JP6908322B2 - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP6908322B2
JP6908322B2 JP2016173537A JP2016173537A JP6908322B2 JP 6908322 B2 JP6908322 B2 JP 6908322B2 JP 2016173537 A JP2016173537 A JP 2016173537A JP 2016173537 A JP2016173537 A JP 2016173537A JP 6908322 B2 JP6908322 B2 JP 6908322B2
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
piezoelectric thin
piezoelectric element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016173537A
Other languages
Japanese (ja)
Other versions
JP2018041788A (en
JP2018041788A5 (en
Inventor
王義 山崎
王義 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016173537A priority Critical patent/JP6908322B2/en
Publication of JP2018041788A publication Critical patent/JP2018041788A/en
Publication of JP2018041788A5 publication Critical patent/JP2018041788A5/ja
Application granted granted Critical
Publication of JP6908322B2 publication Critical patent/JP6908322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は圧電素子に関し、特に、高感度、低雑音の横圧電効果を利用した圧電素子に関するものである。 The present invention relates to a piezoelectric element, and more particularly to a piezoelectric element utilizing a high-sensitivity, low-noise transverse piezoelectric effect.

近年、急速に需要が拡大しているスマートフォンには、小型、薄型で、組立のハンダリフロー工程の高温処理耐性を有するMEMS(Micro Electro Mechanical System)技術を用いたマイクロフォンが多く使われている。また、MEMSマイクロフォンに限らず、その他のMEMS素子が様々な分野で急速に普及してきている。 In recent years, smartphones, whose demand is rapidly expanding, are often used for microphones using MEMS (Micro Electro Mechanical System) technology, which is small and thin and has resistance to high temperature processing in the solder reflow process of assembly. Further, not only MEMS microphones but also other MEMS elements are rapidly becoming widespread in various fields.

この種のMEMS素子の多くは、音響圧力等による振動板の振動変位を対向する固定板との容量変化としてとらえ、電気信号に変換して出力する容量素子である。しかし容量素子は、振動板と固定板との間隙の空気の流動によって生じる音響抵抗のために、信号雑音比の改善が限界になりつつある。 Most of these types of MEMS elements are capacitive elements that capture the vibration displacement of the diaphragm due to acoustic pressure or the like as a capacitance change with the opposing fixed plate, convert it into an electric signal, and output it. However, the improvement of the signal-to-noise ratio of the capacitive element is becoming a limit due to the acoustic resistance caused by the flow of air in the gap between the diaphragm and the fixing plate.

そこで、圧電薄膜で構成される単一の振動板の歪みにより音響圧力等を電圧変化として取り出すことができる圧電素子が注目されている。 Therefore, a piezoelectric element capable of extracting acoustic pressure or the like as a voltage change due to distortion of a single diaphragm composed of a piezoelectric thin film has been attracting attention.

ところでこの種の圧電素子では、振動板を構成する圧電薄膜が音響圧力等により振動変位する場合、圧電薄膜の厚さ方向で圧電薄膜に加わる歪みあるいは応力が逆方向となることが知られている。図7は一般的な構造の圧電素子において、圧電薄膜に加わる歪みあるいは応力を模式的に示した説明図である。図7に示す圧電素子は、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電薄膜3が積層形成されている。また、図示しないスリットを形成し、両持ち梁構造としている。圧電薄膜3の表面と裏面には、圧電薄膜3を挟み込むように一対の電極4が形成され、電極4はそれぞれ配線電極5に接続する構造となっている。 By the way, in this type of piezoelectric element, it is known that when the piezoelectric thin film constituting the diaphragm is vibrated and displaced due to acoustic pressure or the like, the strain or stress applied to the piezoelectric thin film in the thickness direction of the piezoelectric thin film is in the opposite direction. .. FIG. 7 is an explanatory diagram schematically showing strain or stress applied to the piezoelectric thin film in a piezoelectric element having a general structure. In the piezoelectric element shown in FIG. 7, a piezoelectric thin film 3 is laminated on a silicon substrate 1 serving as a support substrate via an insulating film 2 made of a silicon oxide film (SiO 2). Further, a slit (not shown) is formed to form a double-sided beam structure. A pair of electrodes 4 are formed on the front surface and the back surface of the piezoelectric thin film 3 so as to sandwich the piezoelectric thin film 3, and each of the electrodes 4 is connected to a wiring electrode 5.

このような構造の圧電素子では、例えば図7に示すように音響圧力信号がシリコン基板1側から印加されると、領域Aと領域Cでは圧電薄膜3のシリコン基板側では引張応力が発生し、表面側では引張応力が発生する。一方、領域Bでは圧電薄膜のシリコン基板側では圧縮応力が発生し、表面側では引張応力が発生する。 In a piezoelectric element having such a structure, for example, when an acoustic pressure signal is applied from the silicon substrate 1 side as shown in FIG. 7, tensile stress is generated on the silicon substrate side of the piezoelectric thin film 3 in regions A and C. Tensile stress is generated on the surface side. On the other hand, in region B, compressive stress is generated on the silicon substrate side of the piezoelectric thin film, and tensile stress is generated on the surface side.

このように一対の電極に挟まれた圧電薄膜の中で、支持基板(シリコン基板1)に接着した領域と離れた領域では、発生する電圧の極性が逆になり、さらにまた、圧電薄膜の表面側とシリコン基板側とで発生する電圧の極性が逆になり、出力信号が得られない。 In the piezoelectric thin film sandwiched between the pair of electrodes in this way, the polarity of the generated voltage is reversed in the region bonded to the support substrate (silicon substrate 1) and the region separated from the region, and further, the surface of the piezoelectric thin film is further reversed. The polarities of the voltages generated on the side and the silicon substrate side are reversed, and an output signal cannot be obtained.

そこで、圧電薄膜に生じたエネルギーを有効に活用するため、図8に示すような圧電素子が提案されている(特許文献1)。図8に示す圧電素子は、支持基板となるシリコン基板1上に、絶縁膜2を介して多層構造の圧電薄膜3a、3bが固定され、圧電薄膜3aは上下から電極4aと電極4bにより、圧電薄膜3bは上下から電極4bと電極4cによりそれぞれ挟み込まれた構造となっている。圧電薄膜および電極はそれぞれ長方形の平面構造を有しており、一端がシリコン基板1に固定され、他端が自由端となる片持ち梁構造となっている。 Therefore, in order to effectively utilize the energy generated in the piezoelectric thin film, a piezoelectric element as shown in FIG. 8 has been proposed (Patent Document 1). In the piezoelectric element shown in FIG. 8, a multilayer structure piezoelectric thin film 3a and 3b is fixed on a silicon substrate 1 serving as a support substrate via an insulating film 2, and the piezoelectric thin film 3a is piezoelectricized by electrodes 4a and 4b from above and below. The thin film 3b has a structure in which the electrodes 4b and 4c are sandwiched from above and below, respectively. Each of the piezoelectric thin film and the electrode has a rectangular planar structure, and has a cantilever structure in which one end is fixed to the silicon substrate 1 and the other end is a free end.

