JP6840032B2 - Insulated switching power supply - Google Patents

Insulated switching power supply Download PDF

Info

Publication number
JP6840032B2
JP6840032B2 JP2017100677A JP2017100677A JP6840032B2 JP 6840032 B2 JP6840032 B2 JP 6840032B2 JP 2017100677 A JP2017100677 A JP 2017100677A JP 2017100677 A JP2017100677 A JP 2017100677A JP 6840032 B2 JP6840032 B2 JP 6840032B2
Authority
JP
Japan
Prior art keywords
coil
electrode output
current
transformer
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017100677A
Other languages
Japanese (ja)
Other versions
JP2018196306A (en
Inventor
羽田 正二
正二 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2017100677A priority Critical patent/JP6840032B2/en
Priority to KR1020180024681A priority patent/KR102482820B1/en
Priority to PCT/JP2018/015827 priority patent/WO2018216401A1/en
Publication of JP2018196306A publication Critical patent/JP2018196306A/en
Application granted granted Critical
Publication of JP6840032B2 publication Critical patent/JP6840032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Description

本発明は、絶縁型スイッチング電源に関する。 The present invention relates to an isolated switching power supply.

トランスを用いて入力側と出力側を絶縁する絶縁型スイッチング電源が知られている。入力が交流電圧の場合は、一般的には、AC/DC変換回路の後にDC/DCコンバータが配置されている(特許文献1〜5)。入力が直流電圧の場合は、直接DC/DCコンバータに入力される。DC/DCコンバータの代表的方式として、フライバック方式とフォワード方式がある。 An isolated switching power supply that insulates the input side and the output side using a transformer is known. When the input is an AC voltage, a DC / DC converter is generally arranged after the AC / DC conversion circuit (Patent Documents 1 to 5). When the input is DC voltage, it is directly input to the DC / DC converter. Typical methods of DC / DC converters include a flyback method and a forward method.

特開平7−31150号公報Japanese Unexamined Patent Publication No. 7-31150 特開平8−331860号公報Japanese Unexamined Patent Publication No. 8-331860 特開2002−10632号公報JP-A-2002-10632 特開2005−218224号公報Japanese Unexamined Patent Publication No. 2005-218224 特開2007−37297号公報Japanese Unexamined Patent Publication No. 2007-37297

絶縁型スイッチング電源のフライバック方式では、スイッチング素子のオン期間にはトランスに磁気エネルギーが蓄積され、オフ期間にはそのエネルギーが放出される構成である。またフォワード方式では、スイッチング素子のオン期間に外付けチョークコイルに磁気エネルギーが蓄積され、オフ期間にはそのエネルギーが放出される構成である。これらの方式では、二次側の電力変換効率が十分とはいえなかった。 In the flyback method of an isolated switching power supply, magnetic energy is stored in the transformer during the on period of the switching element, and the energy is released during the off period. Further, in the forward method, magnetic energy is stored in the external choke coil during the on period of the switching element, and the energy is released during the off period. With these methods, the power conversion efficiency on the secondary side was not sufficient.

また絶縁型スイッチング電源では、スイッチング素子がオフした瞬間にトランスの一次側に発生する逆起電力及びサージ電圧に耐え得る高耐圧のスイッチング素子及びスナバ回路が必要であった。特にフォワード方式では、磁気リセットのためにもスナバ回路が必要であった。スナバ回路は、その処理容量が大きいほど電力損失も大きくなるという問題がある。 Further, in an isolated switching power supply, a high withstand voltage switching element and a snubber circuit capable of withstanding the counter electromotive force and surge voltage generated on the primary side of the transformer at the moment when the switching element is turned off are required. Especially in the forward method, a snubber circuit was required for magnetic reset. The snubber circuit has a problem that the larger the processing capacity, the larger the power loss.

以上の問題点に鑑み本発明は、絶縁型スイッチング電源において、二次側の電力変換効率を向上させるとともに、一次側のスイッチング素子の耐圧及びスナバ回路の処理容量を低減させることを目的とする。 In view of the above problems, it is an object of the present invention to improve the power conversion efficiency on the secondary side and reduce the withstand voltage of the switching element on the primary side and the processing capacity of the snubber circuit in the isolated switching power supply.

上記の目的を達成するべく、本発明は、以下の構成を提供する。なお、括弧内の符号は後述する図面中の符号であり、参考のために付するものである。 In order to achieve the above object, the present invention provides the following configurations. The reference numerals in parentheses are the reference numerals in the drawings described later and are provided for reference.

