JP6711466B2 - Buck-boost device for power storage device and power storage device - Google Patents

Buck-boost device for power storage device and power storage device Download PDF

Info

Publication number
JP6711466B2
JP6711466B2 JP2019541963A JP2019541963A JP6711466B2 JP 6711466 B2 JP6711466 B2 JP 6711466B2 JP 2019541963 A JP2019541963 A JP 2019541963A JP 2019541963 A JP2019541963 A JP 2019541963A JP 6711466 B2 JP6711466 B2 JP 6711466B2
Authority
JP
Japan
Prior art keywords
voltage
smoothing capacitor
current
circuit
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019541963A
Other languages
Japanese (ja)
Other versions
JPWO2019054138A1 (en
Inventor
修市 田川
修市 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP6711466B2 publication Critical patent/JP6711466B2/en
Publication of JPWO2019054138A1 publication Critical patent/JPWO2019054138A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0023Measuring currents or voltages from sources with high internal resistance by means of measuring circuits with high input impedance, e.g. OP-amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、太陽光発電システムで発電された電力を蓄電池に蓄電し、あるいは蓄電池に蓄電された電力を必要に応じて負荷機器に供給する太陽光発電システムの蓄電装置用昇降圧装置及び蓄電装置に関するものである。 The present invention relates to a step-up/down device for a power storage device and a power storage device of a solar power generation system, which stores the power generated by the solar power generation system in a storage battery or supplies the power stored in the storage battery to a load device as necessary. It is about.

一般家庭に設置される太陽光発電システムでは、太陽光パネルで発電される直流電力がパワーコンディショナー内のインバータで所定の交流電圧に変換されて家庭内の負荷機器に供給され、あるいは電力系統に供給される。 In a solar power generation system installed in a general household, the DC power generated by the solar panel is converted into a predetermined AC voltage by the inverter in the power conditioner and supplied to household load equipment or supplied to the power system. To be done.

近年、太陽光パネルで発電された直流電力を蓄電池に蓄電し、その蓄電池に蓄電された電力を必要時にパワーコンディショナーを介して家庭内の負荷機器に供給可能とする蓄電装置が提案されている。また、この蓄電装置を高圧直流バスラインを介してパワーコンディショナーに対し着脱可能とし、家庭用の太陽光発電システムに必要に応じて蓄電装置を後付で設置することも提案されている。 In recent years, a power storage device has been proposed in which DC power generated by a solar panel is stored in a storage battery, and the power stored in the storage battery can be supplied to a load device at home via a power conditioner when necessary. It has also been proposed that this power storage device can be attached to and detached from a power conditioner via a high-voltage DC bus line, and that the power storage device can be retrofitted to a solar power generation system for home use.

この蓄電装置は、太陽光パネルで発電された直流電力が、パワーコンディショナー内の高圧直流バスラインを介して供給され、双方向コンバータで降圧されて蓄電池に充電される。また、蓄電池に蓄電された直流電力は双方向コンバータで昇圧されるとともに平滑用キャパシタで平滑されて高圧直流バスラインに供給され、パワーコンディショナー内のインバータで交流電圧に変換されて家庭内の負荷機器に供給される。 In this power storage device, the DC power generated by the solar panel is supplied via the high-voltage DC bus line in the power conditioner, the voltage is reduced by the bidirectional converter, and the storage battery is charged. In addition, the DC power stored in the storage battery is boosted by the bidirectional converter, smoothed by the smoothing capacitor and supplied to the high-voltage DC bus line, converted into AC voltage by the inverter in the power conditioner, and loaded into household load equipment. Is supplied to.

このような蓄電装置では、平滑用キャパシタと蓄電池との間及び平滑用キャパシタと高圧直流バスラインとの間にスイッチ回路をそれぞれ介在させて、平滑用キャパシタへの突入電流を阻止することにより、電流経路に介在される半導体スイッチ素子の破壊を防止する必要がある。 In such a power storage device, a switch circuit is interposed between the smoothing capacitor and the storage battery and between the smoothing capacitor and the high-voltage DC bus line to prevent an inrush current to the smoothing capacitor, thereby preventing a current flow. It is necessary to prevent the semiconductor switch element interposed in the path from being destroyed.

具体的には、平滑用キャパシタの充電電圧と蓄電池との電位差が大きい場合には、その電位差が小さくなるまで蓄電池から平滑用キャパシタに流れる充電電流を制限するようにスイッチ回路を制御する。同様に、高圧直流バスラインと平滑用キャパシタの充電電圧の電位差が大きい場合には、その電位差が小さくなるまで高圧直流バスラインから平滑用キャパシタに流れる充電電流を制限するようにスイッチ回路を制御する。このようなスイッチ回路の制御により、突入電流による半導体スイッチ素子の破壊が抑制される。 Specifically, when the potential difference between the charging voltage of the smoothing capacitor and the storage battery is large, the switch circuit is controlled so as to limit the charging current flowing from the storage battery to the smoothing capacitor until the potential difference becomes small. Similarly, when the potential difference between the charging voltage of the high voltage DC bus line and the smoothing capacitor is large, the switch circuit is controlled so as to limit the charging current flowing from the high voltage DC bus line to the smoothing capacitor until the potential difference becomes small. .. By such control of the switch circuit, damage to the semiconductor switch element due to the inrush current is suppressed.