このような圧電素子では、音響圧力等を受けて圧電薄膜3aが歪むとその内部に分極が起こり、電極4aに接続する配線金属5aと、電極4bに接続する配線電極5bから電圧信号をとりだすことが可能となる。同様に圧電薄膜3bが歪むとその内部に分極が起こり、電極4cに接続する配線金属5aと、電極4bに接続する配線金属5bから圧電信号を取り出すことが可能となる。しかしながら、このような構造の圧電素子を形成する場合、電極の形成と圧電薄膜の形成を繰り返し行う必要があり、製造工程が長く複雑になってしまう。 In such a piezoelectric element, when the piezoelectric thin film 3a is distorted by receiving acoustic pressure or the like, polarization occurs inside the piezoelectric thin film 3a, and a voltage signal is taken out from the wiring metal 5a connected to the electrode 4a and the wiring electrode 5b connected to the electrode 4b. Is possible. Similarly, when the piezoelectric thin film 3b is distorted, polarization occurs inside the piezoelectric thin film 3b, and it becomes possible to extract a piezoelectric signal from the wiring metal 5a connected to the electrode 4c and the wiring metal 5b connected to the electrode 4b. However, when forming a piezoelectric element having such a structure, it is necessary to repeatedly form an electrode and a piezoelectric thin film, which makes the manufacturing process long and complicated.

特許第5707323号公報Japanese Patent No. 5707323

図7に示す構造の圧電素子は、圧電薄膜の変位によって圧電薄膜に発生するエネルギーを有効に活用できないという問題があった。また、図8に示す構造の圧電素子は、電極の形成と圧電薄膜の形成を繰り返し行う必要があり、製造工程が長く複雑になるという問題があった。本発明はこのような問題を解消し、圧電薄膜に発生するエネルギーを有効に活用でき、簡便に形成することができる圧電素子を提供することを目的とする。 The piezoelectric element having the structure shown in FIG. 7 has a problem that the energy generated in the piezoelectric thin film due to the displacement of the piezoelectric thin film cannot be effectively utilized. Further, the piezoelectric element having the structure shown in FIG. 8 needs to repeatedly form an electrode and a piezoelectric thin film, which causes a problem that the manufacturing process becomes long and complicated. An object of the present invention is to solve such a problem and to provide a piezoelectric element which can effectively utilize the energy generated in a piezoelectric thin film and can be easily formed.

上記目的を達成するため、本願請求項1に係る発明は、支持基板上に積層された圧電薄膜と、該圧電薄膜を挟んで配置された一対の電極とを備えた横圧電効果を利用した圧電素子において、前記圧電薄膜は、前記支持基板に両端が固定され、少なくとも第1の圧電薄膜と第2の圧電薄膜を含む積層構造からなり、前記第1の圧電薄膜と前記第2の圧電薄膜のそれぞれの圧電性を示す結晶配向方向が、一方が上向きのとき、他方は下向きであることと、前記圧電薄膜の一部を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子、第2の圧電素子および第3の圧電素子が形成されていることと、前記第1の圧電素子、前記第2の圧電素子および前記第3の圧電素子は、前記両端の一端側から他端側へ順に並べて配置されていることと、前記第1の圧電素子と前記第2の圧電素子、前記第2の圧電素子と前記第3の圧電素子は、前記圧電素子の電極から連続する延長部により直列接続されていることを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application is a piezoelectric film using a transverse piezoelectric effect including a piezoelectric thin film laminated on a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric thin film. In the element, the piezoelectric thin film has both ends fixed to the support substrate and has a laminated structure including at least the first piezoelectric thin film and the second piezoelectric thin film. The crystal orientation direction showing each piezoelectricity is such that when one is upward and the other is downward, and a plurality of sets of the pair of electrodes arranged with a part of the piezoelectric thin film interposed therebetween are provided, and at least the first piezoelectricity is provided. The element, the second piezoelectric element, and the third piezoelectric element are formed, and the first piezoelectric element, the second piezoelectric element, and the third piezoelectric element are present from one end side of both ends. The first piezoelectric element and the second piezoelectric element, and the second piezoelectric element and the third piezoelectric element are continuously extended from the electrodes of the piezoelectric element. It is characterized in that it is connected in series by a unit.

本願請求項2に係る発明は、請求項1記載の圧電素子において、前記第1の圧電薄膜と前記第2の圧電薄膜の間に、圧電効果を有しない誘電体膜が積層されていることを特徴とする。 According to the second aspect of the present application, in the piezoelectric element according to the first aspect, a dielectric film having no piezoelectric effect is laminated between the first piezoelectric thin film and the second piezoelectric thin film. It is a feature.

本願請求項3に係る発明は、請求項1または2いずれか記載の圧電素子において、前記圧電薄膜は、音響圧力によって振動する膜であることを特徴とする。 The invention according to claim 3 of the present application is characterized in that, in the piezoelectric element according to any one of claims 1 or 2, the piezoelectric thin film is a film that vibrates due to acoustic pressure .

本発明の圧電素子は、圧電性を示す結晶配向方向が異なる(一方が上向きのとき、他方が下向き)圧電薄膜を積み重ねた構造とすることで、圧電薄膜の厚さ方向で極性が逆の電圧が発生した場合でも、結晶配向方向が上向きの圧電薄膜に発生する電圧と、結晶配向方向が下向きの圧電薄膜で発生する電圧を重畳して取り出すことが可能となり、圧電性を有する結晶配向方向が一方の向きとなる単層膜構造とした場合と比較して大きな出力信号を得ることができるという利点がある。 The piezoelectric element of the present invention has a structure in which piezoelectric thin films having different crystal orientation directions indicating piezoelectricity (one is upward and the other is downward) are stacked, so that the voltage is opposite in the thickness direction of the piezoelectric thin film. Even when the above occurs, the voltage generated in the piezoelectric thin film whose crystal orientation direction is upward and the voltage generated in the piezoelectric thin film whose crystal orientation direction is downward can be superimposed and extracted, and the crystal orientation direction having piezoelectricity can be determined. There is an advantage that a large output signal can be obtained as compared with the case of using a single-layer film structure in one direction.

また、圧電薄膜の両端を支持基板に固定する両持ち梁構造とする場合、振動により湾曲変形する変曲点により区画される領域毎に圧電素子を形成し、それぞれの圧電素子から出力される電圧信号を重畳して出力するように接続することで、各領域で発生する電圧を重畳して取り出すことが可能となり、さらに大きな出力信号を得ることができるという利点がある。 Further, in the case of a double-sided beam structure in which both ends of the piezoelectric thin film are fixed to a support substrate, a piezoelectric element is formed for each region partitioned by a bending point that is curved and deformed by vibration, and the voltage output from each piezoelectric element. By connecting so as to superimpose and output the signals, it is possible to superimpose and take out the voltage generated in each region, and there is an advantage that a larger output signal can be obtained.

特に、両持ち梁構造として複数の圧電素子を直列接続する際、圧電素子の電極を延長して形成した延長部により圧電素子間を接続する構造とすると、圧電薄膜の変位に影響を与えるスルーホール等の接続手段を必要とせず、好ましい。 In particular, when connecting a plurality of piezoelectric elements in series as a double-sided beam structure, if the structure is such that the piezoelectric elements are connected by an extension portion formed by extending the electrodes of the piezoelectric element, a through hole that affects the displacement of the piezoelectric thin film is used. It is preferable because it does not require a connecting means such as.

