invention, the piezoelectric voltage is superimposed and the level of the output signal can be raised by connecting a plurality of sets of piezoelectric elements in which a plurality of piezoelectric elements are connected.

また本発明によれば、圧電膜が振動により湾曲変形する際、その変位の変曲点により区画される領域毎に圧電素子を形成し、それぞれの圧電素子から出力される電圧信号を重畳して出力するように接続することで、各領域で発生する電圧を重畳して取り出すことが可能となり、出力信号のレベルを上げることを可能としている。 Further, according to the present invention, when the piezoelectric film is curved and deformed by vibration, a piezoelectric element is formed for each region defined by the bending point of the displacement, and a voltage signal output from each piezoelectric element is superimposed. By connecting so as to output, it is possible to superimpose and take out the voltage generated in each region, and it is possible to raise the level of the output signal.

本発明の圧電膜を、圧電特性を有しない誘電体膜を挟んで形成する構成とすると、圧電膜の厚さ方向の中央面に対して相対的に応力の大きい圧電膜の上下の表面側から出力信号を得ることができ、特性向上が期待できる。また、例えばシリコン酸化膜(SiO2)を介して積層する構造とすると圧電薄膜より誘電損が小さく好ましい。 When the piezoelectric film of the present invention is formed by sandwiching a dielectric film having no piezoelectric characteristics, the piezoelectric film has a large stress relative to the central surface in the thickness direction of the piezoelectric film from the upper and lower surface sides of the piezoelectric film. An output signal can be obtained, and improvement in characteristics can be expected. Further, for example, a structure in which the layers are laminated via a silicon oxide film (SiO 2 ) is preferable because the dielectric loss is smaller than that of the piezoelectric thin film.

なお圧電素子間の接続は、圧電素子の電極を延長して形成した延長部により行うことができ、圧電膜の変位に影響を与えるスルーホール等の接続手段を必要としない点でも、効率的に電気エネルギーに変換できるという利点がある。 Note that the connection between the piezoelectric elements can be performed by an extension portion formed by extending the electrodes of the piezoelectric elements, and it is also efficient in that a connecting means such as a through hole that affects the displacement of the piezoelectric film is not required. It has the advantage of being able to be converted into electrical energy.

本発明の圧電素子の圧電膜を音響圧力によって振動する厚さに設定し、音響トランスデューサとして使用した場合、高感度で信号雑音比の改善が期待される。 When the piezoelectric film of the piezoelectric element of the present invention is set to a thickness that vibrates due to acoustic pressure and is used as an acoustic transducer, high sensitivity and improvement in the signal-to-noise ratio are expected.

本発明の第1の実施例の圧電素子の電極の平面図である。It is a top view of the electrode of the piezoelectric element of the 1st Example of this invention. 本発明の第1の実施例の圧電素子の一部断面図である。It is a partial cross-sectional view of the piezoelectric element of the 1st Example of this invention. 本発明の第1の実施例の説明図である。It is explanatory drawing of 1st Example of this invention. 本発明の第1の実施例の説明図である。It is explanatory drawing of 1st Example of this invention. 本発明の第2の実施例の圧電素子の一部断面図である。It is a partial cross-sectional view of the piezoelectric element of the 2nd Example of this invention. 本発明の第3の実施例の圧電素子の一部断面図である。It is a partial cross-sectional view of the piezoelectric element of the 3rd Example of this invention. 従来の圧電素子の説明図である。It is explanatory drawing of the conventional piezoelectric element. 従来の別の圧電素子の説明図である。It is explanatory drawing of another conventional piezoelectric element.

本発明の圧電素子は、支持基板に周囲を固定した圧電膜を、少なくとも2層の圧電膜を含む積層構造とし、一方の圧電膜の圧電性を有する結晶配向方向を上向きの膜とし、他方の圧電薄膜の圧電性を有する結晶配向方向を下向きの膜としている。積層構造の圧電膜には、その一部を挟み込むように電極を配置した圧電素子が複数個形成され、各圧電素子を直列に接続する構成としている。特に本発明では、圧電素子を所定の位置に配置することにより、信号を効率的に取り出すことができる構成としている。以下、本発明の圧電素子を音響トランスデューサとして構成する場合を例にとり詳細に説明する。 The piezoelectric element of the present invention has a piezoelectric film having a periphery fixed to a support substrate having a laminated structure including at least two layers of piezoelectric films, one of which has a piezoelectricity and a crystal orientation direction facing upward, and the other. The piezoelectric thin film has a piezoelectricity, and the crystal orientation direction is a downward film. A plurality of piezoelectric elements in which electrodes are arranged so as to sandwich a part of the piezoelectric film having a laminated structure are formed, and each piezoelectric element is connected in series. In particular, in the present invention, the signal can be efficiently extracted by arranging the piezoelectric element at a predetermined position. Hereinafter, a case where the piezoelectric element of the present invention is configured as an acoustic transducer will be described in detail as an example.