上記のような電流制限機能を備えたスイッチ回路は、例えば電流制限素子としての抵抗と電流制限側リレースイッチとの直列回路に、電流非制限側リレースイッチを並列に接続して構成され、充電電流の制限時には電流制限側リレースイッチのみを閉成し、充電電流の非制限時には電流非制限側リレースイッチを閉成するように制御される。 The switch circuit having the current limiting function as described above is configured, for example, by connecting a current non-limiting side relay switch in parallel to a series circuit of a resistor as a current limiting element and a current limiting side relay switch, and charging current. When the charging current is not limited, only the current limiting side relay switch is closed, and when the charging current is not limited, the current non limiting side relay switch is closed.

このようなスイッチ回路を備えることにより、蓄電装置を高圧直流バスラインに対し接続する場合にも、平滑用キャパシタへの突入電流の流入が防止される。
特許文献1には、バッテリーから供給される直流電圧と、燃料電池から供給される直流電圧をそれぞれコンバータで昇圧し、そのコンバータの出力電圧を平滑キャパシタで平滑してインバータに供給する電源システムが開示されている。
Providing such a switch circuit prevents inrush current from flowing into the smoothing capacitor even when the power storage device is connected to the high-voltage DC bus line.
Patent Document 1 discloses a power supply system in which a DC voltage supplied from a battery and a DC voltage supplied from a fuel cell are respectively boosted by a converter, and the output voltage of the converter is smoothed by a smoothing capacitor and supplied to an inverter. Has been done.

特開2011−10508号公報JP, 2011-10508, A

上記のような蓄電装置では、蓄電池と平滑用キャパシタとの間及び高圧直流バスラインと平滑キャパシタとの間にそれぞれ電流制限機能を備えたスイッチ回路が介在されている。電流制限機能を備えたスイッチ回路は、電流容量が確保された2つのリレースイッチと、一定の電流容量が確保された抵抗とで構成されるが、これらは部品コストが高いため、電源装置の製造コストが上昇する。 In the above power storage device, a switch circuit having a current limiting function is interposed between the storage battery and the smoothing capacitor and between the high-voltage DC bus line and the smoothing capacitor. A switch circuit having a current limiting function is composed of two relay switches having a current capacity secured and a resistor having a certain current capacity secured. However, since these are high in component cost, manufacturing of a power supply device is difficult. The cost rises.

特許文献1に開示された電源システムは、燃料電池を電源システムに着脱するものではないので、電源装置の接続時における突入電流の発生を防止する構成は開示されていない。 The power supply system disclosed in Patent Document 1 does not attach or detach the fuel cell to or from the power supply system, and therefore does not disclose a configuration for preventing generation of an inrush current when the power supply device is connected.

この発明はこのような事情に鑑みてなされたものであり、その目的は部品コストの上昇を抑制しながら、平滑用キャパシタへの突入電流の発生を防止し得る蓄電装置用昇降圧装置及び蓄電装置を提供することにある。 The present invention has been made in view of such circumstances, and an object thereof is to suppress the increase in component cost, and to prevent generation of an inrush current to a smoothing capacitor, and a step-up/down device for a power storage device and a power storage device. To provide.

上記課題を解決する蓄電装置用昇降圧装置は、第一の端子に供給される低電圧側の第一の直流電圧をPWM制御により昇圧して第二の端子に出力する昇圧動作と、前記第二の端子に供給される高電圧側の第二の直流電圧をPWM制御により降圧して前記第一の端子に出力する降圧動作を行う昇降圧回路と、前記第二の端子と前記昇降圧回路との間に接続されて、前記昇降圧回路の昇圧出力電圧を平滑する平滑用キャパシタと、前記第一の端子と前記昇降圧回路との間に介在されて、前記平滑用キャパシタに供給される充電電流を制限電流と非制限電流のいずれかに切り替える電流選択回路と、前記平滑用キャパシタと前記第二の端子との間に介在されるスイッチ回路と、前記平滑用キャパシタが充電されていない状態から前記昇圧動作を開始するときには、前記制限電流で前記平滑用キャパシタを充電した後に前記非制限電流を前記昇降圧回路に供給して前記昇圧動作を開始し、前記第二の端子に前記第二の直流電圧が供給されているときには、前記制限電流で前記平滑用キャパシタを充電した後に前記昇圧動作による昇圧電圧で前記平滑用キャパシタを充電し、前記平滑用キャパシタの充電電圧と前記第二の直流電圧との電位差を縮小した後に前記スイッチ回路を閉成する充放電制御部を備えたことを特徴とする。 A step-up/down device for a power storage device that solves the above-mentioned problems includes a boosting operation for boosting a first DC voltage on the low voltage side supplied to a first terminal by PWM control and outputting the boosted voltage to a second terminal. A step-up/step-down circuit that performs a step-down operation of stepping down the high-voltage side second direct-current voltage supplied to the second terminal by PWM control and outputting to the first terminal; and the second terminal and the step-up/step-down circuit. And a smoothing capacitor connected between the step-up and step-down circuit and smoothing the boosted output voltage of the step-up and step-down circuit, and interposed between the first terminal and the step-up and step-down circuit and supplied to the smoothing capacitor. A current selection circuit that switches the charging current to either a limited current or a non-limited current, a switch circuit interposed between the smoothing capacitor and the second terminal, and a state in which the smoothing capacitor is not charged. When starting the boosting operation from, the non-limiting current is supplied to the step-up/down circuit after charging the smoothing capacitor with the limiting current to start the boosting operation, and the second terminal is connected to the second terminal. When the DC voltage is supplied, the smoothing capacitor is charged with the limiting current and then the smoothing capacitor is charged with the boosted voltage by the boosting operation, and the charging voltage of the smoothing capacitor and the second DC A charging/discharging control unit for closing the switch circuit after reducing the potential difference from the voltage is provided.