本発明の絶縁型スイッチング電源の一態様は、
(a)入力電圧が印加される第1入力端(1)及び第2入力端(2)と、
(b)正極出力端(p)及び負極出力端(n)と、
(c)一次コイル(N1)と二次コイル(N2)を具備し一次コイルの一端が前記第1入力端(1)に接続されたトランス(T)と、
(d)前記一次コイル(N1)の他端と前記第2入力端(2)の間の電流路を導通又は遮断するように制御信号(Vg)によりオンオフ制御されるスイッチング素子(Q)と、
(e)前記二次コイル(N2)の一端と前記負極出力端(n)の間に接続されたサブコンデンサ(C1)と、
(f)前記負極出力端(n)に一端が接続されたチョークコイル(L)と、
(g)前記二次コイル(N2)の他端と前記正極出力端(p)の間に接続され、該二次コイルから該正極出力端(p)へ流れる電流を導通させる第1整流要素(D1)と、
(h)前記チョークコイル(L)の他端と前記二次コイル(N2)の他端の間に接続され、該チョークコイル(L)から該二次コイル(N2)へ流れる電流を導通させる第2整流要素(D2)と、
(i)前記チョークコイル(L)の他端と前記二次コイル(N2)の一端の間に接続され、該チョークコイル(L)から前記サブコンデンサ(C1)又は該二次コイル(N2)へ流れる電流を導通させる第3整流要素(D3)と、
(j)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C2)と、を有することを特徴とする。
One aspect of the isolated switching power supply of the present invention is
(A) The first input end (1) and the second input end (2) to which the input voltage is applied, and
(B) Positive electrode output end (p) and negative electrode output end (n),
(C) A transformer (T) having a primary coil (N1) and a secondary coil (N2) and one end of the primary coil connected to the first input end (1).
(D) A switching element (Q) whose on / off control is performed by a control signal (Vg) so as to conduct or cut off the current path between the other end of the primary coil (N1) and the second input end (2).
(E) A sub-capacitor (C1) connected between one end of the secondary coil (N2) and the negative electrode output end (n).
(F) A choke coil (L) having one end connected to the negative electrode output end (n) and
(G) A first rectifying element (g) that is connected between the other end of the secondary coil (N2) and the positive electrode output end (p) and conducts a current flowing from the secondary coil to the positive electrode output end (p). D1) and
(H) A third that is connected between the other end of the choke coil (L) and the other end of the secondary coil (N2) and conducts a current flowing from the choke coil (L) to the secondary coil (N2). 2 rectifying element (D2) and
(I) Connected between the other end of the choke coil (L) and one end of the secondary coil (N2), from the choke coil (L) to the sub-capacitor (C1) or the secondary coil (N2). The third rectifying element (D3) that conducts the flowing current and
(J) It is characterized by having a smoothing capacitor (C2) connected between the positive electrode output end (p) and the negative electrode output end (n).

本発明により、絶縁型スイッチング電源において、電力変換効率を向上させることができる。 According to the present invention, the power conversion efficiency can be improved in an isolated switching power supply.

図1は、本発明の絶縁型スイッチング電源の実施形態の回路構成例を概略的に示した図である。FIG. 1 is a diagram schematically showing a circuit configuration example of an embodiment of an isolated switching power supply of the present invention. 図2は、図1に示した回路構成のオン期間の電流の流れを概略的に示す図である。FIG. 2 is a diagram schematically showing the current flow during the on-period of the circuit configuration shown in FIG. 図3は、図1に示した回路構成の二次側におけるオン期間の電位関係を模式的に示した図である。FIG. 3 is a diagram schematically showing the potential relationship during the on-period on the secondary side of the circuit configuration shown in FIG. 図4は、図1に示した回路構成のオフ期間の電流の流れを概略的に示す図である。FIG. 4 is a diagram schematically showing the current flow during the off period of the circuit configuration shown in FIG. 図5は、図1に示した回路構成の二次側におけるオフ期間の電位関係を模式的に示した図である。FIG. 5 is a diagram schematically showing the potential relationship during the off period on the secondary side of the circuit configuration shown in FIG.

以下、実施例を示した図面を参照しつつ、本発明による絶縁型スイッチング電源の実施形態について説明する。 Hereinafter, embodiments of an isolated switching power supply according to the present invention will be described with reference to the drawings showing examples.

(1)回路構成
図1は、本発明の絶縁型スイッチング電源(以下「スイッチング電源」と称する)の実施形態の回路構成の一例を概略的に示した図である。なお、以下では、直流電圧が入力されるDC/DCコンバータの場合を実施例として本発明を説明する。しかしながら、本発明のスイッチング電源は、電圧が一定の直流以外に、電圧が変動する矩形波又は交流等のどのような波形の電圧が入力されても同様に機能し、直流電圧を出力することができる電力変換装置である。
(1) Circuit Configuration FIG. 1 is a diagram schematically showing an example of a circuit configuration of an embodiment of an isolated switching power supply (hereinafter referred to as “switching power supply”) of the present invention. In the following, the present invention will be described by taking the case of a DC / DC converter into which a DC voltage is input as an example. However, the switching power supply of the present invention functions in the same manner even if a voltage of any waveform such as a square wave or an alternating current whose voltage fluctuates is input in addition to a direct current having a constant voltage, and can output a direct current voltage. It is a power conversion device that can be used.

本発明のスイッチング電源は、入力側と出力側を電気的に絶縁する絶縁型である。このためにトランスTを設けている。トランスTは、基本的に1つの一次コイルN1と1つの二次コイルN2を具備する。 The switching power supply of the present invention is an insulated type that electrically insulates the input side and the output side. A transformer T is provided for this purpose. The transformer T basically includes one primary coil N1 and one secondary coil N2.