本発明の第1の実施例について説明する。図1は第1の実施例の圧電素子の電極の平面図を、図2は図1に示す圧電素子の電極が配置される圧電素子のA面およびB面における断面図をそれぞれ模式的に示している。図1(a)に示すように、下層電極は複数の電極4a1〜4a4からなり、それぞれ隣接する2つの電極が接続した構造となっている。たとえば電極4a1は、2つの圧電素子を構成する2つの電極部分と、この電極部分を接続するための延長部とが一体となった構造となっている。同様に、図1(b)に示すように、上層電極も複数の電極4b1〜4b5からなり、電極4b1〜4b4は隣接する2つの電極が延長部を介して接続した構造であり、電極4b5は独立した構造となっている。 A first embodiment of the present invention will be described. FIG. 1 schematically shows a plan view of the electrodes of the piezoelectric element of the first embodiment, and FIG. 2 schematically shows cross-sectional views of the piezoelectric elements shown in FIG. 1 on the A and B sides of which the electrodes of the piezoelectric element are arranged. ing. As shown in FIG. 1A, the lower layer electrode is composed of a plurality of electrodes 4a1 to 4a4, and has a structure in which two adjacent electrodes are connected to each other. For example, the electrode 4a1 has a structure in which two electrode portions constituting the two piezoelectric elements and an extension portion for connecting the electrode portions are integrated. Similarly, as shown in FIG. 1B, the upper layer electrode is also composed of a plurality of electrodes 4b1 to 4b5, and the electrodes 4b1 to 4b4 have a structure in which two adjacent electrodes are connected via an extension portion, and the electrode 4b5 has a structure. It has an independent structure.

図2に、圧電膜を挟んで図1に示す圧電素子の下層電極および上層電極を積層したA面およびB面の断面図を示す。図2に示すように、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電膜3a、3bが積層形成している。圧電膜3a、3bは、絶縁膜2を介してシリコン基板1に周囲が固定されており、円形の振動板を構成している。なお、中央部にはベント穴を形成している。 FIG. 2 shows a cross-sectional view of a plane A and a plane B in which the lower layer electrode and the upper layer electrode of the piezoelectric element shown in FIG. As shown in FIG. 2, piezoelectric films 3a and 3b are laminated on a silicon substrate 1 serving as a support substrate via an insulating film 2 made of a silicon oxide film (SiO 2). The piezoelectric films 3a and 3b are fixed around the silicon substrate 1 via the insulating film 2 to form a circular diaphragm. A vent hole is formed in the central portion.

本実施例の圧電素子の構造について詳細に説明すると、圧電膜3aの裏面側に下層電極となる電極4a1、電極4a2、電極4a3、電極4a4が形成されている。また圧電膜3bの上面側には、上層電極となる電極4b1、電極4b2、電極4b3、電極4b4、電極4b5が形成されており、電極4b1は配線電極5aに、電極4b5は配線電極5bにそれぞれ接続している。これらの電極は、図1(a)(b)に示すように、円形に配置されている。電極は、モリブデン(Mo)、プラチナ(Pt)、チタン(Ti)、イリジウム(Ir)、ルテニウム(Ru)等の金属薄膜で形成することができる。 Explaining the structure of the piezoelectric element of this embodiment in detail, electrodes 4a1, electrodes 4a2, electrodes 4a3, and electrodes 4a4, which are lower layer electrodes, are formed on the back surface side of the piezoelectric film 3a. Further, on the upper surface side of the piezoelectric film 3b, electrodes 4b1, electrodes 4b2, electrodes 4b3, electrodes 4b4, and electrodes 4b5, which are upper layer electrodes, are formed. You are connected. These electrodes are arranged in a circle as shown in FIGS. 1 (a) and 1 (b). The electrode can be formed of a metal thin film such as molybdenum (Mo), platinum (Pt), titanium (Ti), iridium (Ir), and ruthenium (Ru).