この構成により、平滑用キャパシタが充電されていない状態から昇圧動作を開始するときには、制限電流で平滑用キャパシタが充電された後に昇圧動作を開始し、第二の端子に第二の直流電圧が供給されているときには、制限電流で平滑用キャパシタを充電した後に昇圧動作による昇圧電圧で平滑用キャパシタを充電し、平滑用キャパシタの充電電圧と第二の直流電圧との電位差を縮小した後にスイッチ回路を閉成するので、平滑用キャパシタへの突入電流の発生が防止される。 With this configuration, when starting the boosting operation from the state where the smoothing capacitor is not charged, the boosting operation is started after the smoothing capacitor is charged with the limited current, and the second DC voltage is supplied to the second terminal. In this case, after charging the smoothing capacitor with the limited current, the smoothing capacitor is charged with the boosted voltage by the boosting operation, and the potential difference between the charging voltage of the smoothing capacitor and the second DC voltage is reduced, and then the switch circuit is activated. Since it is closed, generation of an inrush current to the smoothing capacitor is prevented.

また、上記課題を解決する蓄電装置は、充放電可能とした蓄電池と、前記蓄電池から供給される低電圧側の第一の直流電圧をPWM制御により昇圧してコネクタを介して高圧直流バスラインに出力する昇圧動作と、前記高圧直流バスラインから前記コネクタに供給される高電圧側の第二の直流電圧をPWM制御により降圧して前記蓄電池に供給する降圧動作を行う昇降圧回路と、前記コネクタと前記昇降圧回路との間に接続されて、前記昇降圧回路の昇圧出力電圧を平滑する平滑用キャパシタと、前記蓄電池と前記昇降圧回路との間に介在されて、前記平滑用キャパシタに供給される充電電流を制限電流と非制限電流のいずれかに切り替える電流選択回路と、前記平滑用キャパシタと前記高圧直流バスラインとの間に介在されるスイッチ回路と、前記平滑用キャパシタが充電されていない状態から前記昇圧動作を開始するときには、前記制限電流で前記平滑用キャパシタを充電した後に前記非制限電流を前記昇降圧回路に供給して前記昇圧動作を開始し、前記高圧直流バスラインから前記コネクタに前記第二の直流電圧が供給されているときには、前記制限電流で前記平滑用キャパシタを充電した後に前記昇圧動作による昇圧電圧で前記平滑用キャパシタを充電し、前記平滑用キャパシタの充電電圧と前記第二の直流電圧との電位差を縮小した後に前記スイッチ回路を閉成する充放電制御部を備えたことを特徴とする。 Further, a power storage device that solves the above problems is a storage battery that can be charged and discharged, and a low-voltage first DC voltage that is supplied from the storage battery is boosted by PWM control to a high-voltage DC bus line via a connector. A step-up/down circuit for performing a step-up operation for outputting and a step-down operation for stepping down a high-voltage side second DC voltage supplied from the high-voltage DC bus line to the connector by PWM control and supplying the voltage to the storage battery; And a voltage boosting circuit connected between the voltage boosting circuit and the voltage boosting circuit, and a smoothing capacitor for smoothing the boosted output voltage of the voltage boosting circuit, and the smoothing capacitor interposed between the storage battery and the voltage boosting circuit. The current selection circuit for switching the charging current to either a limited current or a non-limited current, a switch circuit interposed between the smoothing capacitor and the high-voltage DC bus line, and the smoothing capacitor are charged. When starting the boosting operation from a state in which there is no voltage, the smoothing capacitor is charged with the limiting current, and then the non-limiting current is supplied to the step-up/down circuit to start the boosting operation. When the second DC voltage is supplied to the connector, the smoothing capacitor is charged with the limiting current and then the smoothing capacitor is charged with the boosted voltage by the boosting operation, and the smoothing capacitor is charged with the charging voltage. A charging/discharging control unit that closes the switch circuit after reducing the potential difference from the second DC voltage is provided.