各コイルの巻き始端を黒丸で示している。本明細書でコイルについて「一端」と「他端」という場合は、「巻き始端」と「巻き終端」の組合せを意味する場合と、「巻き終端」と「巻き始端」の組合せを意味する場合のいずれも含むものとする。トランスTは、一次コイルとN1と二次コイルN2の極性が、従来のフライバック方式と同じである。 The winding start end of each coil is indicated by a black circle. In the present specification, the terms "one end" and "the other end" of a coil mean a combination of "winding start end" and "winding end" and a combination of "winding end" and "winding start end". It shall include any of. In the transformer T, the polarities of the primary coil, N1 and the secondary coil N2 are the same as those of the conventional flyback method.

入力電圧は、第1入力端1と第2入力端2の間に印加される。トランスTの一次コイルN1の一端(本例では巻き始端)は、第1入力端1に接続されている。ここでは、第2入力端2が入力側基準電位端である。 The input voltage is applied between the first input end 1 and the second input end 2. One end (winding start end in this example) of the primary coil N1 of the transformer T is connected to the first input end 1. Here, the second input end 2 is the input side reference potential end.

トランスTの二次側には、直流電圧が出力される正極出力端pと負極出力端nが設けられている。ここでは、負極出力端nが二次側基準電位端である。正極出力端pと負極出力端nの間に接続された負荷(図示せず)に出力電圧が印加され、出力電流が流れる。 On the secondary side of the transformer T, a positive electrode output end p and a negative electrode output end n from which a DC voltage is output are provided. Here, the negative electrode output end n is the secondary side reference potential end. An output voltage is applied to a load (not shown) connected between the positive electrode output end p and the negative electrode output end n, and an output current flows.

トランスTの一次コイルN1の他端(本例では巻き終端)には、スイッチング素子Qの一端が接続されている。スイッチング素子Qの他端は、第2入力端2に接続されている。スイッチング素子Qは制御端を具備し、制御端は、一次コイルN1の他端と第2入力端2の間の電流路を導通又は遮断するようにオンオフ制御される。 One end of the switching element Q is connected to the other end (winding end in this example) of the primary coil N1 of the transformer T. The other end of the switching element Q is connected to the second input end 2. The switching element Q includes a control end, and the control end is on / off controlled so as to conduct or cut off the current path between the other end of the primary coil N1 and the second input end 2.

スイッチング素子Qの制御端は、制御信号Vgにより制御される。制御信号Vgは、例えば所定の周波数及びデューティ比のパルス波形をもつPWM信号である。図示の例では、スイッチング素子Qがnチャネル形MOSFET(以下「FETQ」と称する)であり、一端がドレイン、他端がソース、制御端がゲートである。この場合、制御信号Vgは電圧信号である。 The control end of the switching element Q is controlled by the control signal Vg. The control signal Vg is, for example, a PWM signal having a pulse waveform having a predetermined frequency and duty ratio. In the illustrated example, the switching element Q is an n-channel MOSFET (hereinafter referred to as “FETQ”), one end is a drain, the other end is a source, and the control end is a gate. In this case, the control signal Vg is a voltage signal.

なお、FET以外のスイッチング素子として、例えばIGBT又はバイポーラトランジスタを用いることもできる。 As a switching element other than the FET, for example, an IGBT or a bipolar transistor can be used.

トランスTの二次コイルN2の一端(本例では巻き始端)と負極出力端nの間には、1つのコンデンサ(以下「サブコンデンサと称する」)C1が接続されている。また、正極出力端pと負極出力端nの間には、平滑コンデンサC2が接続されている。 One capacitor (hereinafter referred to as "sub-capacitor") C1 is connected between one end (winding start end in this example) of the secondary coil N2 of the transformer T and the negative electrode output end n. Further, a smoothing capacitor C2 is connected between the positive electrode output end p and the negative electrode output end n.

トランスTの二次コイルN2の他端と正極出力端pの間には、第1整流要素D1が接続されている。第1整流要素D1は、順バイアスのとき二次コイルN2から正極出力端pへ流れる電流を導通させ、逆バイアスのときこの電流を遮断する向きに接続されている。第1整流要素D1が例えばダイオードである場合、ダイオードD1のアノードが二次コイルN2の他端に、カソードが正極出力端pに接続される。 The first rectifying element D1 is connected between the other end of the secondary coil N2 of the transformer T and the positive electrode output end p. The first rectifying element D1 is connected in a direction in which a current flowing from the secondary coil N2 to the positive electrode output end p is conducted when the forward bias is applied, and this current is cut off when the reverse bias is applied. When the first rectifying element D1 is, for example, a diode, the anode of the diode D1 is connected to the other end of the secondary coil N2, and the cathode is connected to the positive electrode output end p.

トランスTの二次側の回路は、チョークコイルLを有する。チョークコイルLの一端は、負極出力端nに接続されている。 The circuit on the secondary side of the transformer T has a choke coil L. One end of the choke coil L is connected to the negative electrode output end n.