このように構成すると、図2に断面図を示すように、電極4a1、圧電膜3a(第1の圧電膜に相当)、圧電膜3b(第2の圧電膜に相当)および電極4b1が重なり合う領域で圧電素子C1(第1の圧電素子に相当)が形成される。同様に、電極4a1、圧電膜3a、圧電膜3bおよび電極4b2が重なり合う領域で圧電素子C2(第2の圧電素子に相当)が形成される。 With this configuration, as shown in the cross-sectional view in FIG. 2, the region where the electrode 4a1, the piezoelectric film 3a (corresponding to the first piezoelectric film), the piezoelectric film 3b (corresponding to the second piezoelectric film), and the electrode 4b1 overlap each other. The piezoelectric element C1 (corresponding to the first piezoelectric element) is formed. Similarly, the piezoelectric element C2 (corresponding to the second piezoelectric element) is formed in the region where the electrodes 4a1, the piezoelectric film 3a, the piezoelectric film 3b, and the electrodes 4b2 overlap.

ここで、第1の圧電素子C1と第2の圧電素子C2は、圧電素子を構成する電極4a1を共通に使用することで対向する電極(それぞれ電極4b1、電極4b2)と重なり合っていない電極4a1の領域(延長部に相当)によって直列接続している。このような接続とすることで、圧電膜内にスルーホール等の圧電素子の変位に影響を与える接続手段を形成する必要がなくなる。 Here, the first piezoelectric element C1 and the second piezoelectric element C2 use the electrodes 4a1 constituting the piezoelectric element in common, so that the electrodes 4a1 do not overlap with the opposing electrodes (electrodes 4b1 and electrodes 4b2, respectively). It is connected in series by an area (corresponding to an extension). With such a connection, it is not necessary to form a connecting means that affects the displacement of the piezoelectric element such as a through hole in the piezoelectric film.

本実施例では、この第1および第2の圧電素子に相当する圧電素子の組が4組直列に接続した構成となり、配線電極5aと配線電極5bとの間に、これら圧電素子C1〜C8が接続した構成となる。具体的には、図3に示す構成となる。図3において、第1の圧電素子C1が圧電膜の外周側、即ち支持基板に固定されている固定部側の圧電膜上に配置され、第2の圧電素子C2が圧電膜の中央側、即ち第1の圧電素子が形成される領域と圧電膜の中心との間の圧電膜上に配置される。同様に、圧電素子C3、C5およびC7が圧電膜の固定部側に配置され、圧電素子C4、C6およびC8が圧電膜の中心側に配置される。つまり、振動部となる圧電膜の中点を取り囲むように圧電素子C2、C4、C6およびC8を配置し、その外側に圧電素子C1、C3、C5およびC7を配置している。 In this embodiment, four sets of piezoelectric elements corresponding to the first and second piezoelectric elements are connected in series, and these piezoelectric elements C1 to C8 are provided between the wiring electrodes 5a and the wiring electrodes 5b. It becomes a connected configuration. Specifically, it has the configuration shown in FIG. In FIG. 3, the first piezoelectric element C1 is arranged on the outer peripheral side of the piezoelectric film, that is, the piezoelectric film on the fixed portion side fixed to the support substrate, and the second piezoelectric element C2 is on the central side of the piezoelectric film, that is, It is arranged on the piezoelectric film between the region where the first piezoelectric element is formed and the center of the piezoelectric film. Similarly, the piezoelectric elements C3, C5 and C7 are arranged on the fixed portion side of the piezoelectric film, and the piezoelectric elements C4, C6 and C8 are arranged on the central side of the piezoelectric film. That is, the piezoelectric elements C2, C4, C6 and C8 are arranged so as to surround the midpoint of the piezoelectric film serving as the vibrating portion, and the piezoelectric elements C1, C3, C5 and C7 are arranged outside the piezoelectric elements C2, C4, C6 and C8.