この構成により、平滑用キャパシタが充電されていない状態から昇圧動作を開始するときには、制限電流で平滑用キャパシタが充電された後に昇圧動作を開始し、高圧直流バスラインに第二の直流電圧が供給されているときには、制限電流で平滑用キャパシタを充電した後に昇圧動作による昇圧電圧で平滑用キャパシタを充電し、平滑用キャパシタの充電電圧と第二の直流電圧との電位差を縮小した後にスイッチ回路を閉成するので、平滑用キャパシタへの突入電流の発生が防止される。 With this configuration, when starting the boosting operation from the state where the smoothing capacitor is not charged, the boosting operation is started after the smoothing capacitor is charged with the limited current, and the second DC voltage is supplied to the high voltage DC bus line. In this case, after charging the smoothing capacitor with the limited current, the smoothing capacitor is charged with the boosted voltage by the boosting operation, and the potential difference between the charging voltage of the smoothing capacitor and the second DC voltage is reduced, and then the switch circuit is activated. Since it is closed, generation of an inrush current to the smoothing capacitor is prevented.

また、上記の蓄電装置において、前記スイッチ回路は、前記コネクタと前記平滑用キャパシタとの間に介在されるリレースイッチで構成することが好ましい。
この構成により、スイッチ回路が閉成されると、平滑用キャパシタの出力電圧が高圧直流バスラインに供給され、あるいは高圧直流バスラインから昇降圧回路に第二の直流電圧が供給される。
Further, in the above power storage device, it is preferable that the switch circuit includes a relay switch interposed between the connector and the smoothing capacitor.
With this configuration, when the switch circuit is closed, the output voltage of the smoothing capacitor is supplied to the high voltage DC bus line, or the second DC voltage is supplied from the high voltage DC bus line to the step-up/down circuit.

また、上記の蓄電装置において、前記電流選択回路は、制限電流側リレースイッチと抵抗との直列回路に、非制限電流側リレースイッチを並列に接続して構成し、前記充放電制御部は、前記制限電流を前記平滑用キャパシタに供給するとき、前記制限電流側リレースイッチのみを閉成することが好ましい。 Further, in the above-described power storage device, the current selection circuit is configured by connecting a non-limit current side relay switch in parallel to a series circuit of a limit current side relay switch and a resistor, and the charge/discharge control unit, When supplying the limiting current to the smoothing capacitor, it is preferable to close only the limiting current side relay switch.

この構成により、制限電流側リレースイッチのみが閉成されると、平滑用キャパシタに制限電流が供給され、非制限側リレースイッチが閉成されると、平滑用キャパシタに非制限電流が供給される。 With this configuration, when only the limiting current side relay switch is closed, the limiting current is supplied to the smoothing capacitor, and when the non-limiting side relay switch is closed, the non-limiting current is supplied to the smoothing capacitor. ..

また、上記の蓄電装置において、前記平滑用キャパシタの充電電圧を検出する充電電圧検出用電圧計と、前記第二の直流電圧を検出する高圧電圧検出用電圧計とを備え、前記充放電制御部は、前記充電電圧検出用電圧計の検出電圧と、前記高圧電圧検出用電圧計の検出電圧との電位差の縮小に基づいて前記スイッチ回路を閉成することが好ましい。 In the above power storage device, a charging voltage detecting voltmeter for detecting the charging voltage of the smoothing capacitor, and a high voltage detecting voltmeter for detecting the second DC voltage are provided, and the charge/discharge control unit is provided. It is preferable that the switch circuit is closed based on a reduction in the potential difference between the detection voltage of the charging voltage detection voltmeter and the detection voltage of the high voltage detection voltmeter.

この構成により、充電電圧検出用電圧計の検出電圧と、高圧電圧検出用電圧計の検出電圧との電位差が縮小されると、スイッチ回路が閉成されて、第二の直流電圧が昇降圧回路に供給される。 With this configuration, when the potential difference between the detected voltage of the voltmeter for detecting the charging voltage and the detected voltage of the voltmeter for detecting the high voltage is reduced, the switch circuit is closed and the second DC voltage is applied to the step-up/down circuit. Is supplied to.

また、上記の蓄電装置において、前記昇降圧回路は、前記電流選択回路からコイル及びトランジスタのボディダイオードを介して前記平滑用キャパシタに充電電流を供給することが好ましい。 In the above power storage device, it is preferable that the step-up/down circuit supplies a charging current from the current selection circuit to the smoothing capacitor through a coil and a body diode of a transistor.

この構成により、電流選択回路から平滑用キャパシタに供給される充電電流は、昇降圧回路のコイルとトランジスタのボディダイオードを介して供給される。 With this configuration, the charging current supplied from the current selection circuit to the smoothing capacitor is supplied via the coil of the step-up/down circuit and the body diode of the transistor.

本発明の蓄電装置用昇降圧装置及び蓄電装置によれば、部品コストの上昇を抑制しながら、平滑用キャパシタへの突入電流の発生を防止することができる。 According to the buck-boost device for a power storage device and the power storage device of the present invention, it is possible to prevent an inrush current from flowing into the smoothing capacitor while suppressing an increase in component cost.