そして、チョークコイルLの他端とトランスTの二次コイルN2の他端の間には、第2整流要素D2が接続されている。第2整流要素D2は、順バイアスのときチョークコイルLの他端から二次コイルN2の他端へ流れる電流を導通させ、逆バイアスのときこの電流を遮断する向きに接続されている。第2整流要素D2が例えばダイオードである場合、ダイオードD2のアノードがチョークコイルLの他端に、カソードが二次コイルN2の他端に接続される。 A second rectifying element D2 is connected between the other end of the choke coil L and the other end of the secondary coil N2 of the transformer T. The second rectifying element D2 is connected in a direction that conducts a current flowing from the other end of the choke coil L to the other end of the secondary coil N2 in the case of forward bias and cuts off this current in the case of reverse bias. When the second rectifying element D2 is, for example, a diode, the anode of the diode D2 is connected to the other end of the choke coil L, and the cathode is connected to the other end of the secondary coil N2.

そして、チョークコイルLの他端とトランスTの二次コイルN2の一端の間には、第3整流要素D3が接続されている。第3整流要素D3は、順バイアスのときチョークコイルLの他端から二次コイルN2の一端又はサブコンデンサC1へ流れる電流を導通させ、逆バイアスのときこの電流を遮断する向きに接続されている。第3整流要素D3が例えばダイオードである場合、ダイオードD3のアノードがチョークコイルLの他端に、カソードが二次コイルN2の一端に接続される。 A third rectifying element D3 is connected between the other end of the choke coil L and one end of the secondary coil N2 of the transformer T. The third rectifying element D3 is connected so as to conduct a current flowing from the other end of the choke coil L to one end of the secondary coil N2 or the sub-capacitor C1 in the case of forward bias, and to cut off this current in the case of reverse bias. .. When the third rectifying element D3 is, for example, a diode, the anode of the diode D3 is connected to the other end of the choke coil L, and the cathode is connected to one end of the secondary coil N2.

ダイオードD1、D2、D3は、順方向電圧降下が小さくかつ高速動作を行うものが好適である。なお、ダイオード以外の整流要素の例としては、同等の整流機能を有する他の素子又は回路を用いることができる。 The diodes D1, D2, and D3 are preferably those having a small forward voltage drop and performing high-speed operation. As an example of a rectifying element other than the diode, another element or circuit having an equivalent rectifying function can be used.

図示しないが、制御信号Vgを発生する制御部を有することが好ましい。一例として、制御部は、入力電圧及び出力電圧を検出し、検出した入力電圧と出力電圧に基づいて、制御信号Vgのデューティ比を決定し、それに基づいて制御信号Vgを生成する。制御部の主要部として、PWMICを用いることができる。 Although not shown, it is preferable to have a control unit that generates a control signal Vg. As an example, the control unit detects the input voltage and the output voltage, determines the duty ratio of the control signal Vg based on the detected input voltage and the output voltage, and generates the control signal Vg based on the duty ratio. A PWM IC can be used as the main part of the control unit.

(2)動作説明
図2〜図5を参照して、図1に示した回路構成の動作を説明する。なお、本回路の始動時及び停止時の過渡的動作は例外とし、本回路が定常状態にある場合の動作について説明する。
(2) Operation Description The operation of the circuit configuration shown in FIG. 1 will be described with reference to FIGS. 2 to 5. The operation when the circuit is in a steady state will be described with the exception of the transient operation when the circuit is started and stopped.

(2−1)オン期間における一次側及び二次側の動作の詳細
図2は、図1に示した回路構成におけるオン期間の電流の流れ(矢印付き点線)を概略的に示している。
(2-1) Details of Operation on the Primary Side and Secondary Side during the On Period FIG. 2 schematically shows a current flow (dotted line with an arrow) during the on period in the circuit configuration shown in FIG.

[オン期間:一次側]
トランス一次側では、オン期間に制御信号Vgがオンになると、FETQがオンとなり電流路が導通する。トランスTの一次コイルN1には、入力電圧による入力電流i1が以下の経路で流れる。
・入力電流i1:第1入力端1→トランス一次コイルN1→FETQ→第2入力端2
[On period: Primary side]
On the primary side of the transformer, when the control signal Vg is turned on during the on period, the FET Q is turned on and the current path is conducted. The input current i1 due to the input voltage flows through the primary coil N1 of the transformer T in the following path.
・ Input current i1: 1st input end 1 → transformer primary coil N1 → FETQ → 2nd input end 2

[オン期間:二次側]
図2では、説明の便宜上、トランスTの二次コイルN2の他端をa点とし、二次コイルN2の一端をb点とする。さらに、チョークコイルLの他端をd点とし、正極出力端pをc点とし、負極出力端nをe点とする。
[On period: Secondary side]
In FIG. 2, for convenience of explanation, the other end of the secondary coil N2 of the transformer T is set to point a, and one end of the secondary coil N2 is set to point b. Further, the other end of the choke coil L is set to point d, the positive electrode output end p is set to point c, and the negative electrode output end n is set to point e.