次に本発明の圧電膜の圧電性を有する結晶配向方向について説明する。本実施例の圧電膜は、図2に圧電性を有する結晶配向方向(圧電極性)を矢印で示すように、圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としている。具体的には、窒化アルミニウム(AlN)からなる圧電薄膜3aの圧電性を示す結晶配向であるc軸方位が下向きの場合、窒化アルミニウムからなる圧電薄膜3bのc軸方位は上向きとする。あるいは逆であっても良い。 Next, the crystal orientation direction of the piezoelectric film of the present invention having piezoelectricity will be described. The piezoelectric film of this embodiment has a structure in which a film having a piezoelectricity and a crystal orientation direction facing upward and a film having a piezoelectricity facing downward are stacked, as shown by an arrow indicating the crystal orientation direction (piezoelectric polarity) having piezoelectricity in FIG. .. Specifically, when the c-axis orientation, which is the crystal orientation showing the piezoelectricity of the piezoelectric thin film 3a made of aluminum nitride (AlN), is downward, the c-axis orientation of the piezoelectric thin film 3b made of aluminum nitride is upward. Or vice versa.

結晶配向の制御は、周知の方法により行う。具体的には、窒素または酸素ガスを反応性ガスとして用いる反応性スパッタリング法によりウルツ鉱構造の窒化アルミニウムの薄膜を形成する場合、基板温度、スパッタリング圧力、窒素または酸素濃度、電力密度、膜厚を適宜設定することで、結晶配向性が良く、c軸方位の揃った成膜が可能となる。 The crystal orientation is controlled by a well-known method. Specifically, when forming a thin film of aluminum nitride having a wurtzite structure by a reactive sputtering method using nitrogen or oxygen gas as a reactive gas, the substrate temperature, sputtering pressure, nitrogen or oxygen concentration, power density, and film thickness are determined. By setting appropriately, it is possible to form a film having good crystal orientation and uniform c-axis orientation.

さらにスパッタリング条件を変えることにより、c軸方位を180度変化させた窒化アルミニウム薄膜を積層生成することも可能である。 Further, by changing the sputtering conditions, it is possible to laminate and generate an aluminum nitride thin film whose c-axis direction is changed by 180 degrees.

なおc軸方位は、図2に示すように圧電膜の表面に対して垂直方向に揃った場合に限らず、垂直方向からずれていても良い。さらに、上向きのc軸方位と下向きのc軸方位は、相互に逆向きの方向であれば良く、図2に示すように180度異なる向きでなくても良い。当然ながら180度異なる場合に感度が最も高く、好ましいことは言うまでもない。 The c-axis orientation is not limited to the case where the orientation is aligned perpendicular to the surface of the piezoelectric film as shown in FIG. 2, and may deviate from the vertical direction. Further, the upward c-axis direction and the downward c-axis direction may be directions opposite to each other, and may not be 180 degrees different as shown in FIG. Needless to say, the sensitivity is highest when the difference is 180 degrees, which is preferable.

このように構成した本発明の圧電素子を音響トランスデューサとして構成する場合、シリコン基板1に形成された空孔6から音響圧力が加わる。音響圧力を受けた圧電膜は、上方に湾曲変位する。その結果、圧電膜を構成する窒化アルミニウムに引張応力と圧縮応力が発生することになる。 When the piezoelectric element of the present invention configured in this way is configured as an acoustic transducer, acoustic pressure is applied from the pores 6 formed in the silicon substrate 1. The piezoelectric film that receives the acoustic pressure is curved and displaced upward. As a result, tensile stress and compressive stress are generated in the aluminum nitride constituting the piezoelectric film.

図4は、図2で説明した領域の圧電素子に音響圧力が印加され、圧電薄膜が上方に変位した場合の一例を示している。図4に示すように圧電膜に引張応力と圧縮応力が発生し、変位の変曲点によって圧電膜の応力の向きは2つの領域に分けられる。具体的には、円形の圧電膜が絶縁膜2を介してシリコン基板1に固定されている固定部近傍の外周部では、圧電膜3aに引張応力が発生し、圧電膜3bには圧縮応力が発生する。一方、それより内側の中央部では、圧電膜3aに圧縮応力が発生し、圧電膜3bには引張応力が発生する。このように変位の変曲点によって応力の向きが異なる2つの領域に分けられる。 FIG. 4 shows an example in which an acoustic pressure is applied to the piezoelectric element in the region described in FIG. 2 and the piezoelectric thin film is displaced upward. As shown in FIG. 4, tensile stress and compressive stress are generated in the piezoelectric film, and the direction of stress in the piezoelectric film is divided into two regions depending on the inflection point of displacement. Specifically, at the outer peripheral portion near the fixed portion where the circular piezoelectric film is fixed to the silicon substrate 1 via the insulating film 2, tensile stress is generated in the piezoelectric film 3a, and compressive stress is applied to the piezoelectric film 3b. appear. On the other hand, in the central portion inside the piezoelectric film 3a, a compressive stress is generated, and a tensile stress is generated in the piezoelectric film 3b. In this way, it is divided into two regions where the stress direction differs depending on the inflection point of displacement.