本発明の圧電薄膜を、圧電特性を有しない誘電体薄膜を挟んで形成する構成とすると、薄膜の厚さ方向の中央面に対して相対的に応力の大きい薄膜の上下の表面側から出力信号を得ることができ、特性向上が期待できる。また、例えばシリコン酸化膜(SiO2)を介して積層する構造とすると圧電薄膜より誘電損が小さく好ましい。 When the piezoelectric thin film of the present invention is formed by sandwiching a dielectric thin film having no piezoelectric characteristics, an output signal is output from the upper and lower surface sides of the thin film having a large stress relative to the central surface in the thickness direction of the thin film. Can be obtained, and improvement in characteristics can be expected. Further, for example, a structure in which the layers are laminated via a silicon oxide film (SiO 2 ) is preferable because the dielectric loss is smaller than that of the piezoelectric thin film.

本発明の圧電素子の圧電薄膜を音響圧力によって振動する厚さに設定し、音響トランスデューサとして使用した場合、高感度で信号雑音比の改善が期待される。 When the piezoelectric thin film of the piezoelectric element of the present invention is set to a thickness that vibrates due to acoustic pressure and is used as an acoustic transducer, high sensitivity and improvement in the signal-to-noise ratio are expected.

本発明の第1の実施例の圧電素子の平面図である。It is a top view of the piezoelectric element of the 1st Example of this invention. 本発明の第1の実施例の圧電素子の断面図である。It is sectional drawing of the piezoelectric element of 1st Example of this invention. 第1の実施例の圧電素子に音響圧力信号が印加し、圧電薄膜が歪んだ状態の説明図である。It is explanatory drawing of the state in which the acoustic pressure signal is applied to the piezoelectric element of 1st Example, and the piezoelectric thin film is distorted. 本発明の第2の実施例の圧電素子の断面図である。It is sectional drawing of the piezoelectric element of the 2nd Example of this invention. 第2の実施例の圧電素子に音響圧力信号が印加し、圧電薄膜が歪んだ状態の説明図である。It is explanatory drawing of the state in which the acoustic pressure signal is applied to the piezoelectric element of 2nd Example, and the piezoelectric thin film is distorted. 本発明の第3の実施例の圧電素子の断面図である。It is sectional drawing of the piezoelectric element of the 3rd Example of this invention. 従来の圧電素子の説明図である。It is explanatory drawing of the conventional piezoelectric element. 従来の別の圧電素子の説明図である。It is explanatory drawing of another conventional piezoelectric element.

本発明の圧電素子は、支持基板上に積層された圧電薄膜を、少なくとも2層の圧電薄膜を含む積層構造とし、一方の圧電薄膜の圧電性を有する結晶配向方向を上向きの膜とし、他方の圧電薄膜の圧電性を有する結晶配向方向を下向きの膜としている。以下、本発明の圧電素子について音響トランスデューサとして構成する場合を例にとり詳細に説明する。 The piezoelectric element of the present invention has a laminated structure in which a piezoelectric thin film laminated on a support substrate includes at least two layers of piezoelectric thin films, one of which has piezoelectricity and has an upward crystal orientation direction, and the other. The piezoelectric thin film has a piezoelectricity, and the crystal orientation direction is a downward film. Hereinafter, the case where the piezoelectric element of the present invention is configured as an acoustic transducer will be described in detail as an example.

図1は本発明の第1の実施例の片持ち梁構造の圧電素子の平面図を、図2は図1に示す圧電素子のA−A面における断面図をそれぞれ示している。図2に示すように本実施例の圧電素子は、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、後述する圧電性を有する結晶配向方向を有する圧電薄膜3a、3bが形成されている。また、図1の図面横方向に延びる2本のスリット6aと、その中央部から図面縦方向に延びるスリット6bが形成され、シリコン基板1の裏面側の一部を除去して形成された空孔8に連通させることで、シリコン基板1(支持基板)に圧電薄膜を含む層の一端が支持され、他端が自由端となる片持ち梁構造とする。 FIG. 1 shows a plan view of the piezoelectric element having a cantilever structure according to the first embodiment of the present invention, and FIG. 2 shows a cross-sectional view of the piezoelectric element shown in FIG. 1 on the AA plane. As shown in FIG. 2, the piezoelectric element of this embodiment has a piezoelectric crystal orientation direction described later on a silicon substrate 1 serving as a support substrate via an insulating film 2 made of a silicon oxide film (SiO 2). The piezoelectric thin films 3a and 3b to have are formed. Further, two slits 6a extending in the horizontal direction of the drawing of FIG. 1 and a slit 6b extending in the vertical direction of the drawing from the central portion thereof are formed, and a hole formed by removing a part of the back surface side of the silicon substrate 1. By communicating with 8, a cantilever structure is formed in which one end of the layer containing the piezoelectric thin film is supported on the silicon substrate 1 (support substrate) and the other end is a free end.

図1、図2に示す実施例では、圧電薄膜3a、3bを挟んで配置された一対の電極4a1、4b1を備えた圧電素子C1と、圧電薄膜3a、3bを挟んで配置された一対の電極4a2、4b2とを備えた圧電素子C2が対向して形成されている。また、2つの圧電素子を直列に接続するため、電極4b1と電極4a2が配線金属7により接続されている。その結果、配線電極5aと配線金属5bとの間に、圧電素子C1と圧電素子C2が直列に接続した構成となる。電極および配線金属は、モリブデン(Mo)、プラチナ(Pt)、チタン(Ti)、イリジウム(Ir)、ルテニウム(Ru)等の金属薄膜で形成することができる。なお本発明は、2つの圧電素子を対向するように配置したり、直列に接続することは必ずしも必須ではなく、いずれか一方の圧電素子を備える構成であれば良い。また圧電素子の平面形状は、図1に示す長方形に限らず、台形、三角形、多角形等種々変更可能である。 In the embodiment shown in FIGS. 1 and 2, the piezoelectric element C1 having a pair of electrodes 4a1 and 4b1 arranged with the piezoelectric thin films 3a and 3b sandwiched between them and a pair of electrodes arranged with the piezoelectric thin films 3a and 3b sandwiched between them. Piezoelectric elements C2 having 4a2 and 4b2 are formed so as to face each other. Further, in order to connect the two piezoelectric elements in series, the electrodes 4b1 and 4a2 are connected by the wiring metal 7. As a result, the piezoelectric element C1 and the piezoelectric element C2 are connected in series between the wiring electrode 5a and the wiring metal 5b. The electrode and the wiring metal can be formed of a metal thin film such as molybdenum (Mo), platinum (Pt), titanium (Ti), iridium (Ir), and ruthenium (Ru). In the present invention, it is not always essential that the two piezoelectric elements are arranged so as to face each other or connected in series, and any configuration may include one of the piezoelectric elements. Further, the planar shape of the piezoelectric element is not limited to the rectangle shown in FIG. 1, and can be variously changed such as a trapezoid, a triangle, and a polygon.