図3は、オン期間におけるトランス二次側のa点〜e点の電位関係を模式的に示した図である。図3も参照しつつ、オン期間のトランス二次側の動作を説明する。定常状態では、サブコンデンサC1及び平滑コンデンサC2は、リップル的な変動を除いてほぼ一定の両端電圧Vc1、Vc2でそれぞれ充電されている。 FIG. 3 is a diagram schematically showing the potential relationship between points a to e on the secondary side of the transformer during the on period. The operation of the secondary side of the transformer during the on-period will be described with reference to FIG. In the steady state, the sub-capacitor C1 and the smoothing capacitor C2 are charged with substantially constant voltage across Vc1 and Vc2, respectively, except for ripple fluctuations.

一次コイルN1に入力電流i1が流れることにより、二次コイルN2に起電力Vn2が生じる(本明細書における「起電力」及び「逆起電力」は電圧の意味で用いる)。図3の電位関係図に示すように、起電力Vn2は、b点側が高電位、a点側が低電位の向きである。ダイオードD1は、a点電位とc点電位の関係により逆バイアスとなるため電流は流れない。負荷に対しては、平滑コンデンサC2からの放電電流が供給される。 When the input current i1 flows through the primary coil N1, an electromotive force Vn2 is generated in the secondary coil N2 (“electromotive force” and “back electromotive force” in the present specification are used in the meaning of voltage). As shown in the potential relationship diagram of FIG. 3, the electromotive force Vn2 has a high potential on the b point side and a low potential on the a point side. Since the diode D1 has a reverse bias due to the relationship between the a point potential and the c point potential, no current flows. The discharge current from the smoothing capacitor C2 is supplied to the load.

起電力Vn2によりb点電位がサブコンデンサC1の一端の電位を超えると、電流i2が以下の経路で流れる。
・電流i2:トランス二次コイルb点→サブコンデンサC1→チョークコイルL→ダイオードD2→トランス二次コイルa点
When the potential at point b exceeds the potential at one end of the subcapacitor C1 due to the electromotive force Vn2, the current i2 flows in the following path.
-Current i2: Transformer secondary coil point b → Subcapacitor C1 → Choke coil L → Diode D2 → Transformer secondary coil point a

チョークコイルLに電流i2が流れることによりチョークコイルL2に起電力Vが生じ、d点電位は負極出力端nのe点より低電位となる。ダイオードD2が導通するので、トランス二次コイルa点は、d点電位と同電位となる。ダイオードD3は、b点電位とd点電位の関係により逆バイアスとなるため電流は流れない。 When the current i2 flows through the choke coil L, an electromotive force VL is generated in the choke coil L2, and the d point potential becomes lower than the e point of the negative electrode output end n. Since the diode D2 conducts, the transformer secondary coil a point has the same potential as the d point potential. Since the diode D3 has a reverse bias due to the relationship between the b point potential and the d point potential, no current flows.

オン期間に二次側に流れる電流i2は、サブコンデンサC1を充電する向きに流れる。これにより、サブコンデンサC1に電気エネルギーが蓄積される。加えて、この電流i2がチョークコイルLを励磁することにより、チョークコイルLに磁気エネルギーが蓄積される。 The current i2 flowing to the secondary side during the on period flows in the direction of charging the sub-capacitor C1. As a result, electrical energy is stored in the sub-capacitor C1. In addition, the current i2 excites the choke coil L, so that magnetic energy is stored in the choke coil L.

通常のフォワード方式では、オン期間に外付けチョークコイルに磁気エネルギーが蓄積され、通常のフライバック方式では、オン期間にトランスに磁気エネルギーが蓄積される。これに対し、本回路では、オン期間にサブコンデンサC1に電気エネルギーが蓄積されるとともに、チョークコイルLに磁気エネルギーが蓄積される。これにより、本回路では、電力変換効率を向上させることができる。 In the normal forward method, magnetic energy is stored in the external choke coil during the on period, and in the normal flyback method, magnetic energy is stored in the transformer during the on period. On the other hand, in this circuit, electric energy is stored in the sub-capacitor C1 and magnetic energy is stored in the choke coil L during the on period. As a result, the power conversion efficiency can be improved in this circuit.

本回路では、オン期間にトランスTに磁気エネルギーが蓄積される度合いが少ないので、磁気リセットのためのスナバ回路の処理容量を低減できる。 In this circuit, since the degree of magnetic energy accumulated in the transformer T during the on period is small, the processing capacity of the snubber circuit for magnetic reset can be reduced.

(2−2)オフ期間における一次側及び二次側の動作の詳細
図4は、図1の回路構成におけるオフ期間の電流の流れ(矢印付き点線)を概略的に示す図である。
(2-2) Details of Operation of Primary Side and Secondary Side in Off Period FIG. 4 is a diagram schematically showing a current flow (dotted line with an arrow) in the off period in the circuit configuration of FIG.

[オフ期間:一次側]
トランス一次側では、制御信号Vgがオフになると、FETQもオフとなりスイッチが開く。トランスTの一次コイルN1の電流路は遮断され、電流が零となる。これによりトランスTの一次コイルN1及び二次コイルN2にそれぞれ逆起電力が生じる。
[Off period: Primary side]
On the primary side of the transformer, when the control signal Vg is turned off, the FETQ is also turned off and the switch is opened. The current path of the primary coil N1 of the transformer T is cut off, and the current becomes zero. As a result, counter electromotive forces are generated in the primary coil N1 and the secondary coil N2 of the transformer T, respectively.