ところで、本実施例の圧電素子は、図2に示すように、圧電素子C1と圧電素子C2の直列に接続している。ここで、外周部で発生する電圧と中央部で発生する電圧は、それぞれ極性が逆で、同一の値とすることができ、残留応力や温度変動に起因する同相の電圧を相殺することが可能となる。 By the way, as shown in FIG. 2, the piezoelectric element of this embodiment is connected in series with the piezoelectric element C1 and the piezoelectric element C2. Here, the voltage generated in the outer peripheral portion and the voltage generated in the central portion have opposite polarities and can be the same value, and it is possible to cancel out the in-phase voltage caused by the residual stress and the temperature fluctuation. It becomes.

圧電薄膜3a、3bはそれぞれ圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としているため、圧電薄膜3aの引張応力により横圧電効果により発生する電界の向きと圧電薄膜3bの圧縮応力による電界の向きは同一となる。 Since the piezoelectric thin films 3a and 3b have a structure in which a film having piezoelectricity in the crystal orientation direction upward and a film having a downward crystal orientation are stacked, the direction of the electric field generated by the transverse piezoelectric effect due to the tensile stress of the piezoelectric thin film 3a and the piezoelectric thin film 3b. The direction of the electric field due to the compressive stress of is the same.

逆に圧電膜が下向きに変位する場合、2つの電極4a1、4b1間では、圧電膜3aでは圧縮応力が発生し、圧電膜3bでは引張応力が発生する。この場合も、圧電膜3aで発生する電界の向きと、圧電膜3bで発生する電界の向きは同一となる。その結果いずれの変位においても、電極4a1と電極4b1との間には、それぞれの圧電膜で発生した電圧が重畳され出力することになる。 On the contrary, when the piezoelectric film is displaced downward, a compressive stress is generated in the piezoelectric film 3a and a tensile stress is generated in the piezoelectric film 3b between the two electrodes 4a1 and 4b1. Also in this case, the direction of the electric field generated by the piezoelectric film 3a and the direction of the electric field generated by the piezoelectric film 3b are the same. As a result, in any displacement, the voltage generated by each piezoelectric film is superimposed and output between the electrodes 4a1 and 4b1.

同様に、電極4a2と電極4b2との間でも、圧電膜が上向きに変位した場合、圧電膜3aでは圧縮応力が発生し、圧電薄膜3bでは引張応力が発生し、それぞれの圧電膜で発生した電圧が重量されて出力される。また圧電膜が下向きに変位した場合、圧電膜3aでは引張応力が発生し、圧電膜3bでは圧縮応力が発生し、それぞれの圧電膜で発生した電圧が重畳されて出力される。 Similarly, even between the electrodes 4a2 and 4b2, when the piezoelectric film is displaced upward, compressive stress is generated in the piezoelectric film 3a, tensile stress is generated in the piezoelectric thin film 3b, and the voltage generated in each piezoelectric film is generated. Is weighted and output. When the piezoelectric film is displaced downward, tensile stress is generated in the piezoelectric film 3a, compressive stress is generated in the piezoelectric film 3b, and the voltages generated in the respective piezoelectric films are superimposed and output.

また本発明の圧電素子は、圧電素子C1と圧電素子C2からなる圧電素子の組が4組直列の接続した構造となっているため、音響圧力信号が印加されることに基づく4組の各圧電素子の組の出力信号(電圧)は、残留応力や温度変動に起因する信号を含まずに重畳加算され、音響圧力(Pa)に対する出力電圧(Vout)の比(Vout/Pa)で定義される音響トランスデューサとしての感度の増大を図ることが可能となる。 Further, since the piezoelectric element of the present invention has a structure in which four sets of piezoelectric elements composed of the piezoelectric element C1 and the piezoelectric element C2 are connected in series, each of the four sets of piezoelectric elements is based on the application of an acoustic pressure signal. The output signal (voltage) of the set of elements is superimposed and added without including the signal due to residual stress or temperature fluctuation, and the ratio of the output voltage (V out ) to the acoustic pressure (P a ) (V out / P a ). It is possible to increase the sensitivity as an acoustic transducer defined in.