太陽光発電システムを示すブロック図。The block diagram which shows a solar power generation system. 蓄電装置を示す回路図。FIG. 3 is a circuit diagram illustrating a power storage device. 充放電制御部の動作を示すフローチャート。The flowchart which shows operation|movement of a charging/discharging control part. 蓄電装置の動作を示すタイミング波形図。FIG. 6 is a timing waveform chart showing the operation of the power storage device. 蓄電装置の動作を示すタイミング波形図。FIG. 6 is a timing waveform chart showing the operation of the power storage device. 蓄電装置の動作を示すタイミング波形図。FIG. 6 is a timing waveform chart showing the operation of the power storage device.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1に示す一般家庭用の太陽光発電システムは、太陽光パネル1で発電された直流電力がパワーコンディショナー2で商用交流電力に変換され、家庭内の交流負荷3あるいは商用電力系統4に供給される。
An embodiment of the present invention will be described below with reference to the drawings.
In the solar power generation system for general households shown in FIG. 1, the DC power generated by the solar panel 1 is converted into commercial AC power by the power conditioner 2 and supplied to the AC load 3 or the commercial power grid 4 in the home. It

具体的には、太陽光パネル1の発電電力はPVコンバータ5で昇圧され、インバータ6で交流電圧に変換される。そして、インバータ6の変換動作によって発生する高周波成分がフィルタ7で除去された後、リレー8を介して交流負荷3あるいは商用電力系統4に供給される。 Specifically, the power generated by the solar panel 1 is boosted by the PV converter 5 and converted into an AC voltage by the inverter 6. Then, after the high frequency component generated by the conversion operation of the inverter 6 is removed by the filter 7, it is supplied to the AC load 3 or the commercial power system 4 via the relay 8.

PVコンバータ5からインバータ6に高圧直流電力を供給する高圧直流バスライン9にはDC−DCコンバータ10が接続されている。DC−DCコンバータ10は、PVコンバータ5の出力電圧を降圧した直流電圧を制御部11に出力する。 A DC-DC converter 10 is connected to a high-voltage DC bus line 9 that supplies high-voltage DC power from the PV converter 5 to the inverter 6. The DC-DC converter 10 outputs a DC voltage obtained by stepping down the output voltage of the PV converter 5 to the control unit 11.

制御部11は、DC−DCコンバータ10の直流出力電圧を電源として動作し、PVコンバータ5の昇圧動作と、インバータ6の変換動作と、リレー8の開閉動作を制御する。
パワーコンディショナー2は、上記PVコンバータ5、インバータ6、フィルタ7、リレー8、DC−DCコンバータ10及び制御部11を備えている。
The control unit 11 operates by using the DC output voltage of the DC-DC converter 10 as a power supply, and controls the boosting operation of the PV converter 5, the converting operation of the inverter 6, and the opening/closing operation of the relay 8.
The power conditioner 2 includes the PV converter 5, the inverter 6, the filter 7, the relay 8, the DC-DC converter 10, and the control unit 11.

パワーコンディショナー2には蓄電装置12がコネクタ30で着脱可能に接続される。蓄電装置12がパワーコンディショナー2にコネクタ30を介して接続されると、蓄電装置12が高圧直流バスライン(HVDCバス)9に接続される。この実施形態では、太陽光パネル1で発電されているときには、パワーコンディショナー2から高圧直流バスライン9に360Vの直流電圧が出力されている。 The power storage device 12 is detachably connected to the power conditioner 2 via a connector 30. When power storage device 12 is connected to power conditioner 2 via connector 30, power storage device 12 is connected to high-voltage DC bus line (HVDC bus) 9. In this embodiment, when the solar panel 1 is generating power, the power conditioner 2 outputs a DC voltage of 360 V to the high-voltage DC bus line 9.

蓄電装置12の具体的構成を図2に従って説明する。リチウムイオン電池等で構成される蓄電池13のプラス側端子とマイナス側端子との間には第一の電圧計14が接続されている。第一の電圧計14では、蓄電池13の端子間電圧(第一の直流電圧)が検出され、その検出電圧値V1が充放電制御部15に出力される。この実施形態では、充電状態にある蓄電池13は、300Vの直流電圧を出力する。 A specific configuration of the power storage device 12 will be described with reference to FIG. A first voltmeter 14 is connected between the positive side terminal and the negative side terminal of a storage battery 13 composed of a lithium ion battery or the like. The first voltmeter 14 detects the inter-terminal voltage (first DC voltage) of the storage battery 13, and outputs the detected voltage value V1 to the charge/discharge control unit 15. In this embodiment, the storage battery 13 in the charged state outputs a DC voltage of 300V.