[オフ期間:二次側]
図5は、オフ期間におけるトランス二次側のa点〜e点の電位関係を模式的に示した図である。図5も参照しつつ、オフ期間の二次側の動作を説明する。
[Off period: Secondary side]
FIG. 5 is a diagram schematically showing the potential relationship between points a to e on the secondary side of the transformer during the off period. The operation on the secondary side during the off period will be described with reference to FIG.

トランスTの二次コイルN2に生じる逆起電力Vn2は、図5の電位関係図に示すように、b点側が低電位、a点側が高電位の向きである。a点電位が平滑コンデンサC2の一端(正極出力端p)の電位であるc点電位を超えると、ダイオードD1が順バイアスとなり、電流i21が以下の経路で流れる。
・電流i21:トランス二次コイルa点→ダイオードD1→負荷(又は平滑コンデンサC2)→サブコンデンサC1→トランス二次コイルb点
As shown in the potential relationship diagram of FIG. 5, the counter electromotive force Vn2 generated in the secondary coil N2 of the transformer T has a low potential on the b point side and a high potential on the a point side. When the a point potential exceeds the c point potential, which is the potential of one end (positive electrode output end p) of the smoothing capacitor C2, the diode D1 becomes a forward bias and the current i21 flows in the following path.
-Current i21: Transformer secondary coil point a → Diode D1 → Load (or smoothing capacitor C2) → Sub capacitor C1 → Transformer secondary coil b point

さらに、チョークコイルLはオン期間の電流を維持するように逆起電力Vが発生する。この逆起電力Vは、d点が高電位、e点が低電位の向きである。この逆起電力Vが、サブコンデンサC1の一端電位を超えるとダイオードD3が導通し、電流i22及びi23が以下の経路で流れる。
・電流i22:チョークコイルL→ダイオードD3→サブコンデンサC1
・電流i23:チョークコイルL→ダイオードD3→トランス二次コイル→ダイオードD1→負荷(又は平滑コンデンサC2)
Further, the choke coil L generates a counter electromotive force VL so as to maintain the current during the on period. The counter electromotive force VL has a high potential at point d and a low potential at point e. When the counter electromotive force VL exceeds the potential at one end of the sub-capacitor C1, the diode D3 conducts, and the currents i22 and i23 flow in the following paths.
-Current i22: Choke coil L-> diode D3-> sub-capacitor C1
-Current i23: Choke coil L-> diode D3-> transformer secondary coil-> diode D1-> load (or smoothing capacitor C2)

ダイオードD2は、a点電位とd点電位の関係により逆バイアスとなるため電流は流れない。 Since the diode D2 has a reverse bias due to the relationship between the a point potential and the d point potential, no current flows.

オフ期間の電流i21は、オン期間にサブコンデンサC1に蓄積された電気エネルギーを放出する放電電流であり、負荷へ供給されるか又は平滑コンデンサC2を充電する。一方、オフ期間の電流i22及び電流i23は、オン期間にチョークコイルLに蓄積された磁気エネルギーを放出するものである。電流i22はサブコンデンサC1を充電する向きに流れ、サブコンデンサC1が放電により失う電気エネルギーを補う。また、電流i23は、電流i21とともに負荷へ供給されるか又は平滑コンデンサC2を充電する。このように、オン期間にチョークコイルLに蓄積された磁気エネルギーは、オフ期間に電気エネルギーに変換される。 The off-period current i21 is a discharge current that releases the electrical energy stored in the sub-capacitor C1 during the on-period, and is supplied to the load or charges the smoothing capacitor C2. On the other hand, the current i22 and the current i23 in the off period release the magnetic energy stored in the choke coil L in the on period. The current i22 flows in the direction of charging the sub-capacitor C1 to supplement the electric energy lost by the sub-capacitor C1 due to the discharge. Further, the current i23 is supplied to the load together with the current i21 or charges the smoothing capacitor C2. In this way, the magnetic energy stored in the choke coil L during the on period is converted into electrical energy during the off period.

オフ期間にトランスTの二次コイルN2に生じる逆起電力Vn2は、オン期間にサブコンデンサC1に充電された電圧VC1により抑圧される。すなわち、逆起電力Vn2は、サブコンデンサC1が無い場合に二次コイルN2に生じる逆起電力に比べて電圧VC1の分だけ小さくなる。この結果、FETQがオフした瞬間にトランスTの一次コイルN1に生じる逆起電力(サージ電圧も含む)も小さくなるため、一次側のFETQに要求される耐圧を低減することができる。また、サージ電圧を抑制するためのスナバ回路の処理容量も低減することができる。 The counter electromotive force Vn2 generated in the secondary coil N2 of the transformer T during the off period is suppressed by the voltage VC1 charged in the sub capacitor C1 during the on period. That is, the counter electromotive force Vn2 is smaller by the voltage VC1 than the counter electromotive force generated in the secondary coil N2 when the sub-capacitor C1 is not present. As a result, the counter electromotive force (including the surge voltage) generated in the primary coil N1 of the transformer T at the moment when the FET Q is turned off is also reduced, so that the withstand voltage required for the FET Q on the primary side can be reduced. Further, the processing capacity of the snubber circuit for suppressing the surge voltage can also be reduced.