なお、各電極の大きさ等は信号雑音比を最大化する観点から最適化されることが望ましい。これは配線電極5a、5bから見た等価的キャパシタの容量をCoutとした場合に、この等価的キャパシタに蓄えられるエネルギー(Cout・Vout 2/2)を最大化するように各電極の大きさを決めればよい。 It is desirable that the size of each electrode is optimized from the viewpoint of maximizing the signal-to-noise ratio. This wiring electrodes 5a, the capacity of the equivalent capacitor as seen from 5b when the C out, of the electrodes so as to maximize the energy stored in the equivalent capacitor (C out · V out 2/ 2) You just have to decide the size.

次に本発明の第2の実施例について説明する。図5は本発明の第2の実施例の圧電素子の断面図である。図5に示すように本実施例の圧電素子は、上記第1の実施例同様、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電性を有する結晶配向方向が異なる圧電膜3aと圧電膜3bが形成されている。本実施例では、圧電膜3aと圧電膜3bを直接重ね合せる構造とする代わりに圧電特性を有しない誘電体膜7を介した積層構造としている。 Next, a second embodiment of the present invention will be described. FIG. 5 is a cross-sectional view of the piezoelectric element of the second embodiment of the present invention. As shown in FIG. 5, the piezoelectric element of this embodiment is piezoelectric, as in the first embodiment, via an insulating film 2 made of a silicon oxide film (SiO 2) on a silicon substrate 1 serving as a support substrate. A piezoelectric film 3a and a piezoelectric film 3b having different crystal orientation directions are formed. In this embodiment, instead of the structure in which the piezoelectric film 3a and the piezoelectric film 3b are directly overlapped, the structure is such that the dielectric film 7 having no piezoelectric property is interposed.

誘電体膜7は、圧電特性を有しない誘電体から選択することで、積層構造の圧電膜に対して音響圧力信号等が印加されて変位する際に、圧縮応力あるいは引張応力の大きさが薄膜の厚さ方向の中央面に対して相対的に大きい薄膜の表面部分あるいは裏面部分のみに圧電膜を配置される構造とすることができる。その結果、印加される音響信号圧力に対する出力信号電圧の比(感度)の高い圧電素子を形成することができる。 By selecting the dielectric film 7 from dielectrics that do not have piezoelectric characteristics, the magnitude of compressive stress or tensile stress becomes a thin film when an acoustic pressure signal or the like is applied to the piezoelectric film having a laminated structure to cause displacement. The structure may be such that the piezoelectric film is arranged only on the front surface portion or the back surface portion of the thin film which is relatively large with respect to the central surface in the thickness direction of the thin film. As a result, it is possible to form a piezoelectric element having a high ratio (sensitivity) of the output signal voltage to the applied acoustic signal pressure.

ここで誘電体膜7としてシリコン酸化膜(SiO2)を選択すると、誘電体膜7の誘電損(損失角tanδ)を窒化アルミニウムからなる圧電膜の誘電損より小さくすることができ、感度と信号雑音比の向上が期待され好ましい。 If a silicon oxide film (SiO 2 ) is selected as the dielectric film 7, the dielectric loss (loss angle tan δ) of the dielectric film 7 can be made smaller than that of the piezoelectric film made of aluminum nitride, and the sensitivity and signal can be increased. It is expected that the noise ratio will be improved, which is preferable.

次に第3の実施例について説明する。一般的に窒化アルミニウム等の圧電膜をスパッタ法で堆積させる場合、堆積する下地の影響を受けることが知られている。上記第1の実施例で説明した圧電素子の場合、圧電膜3bを堆積させる際、下地表面には、モリブデンからなる電極4b1等が形成されている部分と、電極が形成されず、圧電膜3aが大きく露出している部分とがある。このような下地表面上に特性の揃った圧電膜を形成することは大変難しい。 Next, a third embodiment will be described. Generally, when a piezoelectric film such as aluminum nitride is deposited by a sputtering method, it is known that it is affected by the deposited substrate. In the case of the piezoelectric element described in the first embodiment, when the piezoelectric film 3b is deposited, the portion where the electrode 4b1 or the like made of molybdenum is formed and the electrode are not formed on the base surface, and the piezoelectric film 3a is not formed. There is a part where is greatly exposed. It is very difficult to form a piezoelectric film having uniform characteristics on such a base surface.