蓄電池13のプラス側端子(第一の端子)は電流選択回路16及び第一の電流計17を介して昇降圧回路18に接続されている。また、電流選択回路16の第一の電流計17側の端子と蓄電池13のマイナス側端子との間には、第二の電圧計19が接続されている。第二の電圧計19では、電流選択回路16の出力電圧が検出され、その検出電圧値V2が充放電制御部15に出力される。 The positive terminal (first terminal) of the storage battery 13 is connected to the step-up/down circuit 18 via the current selection circuit 16 and the first ammeter 17. A second voltmeter 19 is connected between the terminal on the first ammeter 17 side of the current selection circuit 16 and the negative terminal of the storage battery 13. The second voltmeter 19 detects the output voltage of the current selection circuit 16 and outputs the detected voltage value V2 to the charge/discharge control unit 15.

第一の電流計17では、電流選択回路16と昇降圧回路18との間を流れる電流が検出され、その検出電流値A1が充放電制御部15に出力される。
電流選択回路16は、第三のリレースイッチ20と抵抗21との直列回路に対し第二のリレースイッチ22が並列に接続されている。第三のリレースイッチ20と第二のリレースイッチ22は、充放電制御部15から出力される制御信号RL3,RL2により開閉制御される。
In the first ammeter 17, the current flowing between the current selection circuit 16 and the step-up/down circuit 18 is detected, and the detected current value A1 is output to the charge/discharge control unit 15.
In the current selection circuit 16, the second relay switch 22 is connected in parallel to the series circuit of the third relay switch 20 and the resistor 21. Opening/closing of the third relay switch 20 and the second relay switch 22 is controlled by control signals RL3 and RL2 output from the charge/discharge control unit 15.

そして、第三のリレースイッチ20のみが閉成(導通状態)されると、蓄電池13から昇降圧回路18に向かって電流選択回路16を流れる充電電流が抵抗21により制限される。また、第二のリレースイッチ22が閉成されると、蓄電池13から昇降圧回路18に向かって電流選択回路16を流れる放電電流は制限されない。 Then, when only the third relay switch 20 is closed (conductive state), the charging current flowing from the storage battery 13 toward the step-up/down circuit 18 through the current selection circuit 16 is limited by the resistor 21. Further, when the second relay switch 22 is closed, the discharge current flowing from the storage battery 13 toward the step-up/down circuit 18 through the current selection circuit 16 is not limited.

昇降圧回路18は、コイル23とFETにてなるトランジスタ24,25で構成され、第一の電流計17と第二の電流計26及び平滑用キャパシタ27との間に介在されている。コイル23とトランジスタ24は、第一の電流計17と第二の電流計26及び平滑用キャパシタ27のプラス側端子との間に直列に介在され、トランジスタ25はコイル23とトランジスタ24との接続点と蓄電池13のマイナス側端子との間に接続されている。平滑用キャパシタ27のマイナス側端子は、蓄電池13のマイナス側端子に接続されている。 The step-up/step-down circuit 18 is composed of a coil 23 and transistors 24 and 25 formed of FETs, and is interposed between the first ammeter 17, the second ammeter 26, and the smoothing capacitor 27. The coil 23 and the transistor 24 are interposed in series between the first ammeter 17, the second ammeter 26 and the positive terminal of the smoothing capacitor 27, and the transistor 25 is a connection point between the coil 23 and the transistor 24. And a negative terminal of the storage battery 13 are connected. The negative terminal of the smoothing capacitor 27 is connected to the negative terminal of the storage battery 13.

そして、各トランジスタ24、25のゲートには、充放電制御部15から制御信号Q1,Q2が入力される。充放電制御部15は、トランジスタ24,25をPWM制御により交互にオン・オフ動作させ、そのパルス幅を制御することにより、昇降圧回路18を昇圧動作あるいは降圧動作させる。 The control signals Q1 and Q2 are input from the charge/discharge control unit 15 to the gates of the transistors 24 and 25 , respectively. The charge/discharge control unit 15 alternately turns on/off the transistors 24 and 25 by PWM control, and controls the pulse width of the transistors 24 and 25 to make the step-up/step-down circuit 18 step up or step down.

具体的には、昇圧動作時には蓄電池13から第一の電流計17を介して供給される直流電圧を昇圧して平滑用キャパシタ27に供給する。降圧動作時には、平滑用キャパシタ27の充電電圧を降圧して蓄電池13側に供給する。 Specifically, during the boosting operation, the DC voltage supplied from the storage battery 13 via the first ammeter 17 is boosted and supplied to the smoothing capacitor 27. During the step-down operation, the charging voltage of the smoothing capacitor 27 is stepped down and supplied to the storage battery 13 side.

平滑用キャパシタ27のプラス側端子は第二の電流計26及び第一のリレースイッチ29を介してコネクタ30のプラス側端子(第二の端子)に接続される。また、平滑用キャパシタ27には第三の電圧計31が並列に接続され、コネクタ30のプラス側端子とマイナス側端子との間には第四の電圧計32が接続されている。 The positive side terminal of the smoothing capacitor 27 is connected to the positive side terminal (second terminal) of the connector 30 via the second ammeter 26 and the first relay switch 29. A third voltmeter 31 is connected in parallel to the smoothing capacitor 27, and a fourth voltmeter 32 is connected between the positive side terminal and the negative side terminal of the connector 30.