次に本発明の圧電薄膜の圧電性を有する結晶配向方向について説明する。本実施例の圧電薄膜は、図2に圧電性を有する結晶配向方向(圧電極性)を矢印で示すように、圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としている。具体的には、窒化アルミニウム(AlN)からなる圧電薄膜3aの圧電性を示す結晶配向であるc軸方位が下向きの場合、窒化アルミニウムからなる圧電薄膜3bのc軸方位は上向きとする。あるいは逆であっても良い。 Next, the crystal orientation direction of the piezoelectric thin film of the present invention having piezoelectricity will be described. The piezoelectric thin film of this embodiment has a structure in which a film having a piezoelectricity having a crystal orientation direction facing upward and a film having a piezoelectricity facing downward are stacked, as shown by an arrow in FIG. 2 showing the crystal orientation direction (piezoelectric polarity) having piezoelectricity. .. Specifically, when the c-axis orientation, which is the crystal orientation showing the piezoelectricity of the piezoelectric thin film 3a made of aluminum nitride (AlN), is downward, the c-axis orientation of the piezoelectric thin film 3b made of aluminum nitride is upward. Or vice versa.

結晶配向の制御は、周知の方法により行う。具体的には、窒素または酸素ガスを反応性ガスとして用いる反応性スパッタリング法によりウルツ鉱構造の窒化アルミニウムの薄膜を形成する場合、基板温度、スパッタリング圧力、窒素または酸素濃度、電力密度、膜厚を適宜設定することで、結晶配向性が良く、c軸方位の揃った成膜が可能となる。 The crystal orientation is controlled by a well-known method. Specifically, when forming a thin film of aluminum nitride having a wurtzite structure by a reactive sputtering method using nitrogen or oxygen gas as a reactive gas, the substrate temperature, sputtering pressure, nitrogen or oxygen concentration, power density, and film thickness are determined. By setting appropriately, it is possible to form a film having good crystal orientation and uniform c-axis orientation.

さらにスパッタリング条件を変えることにより、c軸方位を180度変化させた窒化アルミニウム薄膜を積層生成することも可能である。 Further, by changing the sputtering conditions, it is possible to laminate and generate an aluminum nitride thin film whose c-axis direction is changed by 180 degrees.

なおc軸方位は、図2に示すように圧電薄膜の表面に対して垂直方向に揃った場合に限らず、垂直方向からずれていても良い。さらに、上向きのc軸方位と下向きのc軸方位は、相互に逆向きの方向であれば良く、図2に示すように180度異なる向きでなくても良い。当然ながら180度異なる場合に感度が最も高く、好ましいことは言うまでもない。 As shown in FIG. 2, the c-axis orientation is not limited to the case where the piezoelectric thin film is aligned in the vertical direction with respect to the surface of the piezoelectric thin film, and may deviate from the vertical direction. Further, the upward c-axis direction and the downward c-axis direction may be directions opposite to each other, and may not be 180 degrees different as shown in FIG. Needless to say, the sensitivity is highest when the difference is 180 degrees, which is preferable.

このように構成した圧電素子では、図3に示すように音響圧力信号が印加されると、圧電薄膜が上向きに変位し、圧電薄膜3aに引張応力が、圧電薄膜3bに圧縮応力が発生する。このとき横圧電効果によって、圧電薄膜の拡がり方向(図面横方向)の応力に対して、それに垂直な方向(図面上下方向)に電界が発生する。 In the piezoelectric element configured in this way, when an acoustic pressure signal is applied as shown in FIG. 3, the piezoelectric thin film is displaced upward, and tensile stress is generated in the piezoelectric thin film 3a and compressive stress is generated in the piezoelectric thin film 3b. At this time, due to the transverse piezoelectric effect, an electric field is generated in the direction perpendicular to the stress in the spreading direction (horizontal direction in the drawing) of the piezoelectric thin film (vertical direction in the drawing).

圧電薄膜3a、3bはそれぞれ圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としているため、圧電薄膜3aの引張応力により横圧電効果により発生する電界の向きと圧電薄膜3bの圧縮応力による電界の向きは同一となる。 Since the piezoelectric thin films 3a and 3b have a structure in which a film having piezoelectricity in the crystal orientation direction upward and a film having a downward crystal orientation are stacked, the direction of the electric field generated by the transverse piezoelectric effect due to the tensile stress of the piezoelectric thin film 3a and the piezoelectric thin film 3b. The direction of the electric field due to the compressive stress of is the same.

逆に圧電薄膜が下向きに変位する場合、2つの電極4a1、4b1間では、圧電薄膜3aでは圧縮応力が発生し、圧電薄膜3bでは引張応力が発生する。この場合も、圧電薄膜3aで発生する電界の向きと、圧電薄膜3bで発生する電界の向きは同一となる。その結果いずれの変位においても、電極4a1と電極4b1との間には、それぞれの圧電薄膜で発生した電圧が重畳され出力することになる。 On the contrary, when the piezoelectric thin film is displaced downward, compressive stress is generated in the piezoelectric thin film 3a and tensile stress is generated in the piezoelectric thin film 3b between the two electrodes 4a1 and 4b1. Also in this case, the direction of the electric field generated by the piezoelectric thin film 3a and the direction of the electric field generated by the piezoelectric thin film 3b are the same. As a result, in any displacement, the voltage generated by the respective piezoelectric thin films is superimposed and output between the electrodes 4a1 and 4b1.

同様に、電極4a2と電極4b2との間でも、圧電薄膜が上向きに変位した場合、圧電薄膜3aでは引張応力が発生し、圧電薄膜3bでは圧縮応力が発生し、それぞれの圧電薄膜で発生した電圧が重量されて出力される。また圧電薄膜が下向きに変位した場合、圧電薄膜3aでは圧縮応力が発生し、圧電薄膜3bでは引張応力が発生し、それぞれの圧電薄膜で発生した電圧が重畳されて出力される。 Similarly, even between the electrodes 4a2 and 4b2, when the piezoelectric thin film is displaced upward, tensile stress is generated in the piezoelectric thin film 3a, compressive stress is generated in the piezoelectric thin film 3b, and the voltage generated in each piezoelectric thin film is generated. Is weighted and output. When the piezoelectric thin film is displaced downward, compressive stress is generated in the piezoelectric thin film 3a, tensile stress is generated in the piezoelectric thin film 3b, and the voltages generated in the respective piezoelectric thin films are superimposed and output.

さらに、電極4b1と電極4a2が接続されていることから、配線電極5aと配線電極5bとの間には、2つの圧電素子C1、C2で発生した電圧が加算され出力されることになる。 Further, since the electrode 4b1 and the electrode 4a2 are connected, the voltage generated by the two piezoelectric elements C1 and C2 is added and output between the wiring electrode 5a and the wiring electrode 5b.

このように本実施例の圧電素子は、圧電性を有する結晶配向方向が異なる(一方を上向き、他方を下向きとする)積層構造からなる圧電薄膜とすることで、圧電性を有する結晶配向方向が一方の向きとなる単層構造とした場合と比較して大きな出力信号が得られるという利点がある。 As described above, the piezoelectric element of the present embodiment has a piezoelectric thin film having a laminated structure having different crystal orientation directions (one facing upward and the other facing downward), so that the crystal orientation direction having piezoelectricity can be changed. There is an advantage that a large output signal can be obtained as compared with the case of a single-layer structure having one direction.