(2−3)動作及び効果のまとめ
本発明のスイッチング電源は、オン期間には、トランス二次側においてサブコンデンサに電気エネルギーを蓄積するとともに、チョークコイルに磁気エネルギーを蓄積するように機能する。さらに、オフ期間には、サブコンデンサから電気エネルギーを放出して負荷に供給するとともに、チョークコイルの磁気エネルギーによりサブコンデンサの電気エネルギーを補充するように機能する。これにより二次側の電力変換効率が向上する。
(2-3) Summary of operation and effect The switching power supply of the present invention functions to store electrical energy in the sub-capacitor on the secondary side of the transformer and magnetic energy in the choke coil during the on period. Further, during the off period, the sub-capacitor releases electrical energy to supply the load, and the magnetic energy of the choke coil functions to replenish the electrical energy of the sub-capacitor. This improves the power conversion efficiency on the secondary side.

二次側のチョークコイルは、オン期間もオフ期間もサブコンデンサの充電に寄与することになるので、フォワード方式の外付けチョークコイルに比べてチョークコイルの利用効率が向上する。 Since the choke coil on the secondary side contributes to the charging of the sub-capacitor during both the on period and the off period, the utilization efficiency of the choke coil is improved as compared with the forward type external choke coil.

サブコンデンサの両端電圧によって、スイッチング素子がオフした瞬間に一次コイルに生じる逆起電力やサージ電圧が抑制されることから、スイッチング素子の耐圧を低減することができる。加えて、過電圧抑制用のスナバ回路の処理容量も低減できるので、電力損失が低減される。 Since the back electromotive force and surge voltage generated in the primary coil at the moment when the switching element is turned off are suppressed by the voltage across the subcapacitor, the withstand voltage of the switching element can be reduced. In addition, the processing capacity of the snubber circuit for suppressing overvoltage can be reduced, so that the power loss is reduced.

1 第1入力端
2 第2入力端(入力側基準端)
p 正極出力端
n 負極出力端(出力側基準電位)
T トランス
N1 一次コイル
N2 二次コイル
Q スイッチング素子(FET)
D1、D2、D3 整流要素(ダイオード)
C1 サブコンデンサ
C2 平滑コンデンサ
L チョークコイル
1 1st input end 2 2nd input end (input side reference end)
p Positive electrode output end n Negative electrode output end (output side reference potential)
T transformer N1 primary coil N2 secondary coil Q-switching element (FET)
D1, D2, D3 Rectifying element (diode)
C1 Subcapacitor C2 Smoothing Capacitor L Choke Coil

Claims (1)

(a)入力電圧が印加される第1入力端(1)及び第2入力端(2)と、
(b)正極出力端(p)及び負極出力端(n)と、
(c)一次コイル(N1)と二次コイル(N2)を具備し一次コイルの一端が前記第1入力端(1)に接続されたトランス(T)と、
(d)前記一次コイル(N1)の他端と前記第2入力端(2)の間の電流路を導通又は遮断するように制御信号(Vg)によりオンオフ制御されるスイッチング素子(Q)と、
(e)前記二次コイル(N2)の一端と前記負極出力端(n)の間に接続されたサブコンデンサ(C1)と、
(f)前記負極出力端(n)に一端が接続されたチョークコイル(L)と、
(g)前記二次コイル(N2)の他端と前記正極出力端(p)の間に接続され、該二次コイルから該正極出力端(p)へ流れる電流を導通させる第1整流要素(D1)と、
(h)前記チョークコイル(L)の他端と前記二次コイル(N2)の他端の間に接続され、該チョークコイル(L)から該二次コイル(N2)へ流れる電流を導通させる第2整流要素(D2)と、
(i)前記チョークコイル(L)の他端と前記二次コイル(N2)の一端の間に接続され、該チョークコイル(L)から前記サブコンデンサ(C1)又は該二次コイル(N2)へ流れる電流を導通させる第3整流要素(D3)と、
(j)前記正極出力端(p)と前記負極出力端(n)の間に接続された平滑コンデンサ(C2)と、を有することを特徴とする
絶縁型スイッチング電源。
(A) The first input end (1) and the second input end (2) to which the input voltage is applied, and
(B) Positive electrode output end (p) and negative electrode output end (n),
(C) A transformer (T) having a primary coil (N1) and a secondary coil (N2) and one end of the primary coil connected to the first input end (1).
(D) A switching element (Q) whose on / off control is performed by a control signal (Vg) so as to conduct or cut off the current path between the other end of the primary coil (N1) and the second input end (2).
(E) A sub-capacitor (C1) connected between one end of the secondary coil (N2) and the negative electrode output end (n).
(F) A choke coil (L) having one end connected to the negative electrode output end (n) and
(G) A first rectifying element (g) that is connected between the other end of the secondary coil (N2) and the positive electrode output end (p) and conducts a current flowing from the secondary coil to the positive electrode output end (p). D1) and
(H) A third that is connected between the other end of the choke coil (L) and the other end of the secondary coil (N2) and conducts a current flowing from the choke coil (L) to the secondary coil (N2). 2 rectifying element (D2) and
(I) Connected between the other end of the choke coil (L) and one end of the secondary coil (N2), from the choke coil (L) to the sub-capacitor (C1) or the secondary coil (N2). The third rectifying element (D3) that conducts the flowing current and
(J) An insulated switching power supply having a smoothing capacitor (C2) connected between the positive electrode output end (p) and the negative electrode output end (n).
JP2017100677A 2017-05-22 2017-05-22 Insulated switching power supply Active JP6840032B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017100677A JP6840032B2 (en) 2017-05-22 2017-05-22 Insulated switching power supply
KR1020180024681A KR102482820B1 (en) 2017-05-22 2018-02-28 Insulated switching power supply
PCT/JP2018/015827 WO2018216401A1 (en) 2017-05-22 2018-04-17 Isolated switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100677A JP6840032B2 (en) 2017-05-22 2017-05-22 Insulated switching power supply