第一のリレースイッチ29は充放電制御部15から出力される制御信号RL1により開閉制御される。第二の電流計26は、平滑用キャパシタ27のプラス側端子とコネクタ30のプラス側端子との間に流れる電流を検出し、その検出電流値A2を充放電制御部15に出力する。 The first relay switch 29 is opened/closed by a control signal RL1 output from the charge/discharge control unit 15. The second ammeter 26 detects a current flowing between the positive terminal of the smoothing capacitor 27 and the positive terminal of the connector 30, and outputs the detected current value A2 to the charge/discharge control unit 15.

第三の電圧計31は、平滑用キャパシタ27の充電電圧を検出し、その検出電圧値V3を充放電制御部15に出力する。第四の電圧計32は、コネクタ30のプラス側端子とマイナス側端子との端子間電圧、すなわち高圧直流バスライン9から蓄電装置12に供給される電圧(第二の直流電圧)を検出し、その検出電圧値V4を充放電制御部15に出力する。 The third voltmeter 31 detects the charging voltage of the smoothing capacitor 27 and outputs the detected voltage value V3 to the charge/discharge control unit 15. The fourth voltmeter 32 detects the voltage between the positive and negative terminals of the connector 30, that is, the voltage (second DC voltage) supplied from the high-voltage DC bus line 9 to the power storage device 12, The detected voltage value V4 is output to the charge/discharge control unit 15.

充放電制御部15は、コネクタ30の接続によりパワーコンディショナー2と通信可能である。そして、例えば蓄電装置12に設けられる起動スイッチの操作に基づいて起動され、パワーコンディショナー2との通信に基づいてあらかじめ設定されたプログラムに基づいて動作する。 The charge/discharge control unit 15 can communicate with the power conditioner 2 by connecting the connector 30. Then, for example, it is activated based on the operation of the activation switch provided in the power storage device 12, and operates based on the program set in advance based on the communication with the power conditioner 2.

充放電制御部15は、その起動時に、第一〜第四の電圧計14,19,31,32の検出電圧値に基づいて、平滑用キャパシタ27に突入電流が流れないように第一〜第三のリレースイッチ20,22,29を開閉制御する。 The charging/discharging control unit 15 starts the first to fourth voltmeters 14, 19, 31, 32 based on the detection voltage values of the first to fourth voltmeters 14 to prevent an inrush current from flowing in the smoothing capacitor 27. The third relay switch 20, 22, 29 is controlled to open and close.

次に、上記のような太陽光発電システム及び充放電制御部15の作用及び動作を図3〜図6に従って説明する。
[第一の場合]
第一の場合は、高圧直流バスライン9に電圧が印加されていない状態で蓄電装置12を高圧直流バスライン9に接続して、高圧直流バスライン9を昇圧する場合である。
Next, the operation and operation of the solar power generation system and the charge/discharge control unit 15 as described above will be described with reference to FIGS.
[First case]
In the first case, the power storage device 12 is connected to the high-voltage DC bus line 9 in a state where no voltage is applied to the high-voltage DC bus line 9, and the high-voltage DC bus line 9 is boosted.

図3に示すように、起動信号に基づいて充放電制御部15が起動されると、充放電制御部15は第四の電圧計32の検出電圧値V4が0であるか否かを判別する(ステップS1)。すなわち、高圧直流バスライン9の電圧が0であるか否かを判別する。 As shown in FIG. 3, when the charge/discharge control unit 15 is activated based on the activation signal, the charge/discharge control unit 15 determines whether or not the detected voltage value V4 of the fourth voltmeter 32 is 0. (Step S1). That is, it is determined whether or not the voltage of the high voltage DC bus line 9 is zero.

検出電圧値V4が0である場合には、充放電制御部15は第一のリレースイッチ29を閉成し(ステップS2)、次いで第三のリレースイッチ20を閉成する(ステップS3)。 When the detected voltage value V4 is 0, the charge/discharge control unit 15 closes the first relay switch 29 (step S2), and then closes the third relay switch 20 (step S3).

すると、図4に示すように、蓄電池13から第三のリレースイッチ20及び抵抗21を介して、抵抗21で制限された電流が昇降圧回路18に供給される。昇降圧回路18では、供給された電流がコイル23及びトランジスタ24のボディダイオードを経て平滑用キャパシタ27に供給される。平滑用キャパシタ27には抵抗21で制限された電流が供給されるので、平滑用キャパシタ27に突入電流が流れることはない。 Then, as shown in FIG. 4, the current limited by the resistor 21 is supplied from the storage battery 13 to the step-up/down circuit 18 via the third relay switch 20 and the resistor 21. In the step-up/down circuit 18, the supplied current is supplied to the smoothing capacitor 27 via the coil 23 and the body diode of the transistor 24. Since the smoothing capacitor 27 is supplied with the current limited by the resistor 21, no rush current flows through the smoothing capacitor 27.