そこで、電極が形成されていない部分を電極と同一の材料で被覆すればよい。具体的には、下層電極となる電極4a1〜4a4と同時に、これらの電極が形成されていない領域に、これらの電極と接続しないダミー電極(図6に示す電極4c1を含む電極)を形成する。同様に、下層電極となる電極4b1〜電極4b5と同時に、これらの電極が形成されていない領域に、これらの電極と接続しないダミー電極(図6に示す電極4c2を含む電極)を形成する。このように形成されたダミー電極により、特性の揃った圧電膜を形成することが可能となる。このダミー電極は、圧電膜3a、3bの厚さ方向の中心を通る面に対し、上下対称となる構造とすることができ、引張と圧縮の応力がバランスして応力が零となる中央軸面を圧電膜3a、3bの境界面とし、音響圧力を効率的に出力電圧として取り出すことが可能となる。 Therefore, the portion where the electrode is not formed may be coated with the same material as the electrode. Specifically, at the same time as the electrodes 4a1 to 4a4 to be the lower layer electrodes, a dummy electrode (an electrode including the electrode 4c1 shown in FIG. 6) that is not connected to these electrodes is formed in a region where these electrodes are not formed. Similarly, at the same time as the electrodes 4b1 to 4b5 to be the lower layer electrodes, a dummy electrode (an electrode including the electrode 4c2 shown in FIG. 6) that is not connected to these electrodes is formed in a region where these electrodes are not formed. The dummy electrode formed in this way makes it possible to form a piezoelectric film having uniform characteristics. This dummy electrode can have a structure that is vertically symmetrical with respect to the surface passing through the center of the piezoelectric films 3a and 3b in the thickness direction, and the central axial surface in which the stress of tension and compression is balanced and the stress becomes zero. Is used as the interface between the piezoelectric films 3a and 3b, and the acoustic pressure can be efficiently taken out as the output voltage.

図6に示す例は、上記第1の実施例で説明した圧電素子にダミー電極を追加した例であるが、誘電体膜を備えた上記第2の実施例で説明した圧電素子にダミー電極を追加することも可能である。 The example shown in FIG. 6 is an example in which a dummy electrode is added to the piezoelectric element described in the first embodiment, but a dummy electrode is added to the piezoelectric element described in the second embodiment provided with a dielectric film. It is also possible to add.

以上、本実施例の圧電素子について説明したが、本発明は上記実施例に限定されるものでないことは言うまでもない。具体的には、圧電薄膜として窒化アルミニウムに限定されるものでなく、窒化スカンジウムアルミニウム(Al1-xScxN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)も利用することが可能である。また空孔6の大きさ、各電極の形状、接続する圧電素子の数や接続は、適宜変更可能である。 Although the piezoelectric element of the present embodiment has been described above, it goes without saying that the present invention is not limited to the above embodiment. Specifically, the piezoelectric thin film is not limited to aluminum nitride, and scandium aluminum nitride (Al 1-x Sc x N), zinc oxide (ZnO), and lead zirconate titanate (PZT) can also be used. It is possible. Further, the size of the pores 6, the shape of each electrode, the number of piezoelectric elements to be connected, and the connection can be appropriately changed.

1:シリコン基板、2:絶縁膜、3a、3b:圧電薄膜、4a、4b、4c:電極、5a、5b:配線電極、6:空孔、7:誘電体膜 1: Silicon substrate 2: Insulating film, 3a, 3b: Piezoelectric thin film, 4a, 4b, 4c: Electrodes, 5a, 5b: Wiring electrodes, 6: Pore, 7: Dielectric film

Claims (2)