次に本発明の第2の実施例について説明する。図4は本発明の第2の実施例の圧電素子の断面図である。図4に示すように本実施例の圧電素子は、上記第1の実施例同様、支持基板となるシリコン基板1上に、シリコン酸化膜(SiO2)からなる絶縁膜2を介して、圧電性を有する結晶配向方向が異なる圧電薄膜3aと圧電薄膜3bが形成されている。本実施例では、上記第1の実施例で説明した図1に示すようにスリット6a、6bのうち、図面横方向に延びるスリット6aのみを形成し、シリコン基板1の裏面側の一部を除去して形成された空孔8に連通させることで、シリコン基板1(支持基板)に圧電薄膜を含む層の両端が支持された両持ち梁構造とする点が相違する。 Next, a second embodiment of the present invention will be described. FIG. 4 is a cross-sectional view of the piezoelectric element of the second embodiment of the present invention. As shown in FIG. 4, the piezoelectric element of this embodiment is piezoelectric, as in the first embodiment, via an insulating film 2 made of a silicon oxide film (SiO 2) on a silicon substrate 1 serving as a support substrate. A piezoelectric thin film 3a and a piezoelectric thin film 3b having different crystal orientation directions are formed. In this embodiment, as shown in FIG. 1 described in the first embodiment, only the slit 6a extending in the lateral direction of the drawing is formed among the slits 6a and 6b, and a part of the back surface side of the silicon substrate 1 is removed. The difference is that the silicon substrate 1 (supporting substrate) has a double-sided beam structure in which both ends of the layer containing the piezoelectric thin film are supported by communicating with the pores 8 formed in the above.

また、電極の配置も相違している。図4に示す実施例では、圧電薄膜3aの裏面側に電極4a1と電極4a2が形成されており、電極4a1は配線電極5aに接続している。電極4a2は、配線電極5aやその他の電極には接続せず、フローティング状態となっている。さらに圧電薄膜3bの表面側には、電極4b1と電極4b2が形成されており、電極4b1は、配線電極5aやその他の電極には接続せずフローティング状態となっており、電極4b2は配線電極5bに接続している。また、図4に示すように各電極の長さを設定することで、圧電薄膜3a、3bを挟んで配置された一対の電極4a1、4b1を備えた圧電素子C1、一対の電極4a2、4b1を備えた圧電素子C2、さらに一対の電極4a2、4bを備えた圧電素子C3が形成される。また、圧電素子C1と圧電素子C2は、電極4b1(対抗する電極と重なっていない延長部)によって直列接続し、圧電素子C2と圧電素子C3は電極4a2(対抗する電極と重なっていない延長部)によって直列接続している。その結果、配線電極5aと配線電極5bとの間に、圧電素子C1、C2およびC3が直列に接続した構成となる。なお電極および配線金属は、モリブデン(Mo)、プラチナ(Pt)、チタン(Ti)、イリジウム(Ir)、ルテニウム(Ru)等の金属薄膜で形成することができる。なお延長部により接続することで、圧電薄膜内にスルーホール等の圧電薄膜の変位に影響を与える接続手段を形成する必要がなく好ましい。 Also, the arrangement of the electrodes is different. In the embodiment shown in FIG. 4, the electrodes 4a1 and 4a2 are formed on the back surface side of the piezoelectric thin film 3a, and the electrodes 4a1 are connected to the wiring electrodes 5a. The electrode 4a2 is not connected to the wiring electrode 5a or other electrodes, and is in a floating state. Further, an electrode 4b1 and an electrode 4b2 are formed on the surface side of the piezoelectric thin film 3b, the electrode 4b1 is not connected to the wiring electrode 5a or other electrodes and is in a floating state, and the electrode 4b2 is a wiring electrode 5b. Is connected to. Further, by setting the length of each electrode as shown in FIG. 4, the piezoelectric element C1 having the pair of electrodes 4a1 and 4b1 arranged so as to sandwich the piezoelectric thin films 3a and 3b, and the pair of electrodes 4a2 and 4b1 can be formed. A piezoelectric element C2 including the piezoelectric element C2 and a piezoelectric element C3 provided with a pair of electrodes 4a2 and 4b are formed. Further, the piezoelectric element C1 and the piezoelectric element C2 are connected in series by an electrode 4b1 (an extension portion that does not overlap the opposing electrode), and the piezoelectric element C2 and the piezoelectric element C3 are connected to the electrode 4a2 (an extension portion that does not overlap the opposing electrode). Are connected in series by. As a result, the piezoelectric elements C1, C2, and C3 are connected in series between the wiring electrode 5a and the wiring electrode 5b. The electrode and the wiring metal can be formed of a metal thin film such as molybdenum (Mo), platinum (Pt), titanium (Ti), iridium (Ir), and ruthenium (Ru). It is preferable that the connection is made by an extension portion because it is not necessary to form a connection means such as a through hole that affects the displacement of the piezoelectric thin film in the piezoelectric thin film.

次に本発明の圧電薄膜の圧電性を示す結晶配向方向について説明する。本実施例の圧電薄膜は、図4に圧電性を有する結晶配向方向を矢印で示すように、圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としている。具体的には、窒化アルミニウムからなる圧電薄膜3aの圧電性を示すc軸方位が下向きの場合、窒化アルミニウムからなる圧電薄膜3bの結晶配向であるc軸方位は上向きとする。あるいは逆であっても良い。 Next, the crystal orientation direction showing the piezoelectricity of the piezoelectric thin film of the present invention will be described. The piezoelectric thin film of this embodiment has a structure in which a film having piezoelectricity and a film having a crystal orientation direction facing downward are stacked, as shown by an arrow in FIG. 4 showing the crystal orientation direction having piezoelectricity. Specifically, when the c-axis orientation showing the piezoelectricity of the piezoelectric thin film 3a made of aluminum nitride is downward, the c-axis orientation which is the crystal orientation of the piezoelectric thin film 3b made of aluminum nitride is upward. Or vice versa.

結晶配向の制御も、上記第1の実施例同様、周知の方法により行う。具体的には、窒素または酸素ガスを反応性ガスとして用いる反応性スパッタリング法によりウルツ鉱構造の窒化アルミニウムの薄膜を形成する場合、基板温度、スパッタリング圧力、窒素または酸素濃度、電力密度、膜厚を適宜設定することで、結晶配向性が良く、c軸方位の揃った成膜が可能となる。 The crystal orientation is also controlled by a well-known method as in the first embodiment. Specifically, when forming a thin film of aluminum nitride having a wurtzite structure by a reactive sputtering method using nitrogen or oxygen gas as a reactive gas, the substrate temperature, sputtering pressure, nitrogen or oxygen concentration, power density, and film thickness are determined. By setting appropriately, it is possible to form a film having good crystal orientation and uniform c-axis orientation.

さらにスパッタリング条件を変えることにより、c軸方位を180度変化させた窒化アルミニウム薄膜を積層生成することも可能である。 Further, by changing the sputtering conditions, it is possible to laminate and generate an aluminum nitride thin film whose c-axis direction is changed by 180 degrees.