Publications (2)

Publication Number Publication Date
JP2018196306A JP2018196306A (en) 2018-12-06
JP6840032B2 true JP6840032B2 (en) 2021-03-10

Family

ID=64396672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100677A Active JP6840032B2 (en) 2017-05-22 2017-05-22 Insulated switching power supply

Country Status (3)

Country Link
JP (1) JP6840032B2 (en)
KR (1) KR102482820B1 (en)
WO (1) WO2018216401A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817894B2 (en) * 2017-05-19 2021-01-20 Ntn株式会社 Insulated switching power supply for three-phase AC
CN111682775B (en) * 2020-06-02 2022-12-09 西安科技大学 Forward converter for realizing excitation energy transfer by serially connecting secondary side with LCD
CN111682750B (en) * 2020-06-02 2022-12-30 西安摩达芯电子科技有限公司 Forward converter for realizing forward and backward excitation energy transmission by parallel LCD (liquid crystal display) on secondary side
CN111682779B (en) * 2020-06-02 2022-12-09 西安科技大学 Secondary-side series-connection LCD (liquid crystal display) excitation energy transfer forward converter for restraining output energy backflow
CN111682777B (en) * 2020-06-02 2022-12-09 西安科技大学 Secondary parallel LCD forward converter capable of avoiding reverse charging of energy storage capacitor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731150A (en) 1993-07-09 1995-01-31 Shindengen Electric Mfg Co Ltd Switching power supply
JP3261010B2 (en) 1995-05-31 2002-02-25 オークマ株式会社 Power converter
JP3755623B2 (en) * 1996-05-21 2006-03-15 Tdk株式会社 DC-DC converter
JP4144715B2 (en) * 1998-03-23 2008-09-03 Tdk株式会社 DC-DC converter
JP2000209852A (en) * 1999-01-11 2000-07-28 Nagano Japan Radio Co Switching power source unit
JP2002010632A (en) 2000-06-16 2002-01-11 Origin Electric Co Ltd Ac/dc converter and dc-dc converter
JP4466089B2 (en) 2004-01-29 2010-05-26 サンケン電気株式会社 Power factor correction circuit
JP2007037297A (en) 2005-07-27 2007-02-08 Sanken Electric Co Ltd Power factor improvement circuit
CN104682733B (en) * 2013-11-27 2017-03-22 东林科技股份有限公司 Flyback type alternating-current and direct-current conversion device and conversion method thereof

Also Published As

Publication number Publication date
KR20180127903A (en) 2018-11-30
JP2018196306A (en) 2018-12-06
WO2018216401A1 (en) 2018-11-29
KR102482820B1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6840032B2 (en) Insulated switching power supply
US9490717B2 (en) Switching power supply circuit
JP5408161B2 (en) Self-excited switching power supply circuit
KR101140336B1 (en) Isolated buck-boost dc-dc converter
US9601996B2 (en) Switching power supply apparatus
US9564819B2 (en) Switching power supply circuit
JP6393962B2 (en) Switching power supply
JP6942040B2 (en) Insulated switching power supply
JP2019033581A (en) Dc/dc converter
JP5930978B2 (en) DC / DC converter
JP2006191706A (en) Dc converter
JP2011061953A (en) Multi-output switching power supply device
JP6945429B2 (en) Insulated switching power supply
JP6485366B2 (en) Phase shift type full bridge type power supply circuit
JP6930890B2 (en) Insulated switching power supply
CN210536518U (en) High-voltage auxiliary power supply and high-voltage auxiliary power supply control system
JP2013143786A (en) Power-factor improvement circuit
JP6845672B2 (en) Switching power supply
US20150222177A1 (en) High efficient single stage half bridge power factor correction converter
CN110661428A (en) High-voltage auxiliary power supply and high-voltage auxiliary power supply control system
JP2012138984A (en) Ringing choke converter
JP2012182932A (en) Switching power supply device
JP2014082889A (en) Snubber circuit and power conversion circuit
JP2007166795A (en) Power supply circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6840032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250