支持基板に周囲が固定された圧電膜と、該圧電膜を挟んで配置された一対の電極とを備えた横圧電効果を利用した圧電素子において、
前記圧電膜は、少なくとも第1の圧電膜と第2の圧電膜が直接重なる積層構造からなり、前記第1の圧電膜と前記第2の圧電膜のそれぞれの圧電性を示す結晶配向方向が、一方が上向きのとき、他方は下向きであることと、
前記積層構造の圧電膜を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子および第2の圧電素子が形成されていることと、
前記支持基板に周囲が固定された圧電膜の固定部側に前記第1の圧電素子を配置し、前記圧電膜の中心側に前記第2の圧電素子を配置していることと、
前記第1の圧電素子と前記第2の圧電素子は、前記圧電素子の電極から連続する延長部により直列接続されていることを特徴とする圧電素子。
In a piezoelectric element utilizing a transverse piezoelectric effect, which comprises a piezoelectric film whose circumference is fixed to a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric film.
The piezoelectric film has a laminated structure in which at least the first piezoelectric film and the second piezoelectric film are directly overlapped with each other, and the crystal orientation direction indicating the piezoelectricity of each of the first piezoelectric film and the second piezoelectric film is determined. When one is facing up, the other is facing down,
A plurality of sets of the pair of electrodes arranged so as to sandwich the piezoelectric film having the laminated structure are provided, and at least the first piezoelectric element and the second piezoelectric element are formed.
The first piezoelectric element is arranged on the fixed portion side of the piezoelectric film whose circumference is fixed to the support substrate, and the second piezoelectric element is arranged on the center side of the piezoelectric film.
A piezoelectric element characterized in that the first piezoelectric element and the second piezoelectric element are connected in series by an extension portion continuous from the electrode of the piezoelectric element.
請求項1記載の圧電素子において、前記圧電膜は、音響圧力によって振動する膜であることを特徴とする圧電素子。 The piezoelectric element according to claim 1, wherein the piezoelectric film is a film that vibrates due to acoustic pressure .
JP2017024730A 2017-02-14 2017-02-14 Piezoelectric element Active JP6908324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024730A JP6908324B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024730A JP6908324B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2018133384A JP2018133384A (en) 2018-08-23
JP6908324B2 true JP6908324B2 (en) 2021-07-21

Family

ID=63248536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024730A Active JP6908324B2 (en) 2017-02-14 2017-02-14 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6908324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113228708B (en) * 2018-12-27 2023-09-12 株式会社村田制作所 Piezoelectric transducer
CN110926590B (en) * 2019-12-06 2021-12-10 联合微电子中心有限责任公司 Piezoelectric type MEMS hydrophone

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111200U (en) * 1983-12-27 1985-07-27 日本圧電気株式会社 piezoelectric microphone
JP2009170631A (en) * 2008-01-16 2009-07-30 Panasonic Corp Piezoelectric element and method of manufacturing the same, and piezoelectric application device using the same
JP5836755B2 (en) * 2011-10-04 2015-12-24 富士フイルム株式会社 Piezoelectric element and liquid discharge head

Also Published As

Publication number Publication date
JP2018133384A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP6908322B2 (en) Piezoelectric element
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
US8237332B2 (en) Piezoelectric acoustic transducer and method of fabricating the same
US7538477B2 (en) Multi-layer transducers with annular contacts
US10158951B2 (en) Silicon microphone with suspended diaphragm and system with the same
JP4928472B2 (en) Microphone diaphragm and microphone having a microphone diaphragm
US10313799B2 (en) Microphone and method for manufacturing the same
US10284986B2 (en) Piezoelectric speaker and method for forming the same
JP2011193342A (en) Mems device
US8144899B2 (en) Acoustic transducer and microphone using the same
JP6819002B2 (en) Piezoelectric element
JP6908324B2 (en) Piezoelectric element
JP6787553B2 (en) Piezoelectric element
JP7349090B2 (en) Piezoelectric element
CN114222231B (en) Bimorph piezoelectric MEMS microphone based on clamped beam structure
JP7143056B2 (en) capacitive transducer system, capacitive transducer and acoustic sensor
CN109565634B (en) MEMS microphone and electronic equipment
KR100941893B1 (en) Silicon MEMS microphone of capacitor type
JP6844911B2 (en) Piezoelectric element
JP2018058150A (en) Mems element and manufacturing method thereof
KR101893486B1 (en) Rigid Backplate Structure Microphone and Method of Manufacturing the Same
JP2019041349A (en) MEMS element
JP6559365B2 (en) Piezoelectric microphone
CN114339557B (en) MEMS microphone chip, preparation method thereof and MEMS microphone
KR101652784B1 (en) Piezoelectric acoustic transducer and method for fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6908324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150