なお、c軸方位は図4に示すようにシリコン基板表面に対して垂直方向に揃える場合に限らず、垂直方向からずれていても良い。さらに、上向きのc軸方位と下向きのc軸方位は、相互に逆向きの方向であれば良く、図4に示すように180度異なる向きでなくても良い。当然ながら180度異なる場合に感度が最も高く、好ましいことは言うまでもない。 The c-axis orientation is not limited to the case where the orientation is aligned perpendicular to the surface of the silicon substrate as shown in FIG. 4, and may deviate from the vertical direction. Further, the upward c-axis direction and the downward c-axis direction may be directions opposite to each other, and may not be 180 degrees different as shown in FIG. Needless to say, the sensitivity is highest when the difference is 180 degrees, which is preferable.

このように構成した圧電素子では、図5に示すように音響圧力信号が印加されると、圧電薄膜が上向きに変位し、圧電薄膜3a、圧電薄膜3bに引張応力と圧縮応力が発生する。また、圧電薄膜が下向きに変位する場合は、逆の応力が発生する。このとき横圧電効果によって、圧電薄膜の拡がり方向(図面横方向)の応力に対して、それに垂直な方向(図面上下方向)に電界が発生する。 In the piezoelectric element configured in this way, when an acoustic pressure signal is applied as shown in FIG. 5, the piezoelectric thin film is displaced upward, and tensile stress and compressive stress are generated in the piezoelectric thin film 3a and the piezoelectric thin film 3b. Further, when the piezoelectric thin film is displaced downward, the opposite stress is generated. At this time, due to the transverse piezoelectric effect, an electric field is generated in the direction perpendicular to the stress in the spreading direction (horizontal direction in the drawing) of the piezoelectric thin film (vertical direction in the drawing).

圧電薄膜3a、3bはそれぞれ圧電性を有する結晶配向方向が上向きの膜と下向きの膜を積み重ねた構造としているため、圧電薄膜3aの圧縮応力による電界の向きと圧電薄膜3bの引張応力による電界の向きは同一となる。また圧電薄膜3aの引張応力による電界の向きと圧電薄膜3bの圧縮応力による電界の向きが同一となる。 Since the piezoelectric thin films 3a and 3b have a structure in which a film having piezoelectricity in the crystal orientation direction upward and a film having a downward crystal orientation are stacked, the direction of the electric field due to the compressive stress of the piezoelectric thin film 3a and the electric field due to the tensile stress of the piezoelectric thin film 3b The orientation is the same. Further, the direction of the electric field due to the tensile stress of the piezoelectric thin film 3a and the direction of the electric field due to the compressive stress of the piezoelectric thin film 3b are the same.

図5に示す例では、音響圧力信号が印加されることで2つの変曲点が発生し、圧電薄膜に対する応力の向きによって3つの領域に分かれる。例えば、圧電薄膜が上向きに変位する場合、領域Aと領域Cでは下向きの凸状に湾曲変位し、圧電薄膜3aには引張応力が発生し、圧電薄膜3bには圧縮応力が発生する。一方領域Bでは、上向きの凸状に湾曲変位し、圧電薄膜3aには圧縮応力が発生し、圧電薄膜3bには引張応力が発生する。 In the example shown in FIG. 5, two inflection points are generated by applying an acoustic pressure signal, and the region is divided into three regions depending on the direction of stress on the piezoelectric thin film. For example, when the piezoelectric thin film is displaced upward, the region A and the region C are curved and displaced downward in a convex shape, tensile stress is generated in the piezoelectric thin film 3a, and compressive stress is generated in the piezoelectric thin film 3b. On the other hand, in the region B, the piezoelectric thin film 3a is curved and displaced upward in a convex shape, and the piezoelectric thin film 3a is subjected to compressive stress, and the piezoelectric thin film 3b is subjected to tensile stress.

領域Aにおいて2つの電極4a1、電極4b1間では、圧電薄膜3aでは引張応力が発生し、圧電薄膜3bでは圧縮応力が発生するから、圧電薄膜3aで発生する電界の向きは、圧電薄膜3bで発生する電界の向きと同一となる。これは、領域Cにおいて2つの電極4b2、4b1間に発生する電界の向きとも同一である。一方領域Bでは、2つの電極4a2、4b1間では、圧電薄膜3aでは圧縮応力が発生し、圧電薄膜3bでは引張応力が発生し、圧電薄膜3aで発生する電界の向きは、圧電薄膜3bで発生する電界の向きと同一となり、かつ領域A、領域Cで発生する電界の向きと逆向きとなる。 Since tensile stress is generated in the piezoelectric thin film 3a and compressive stress is generated in the piezoelectric thin film 3b between the two electrodes 4a1 and 4b1 in the region A, the direction of the electric field generated in the piezoelectric thin film 3a is generated in the piezoelectric thin film 3b. It is the same as the direction of the electric field. This is also the same as the direction of the electric field generated between the two electrodes 4b2 and 4b1 in the region C. On the other hand, in the region B, compressive stress is generated in the piezoelectric thin film 3a and tensile stress is generated in the piezoelectric thin film 3b between the two electrodes 4a2 and 4b1, and the direction of the electric field generated in the piezoelectric thin film 3a is generated in the piezoelectric thin film 3b. The direction of the electric field is the same as that of the electric field to be generated, and the direction is opposite to the direction of the electric field generated in the regions A and C.

ところで先に説明したように圧電素子C1と圧電素子C2の接続は電極4b1を介しており、圧電素子C2と圧電素子C3の接続は電極4a2を介しているから、配線電極5aと配線電極5bとの間には、3つの圧電素子C1、C2およびC3で発生した電圧はすべて加算され出力されることになる。 By the way, as described above, the connection between the piezoelectric element C1 and the piezoelectric element C2 is via the electrode 4b1, and the connection between the piezoelectric element C2 and the piezoelectric element C3 is via the electrode 4a2. In the meantime, all the voltages generated by the three piezoelectric elements C1, C2 and C3 are added and output.

このように本実施例の圧電素子は、圧電性を有する結晶配向方向が異なる(一方を上向き、他方を下向きとする)積層構造からなる圧電薄膜とすることで、圧電性を有する結晶配向方向が一方の向きとなる単層膜構造とした場合と比較して大きな出力信号が得られるという利点がある。 As described above, the piezoelectric element of the present embodiment has a piezoelectric thin film having a laminated structure having different crystal orientation directions (one facing upward and the other facing downward), so that the crystal orientation direction having piezoelectricity can be changed. There is an advantage that a large output signal can be obtained as compared with the case of using a single-layer film structure in one direction.

次に本発明の第3の実施例について説明する。上記第1、第2の実施例では、圧電薄膜3aと圧電薄膜3bを直接重ね合せた構造としているが、圧電特性を有しない誘電体膜を介した積層構造とすることも可能である。図6は、上記第2の実施例の圧電薄膜の積層構造を変更した本発明の第3の実施例の圧電素子の断面図である。圧電薄膜3aと圧電薄膜3bの間に誘電体膜9が積層した構造となっている。 Next, a third embodiment of the present invention will be described. In the first and second embodiments, the piezoelectric thin film 3a and the piezoelectric thin film 3b are directly superposed, but it is also possible to form a laminated structure via a dielectric film having no piezoelectric characteristics. FIG. 6 is a cross-sectional view of the piezoelectric element of the third embodiment of the present invention in which the laminated structure of the piezoelectric thin film of the second embodiment is modified. The structure is such that the dielectric film 9 is laminated between the piezoelectric thin film 3a and the piezoelectric thin film 3b.

誘電体膜9は、圧電特性を有しない誘電体から選択することで、積層構造の圧電薄膜に対して音響圧力信号等が印加されて変位する際に、圧縮応力あるいは引張応力の大きさが薄膜の厚さ方向の中央面に対して相対的に大きい薄膜の表面部分あるいは裏面部分のみに圧電薄膜を配置される構造とすることができる。その結果、印加される音響信号圧力に対する出力信号電圧の比(感度)の高い圧電素子を形成することができる。 By selecting the dielectric film 9 from dielectrics that do not have piezoelectric characteristics, the magnitude of compressive stress or tensile stress is thin when an acoustic pressure signal or the like is applied to the piezoelectric thin film having a laminated structure to cause displacement. The structure can be such that the piezoelectric thin film is arranged only on the front surface portion or the back surface portion of the thin film which is relatively large with respect to the central surface in the thickness direction of. As a result, it is possible to form a piezoelectric element having a high ratio (sensitivity) of the output signal voltage to the applied acoustic signal pressure.

ここで誘電体膜9としてシリコン酸化膜(SiO2)を選択すると、誘電体膜9の誘電損(損失角tanδ)を窒化アルミニウムからなる誘電体薄膜の誘電損より小さくすることができ、感度と信号雑音比の向上が期待され好ましい。 If a silicon oxide film (SiO 2 ) is selected as the dielectric film 9, the dielectric loss (loss angle tan δ) of the dielectric film 9 can be made smaller than that of the dielectric thin film made of aluminum nitride. It is expected that the signal noise ratio will be improved, which is preferable.

誘電体膜9を備える構造は、図2に示す片持ち梁構造の誘電体薄膜の積層構造に適用することも可能である。 The structure including the dielectric film 9 can also be applied to the laminated structure of the dielectric thin films having the cantilever structure shown in FIG.

以上、本実施例の圧電素子について説明したが、本発明は、圧電薄膜として窒化アルミニウムに限定されるものでない。例えば、代表的な圧電材料である窒化アルミニウム、窒化スカンジウムアルミニウム(Al1-xScxN)、酸化亜鉛(ZnO)、チタン酸ジルコン酸鉛(PZT)について圧電型マイクロフォンの特性に影響を与えるヤング率、横圧電歪係数などの材料定数を表1に示す。 Although the piezoelectric element of the present embodiment has been described above, the present invention is not limited to aluminum nitride as the piezoelectric thin film. For example, Young's modulus affects the characteristics of piezoelectric microphones for typical piezoelectric materials such as aluminum nitride, scandium aluminum nitride (Al 1-x Sc x N), zinc oxide (ZnO), and lead zirconate titanate (PZT). Table 1 shows material constants such as rate and transverse piezoelectric strain coefficient.

Figure 0006908322
Figure 0006908322

表1に示す信号雑音比に対応する性能指数(FOM)は、結合係数(k31 2)と損失角(tanδ)の比で表され、その値が大きい程、その値にほぼ比例した形で信号雑音比の向上が期待できる。表1に示すように、酸化亜鉛及びチタン酸ジルコン酸鉛に比べると窒化アルミニウムは6〜40倍性能指数が大きく、圧電型トランスデューサに適した材料であることがわかる。また、窒化アルミニウムにスカンジウムを添加した窒化スカンジウムアルミニウム(Al1-xScxN)は、窒化アルミニウムより横圧電歪係数が向上することが知られており、例えば、スカンジウムの比率を35%にした場合、性能指数が窒化アルミニウムより7倍程度向上することが期待できる。さらにまた、クロム(Cr)などを点かした窒化アルミニウム等を用いることも可能である。 Performance index corresponding to the signal-to-noise ratio shown in Table 1 (FOM) is represented by the ratio of the coupling coefficient (k 31 2) and the loss angle (tan [delta), as the value is larger, at approximately proportional to the form to the value Improvement of signal-to-noise ratio can be expected. As shown in Table 1, aluminum nitride has a figure of merit 6 to 40 times larger than that of zinc oxide and lead zirconate titanate, indicating that it is a suitable material for piezoelectric transducers. Further, it is known that scandium aluminum nitride (Al 1-x Sc x N) obtained by adding scandium to aluminum nitride has a higher transverse piezoelectric strain coefficient than aluminum nitride. For example, the ratio of scandium is set to 35%. In this case, it can be expected that the performance index is improved about 7 times as much as that of aluminum nitride. Furthermore, it is also possible to use aluminum nitride or the like dotted with chromium (Cr) or the like.

なお、各電極の大きさ等は信号雑音比を最大化する観点から最適化されることが望ましい。これは配線電極5a、5bから見た等価的キャパシタの容量をCoutとした場合に、この等価的キャパシタに蓄えられるエネルギー(Cout・Vout 2/2)を最大化するように各電極の大きさを決めればよい。また、誘電体膜の厚さや材質は、所望の特性を得るために適宜選択すれば良い。 It is desirable that the size of each electrode is optimized from the viewpoint of maximizing the signal-to-noise ratio. This wiring electrodes 5a, the capacity of the equivalent capacitor as seen from 5b when the C out, of the electrodes so as to maximize the energy stored in the equivalent capacitor (C out · V out 2/ 2) You just have to decide the size. Further, the thickness and material of the dielectric film may be appropriately selected in order to obtain desired characteristics.

一例として、スマートフォンに搭載する音響マイクロフォンとして用いることを想定し、両持ち梁構造で、共振周波数を20kHzとした場合、両持ち梁の長さが700μm、幅が1400μm、窒化アルミニウムからなる圧電薄膜のトータルの厚さが500nm、モリブデンからなる電極の厚さが100nm、電極4a1、4b2のうち圧電素子の電極として機能する部分の長さを90μm、電極4b1、4a2の長さを500μmとすれば良い。また、スリットの幅は1μmとする。圧電薄膜の間にSiO2からなる誘電体膜を備える構造とする場合には、各窒化アルミニウムの厚さを330nm、誘電体膜の厚さを540nmとし、トータルの膜厚を1.2μm以下とすれば、振動膜として好ましい。圧電薄膜として窒化スカンジウムアルミニウムの場合は、1.4μm以下であれば振動膜として好ましい。 As an example, assuming that it is used as an acoustic microphone mounted on a smartphone, when the resonance frequency is 20 kHz with a double-sided beam structure, the length of the double-sided beam is 700 μm, the width is 1400 μm, and a piezoelectric thin film made of aluminum nitride. The total thickness may be 500 nm, the thickness of the electrode made of molybdenum may be 100 nm, the length of the portion of the electrodes 4a1 and 4b2 that functions as the electrode of the piezoelectric element may be 90 μm, and the length of the electrodes 4b1 and 4a2 may be 500 μm. .. The width of the slit is 1 μm. In the case of a structure in which a dielectric film made of SiO 2 is provided between the piezoelectric thin films, the thickness of each aluminum nitride is 330 nm, the thickness of the dielectric film is 540 nm, and the total film thickness is 1.2 μm or less. If so, it is preferable as a vibrating film. In the case of scandium aluminum nitride as the piezoelectric thin film, if it is 1.4 μm or less, it is preferable as a vibrating film.

圧電薄膜の振動により湾曲変位するとき、変位の変曲点が2以上となる場合には、上記実施例に限定されず、変曲点により区画される領域毎に圧電素子の数を増やしたり、各領域に複数の素子を配置するようにしても良い。 When the bending displacement is caused by the vibration of the piezoelectric thin film, if the inflection point of the displacement is 2 or more, the number of piezoelectric elements is increased for each region partitioned by the inflection point, not limited to the above embodiment. A plurality of elements may be arranged in each region.

1:シリコン基板、2:絶縁膜、3a、3b:圧電薄膜、4a1、4a2、4b1、4b2:電極、5a、5b:配線電極、6a、6b:スリット、7:配線金属、8:空孔、9:誘電体膜 1: Silicon substrate 2: Insulating film, 3a, 3b: Piezoelectric thin film, 4a1, 4a2, 4b1, 4b2: Electrode, 5a, 5b: Wiring electrode, 6a, 6b: Slit, 7: Wiring metal, 8: Pore, 9: Dielectric film

Claims (3)

支持基板上に積層された圧電薄膜と、該圧電薄膜を挟んで配置された一対の電極とを備えた横圧電効果を利用した圧電素子において、
前記圧電薄膜は、前記支持基板に両端が固定され、少なくとも第1の圧電薄膜と第2の圧電薄膜を含む積層構造からなり、前記第1の圧電薄膜と前記第2の圧電薄膜のそれぞれの圧電性を示す結晶配向方向が、一方が上向きのとき、他方は下向きであることと、
前記圧電薄膜の一部を挟んで配置する前記一対の電極を複数組備え、少なくとも第1の圧電素子、第2の圧電素子および第3の圧電素子が形成されていることと、
前記第1の圧電素子、前記第2の圧電素子および前記第3の圧電素子は、前記両端の一端側から他端側へ順に並べて配置されていることと、
前記第1の圧電素子と前記第2の圧電素子、前記第2の圧電素子と前記第3の圧電素子は、前記圧電素子の電極から連続する延長部により直列接続されていることを特徴とする圧電素子。
In a piezoelectric element utilizing a transverse piezoelectric effect, which comprises a piezoelectric thin film laminated on a support substrate and a pair of electrodes arranged so as to sandwich the piezoelectric thin film.
The piezoelectric thin film has both ends fixed to the support substrate and has a laminated structure including at least a first piezoelectric thin film and a second piezoelectric thin film. When the crystal orientation direction indicating the property is upward on one side and downward on the other side,
A plurality of sets of the pair of electrodes arranged so as to sandwich a part of the piezoelectric thin film are provided, and at least a first piezoelectric element, a second piezoelectric element, and a third piezoelectric element are formed.
The first piezoelectric element, the second piezoelectric element, and the third piezoelectric element are arranged side by side in order from one end side to the other end side of both ends.
The first piezoelectric element and the second piezoelectric element, and the second piezoelectric element and the third piezoelectric element are connected in series by an extension portion continuous from the electrode of the piezoelectric element. Piezoelectric element.
請求項1記載の圧電素子において、前記第1の圧電薄膜と前記第2の圧電薄膜の間に、圧電効果を有しない誘電体膜が積層されていることを特徴とする圧電素子。 The piezoelectric element according to claim 1, wherein a dielectric film having no piezoelectric effect is laminated between the first piezoelectric thin film and the second piezoelectric thin film . 請求項1または2いずれか記載の圧電素子において、前記圧電薄膜は、音響圧力によって振動する膜であることを特徴とする圧電素子。 The piezoelectric element according to any one of claims 1 or 2, wherein the piezoelectric thin film is a film that vibrates due to acoustic pressure .
JP2016173537A 2016-09-06 2016-09-06 Piezoelectric element Active JP6908322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173537A JP6908322B2 (en) 2016-09-06 2016-09-06 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173537A JP6908322B2 (en) 2016-09-06 2016-09-06 Piezoelectric element

Publications (3)

Publication Number Publication Date
JP2018041788A JP2018041788A (en) 2018-03-15
JP2018041788A5 JP2018041788A5 (en) 2019-09-12
JP6908322B2 true JP6908322B2 (en) 2021-07-21

Family

ID=61626328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173537A Active JP6908322B2 (en) 2016-09-06 2016-09-06 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6908322B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293655B2 (en) * 2019-01-10 2023-06-20 ブラザー工業株式会社 piezoelectric actuator
EP4082961A4 (en) * 2019-12-25 2023-10-25 Denso Corporation Piezoelectric element, piezoelectric device and manufacturing method of piezoelectric element
WO2022097578A1 (en) * 2020-11-03 2022-05-12 株式会社デンソー Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element
JP7359169B2 (en) 2020-11-03 2023-10-11 株式会社デンソー Piezoelectric element, piezoelectric device, and method for manufacturing piezoelectric element
JP2022119126A (en) * 2021-02-03 2022-08-16 株式会社デンソー Piezoelectric element, piezoelectric device, and manufacturing method of the piezoelectric element
CN113596690B (en) * 2021-08-13 2023-03-14 中北大学 Structure and device of novel piezoelectric type MEMS microphone

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077438A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Piezoelectric element, ink-jet recorder head and manufacture thereof
JP2009170631A (en) * 2008-01-16 2009-07-30 Panasonic Corp Piezoelectric element and method of manufacturing the same, and piezoelectric application device using the same
KR101606780B1 (en) * 2008-06-30 2016-03-28 더 리젠츠 오브 더 유니버시티 오브 미시건 Piezoelectric memes microphone

Also Published As

Publication number Publication date
JP2018041788A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6908322B2 (en) Piezoelectric element
US11665968B2 (en) Piezoelectric MEMS microphone
JP6894719B2 (en) Piezoelectric element
EP2297976B1 (en) Piezoelectric mems microphone
EP3624464B1 (en) Piezoelectric microphone chip and piezoelectric microphone
US20080122317A1 (en) Multi-layer transducers with annular contacts
EP2475189A2 (en) Acoustic transducer and method of driving the same
KR20120036631A (en) Piezoelectric micro-speaker and method for fabricating the same
CN101192644A (en) Sensing vibration diaphragm containing two polarization direction piezo-electric film
JP6867790B2 (en) Piezoelectric MEMS microphone
KR20130003017A (en) Vibration power generation device
JP6819002B2 (en) Piezoelectric element
JP2008532370A (en) Microphone diaphragm and microphone having a microphone diaphragm
CN111146328A (en) Single crystal piezoelectric structure and electronic device having the same
CN102906987B (en) Vibration generating device and manufacture method thereof
JP6908324B2 (en) Piezoelectric element
JP7349090B2 (en) Piezoelectric element
JP6787553B2 (en) Piezoelectric element
CN114222231B (en) Bimorph piezoelectric MEMS microphone based on clamped beam structure
KR100941893B1 (en) Silicon MEMS microphone of capacitor type
JP6844911B2 (en) Piezoelectric element
JP6559365B2 (en) Piezoelectric microphone
US10623868B2 (en) MEMS devices and processes
CN117499848A (en) MEMS piezoelectric loudspeaker and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210625

R150 Certificate of patent or registration of utility model

Ref document number: 6908322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150