この結果、第三の電圧計31の検出電圧値V3、すなわち平滑用キャパシタ27の充電電圧が緩やかに上昇する。
次いで、第三の電圧計31の検出電圧値V3が所定値、ここでは280Vに達すると、第三のリレースイッチ20が開成(不導通状態)されるとともに、第二のリレースイッチ22が閉成される(ステップS5)。
As a result, the detected voltage value V3 of the third voltmeter 31, that is, the charging voltage of the smoothing capacitor 27 gradually rises.
Next, when the detected voltage value V3 of the third voltmeter 31 reaches a predetermined value, here 280 V, the third relay switch 20 is opened (non-conducting state) and the second relay switch 22 is closed. (Step S5).

すると、蓄電池13から第二のリレースイッチ22、コイル23、トランジスタ24を介して、抵抗21で制限されない電流が平滑用キャパシタ27に供給され、平滑用キャパシタ27は300Vまで充電される。この時、蓄電池13の出力電圧と平滑用キャパシタ27の充電電圧との電位差は小さいので、平滑用キャパシタ27には突入電流は流れない。 Then, a current that is not limited by the resistor 21 is supplied to the smoothing capacitor 27 from the storage battery 13 via the second relay switch 22, the coil 23, and the transistor 24, and the smoothing capacitor 27 is charged to 300V. At this time, since the potential difference between the output voltage of the storage battery 13 and the charging voltage of the smoothing capacitor 27 is small, no rush current flows in the smoothing capacitor 27.

次いで、充放電制御部15は、パワーコンディショナー2に対し高圧直流バスライン9の電圧制御を行うための主導権を有する場合、ステップS6からステップS7に移行して、昇降圧回路18のトランジスタ24,25をPWM制御する。すると、蓄電装置12から高圧直流バスライン9に例えば360Vの昇圧電圧が供給される。 Next, when the charge/discharge control unit 15 has the initiative to control the voltage of the high-voltage DC bus line 9 with respect to the power conditioner 2, the process proceeds from step S6 to step S7, and the transistor 24 of the buck-boost circuit 18 25 is PWM-controlled. Then, boosted voltage of, for example, 360 V is supplied from power storage device 12 to high-voltage DC bus line 9.

[第二の場合]
図5に示す第二の場合は、ステップS6において、充放電制御部15がパワーコンディショナー2に対し電圧制御を行うための主導権を持たない場合である。
[Second case]
In the second case shown in FIG. 5, the charge/discharge control unit 15 does not have the initiative to control the voltage of the power conditioner 2 in step S6.

ステップS6において、充放電制御部15がパワーコンディショナー2に対し電圧制御を行うための主導権を持たない場合には、ステップS8に移行して、昇降圧回路18のPWM制御を一定時間待機する。次いで、第三及び第四の電圧計31,32の検出電圧値V3,V4が所定値以上(ここでは300V)となったとき、ステップS7に移行して昇降圧回路18のトランジスタ24,25をPWM制御する。 When the charge/discharge control unit 15 does not have the initiative to control the voltage of the power conditioner 2 in step S6, the process proceeds to step S8, and the PWM control of the step-up/down circuit 18 waits for a certain period of time. Next, when the detected voltage values V3 and V4 of the third and fourth voltmeters 31 and 32 become equal to or higher than a predetermined value (here, 300V), the process proceeds to step S7 and the transistors 24 and 25 of the step-up/down circuit 18 are turned on. PWM control.

すると、蓄電装置12により高圧直流バスライン9が例えば360Vまで昇圧される。ステップS8において、一定時間待機する代わりに、パワーコンディショナー2から出力される駆動信号の受信に基づいて、PWM制御を開始するようにすることもできる。 Then, the power storage device 12 boosts the voltage of the high-voltage DC bus line 9 to, for example, 360V. In step S8, the PWM control can be started based on the reception of the drive signal output from the power conditioner 2 instead of waiting for a certain period of time.

[第三の場合]
図6は、第三の場合を示す。第三の場合は、高圧直流バスライン9にパワーコンディショナー2から高圧電圧が供給されている状態で、蓄電装置12を高圧直流バスライン9に接続する場合である。
[Third case]
FIG. 6 shows the third case. The third case is a case where the power storage device 12 is connected to the high-voltage DC bus line 9 while the high-voltage DC bus line 9 is supplied with the high-voltage from the power conditioner 2.

ステップS1において、第四の電圧計32の検出電圧値V4、すなわち高圧直流バスライン9の電圧が0ではなく例えば360Vであると、充放電制御部15はステップS10に移行して、第三のリレースイッチ20を閉成する。すると、上記第一の場合と同様に、平滑用キャパシタ27に抵抗21で制限された電流が供給されて充電され、第三の電圧計31の検出電圧値V3すなわち平滑用キャパシタ27の充電電圧が上昇する。 In step S1, if the detected voltage value V4 of the fourth voltmeter 32, that is, the voltage of the high-voltage DC bus line 9 is not 0, for example, 360V, the charge/discharge control unit 15 proceeds to step S10, and the third The relay switch 20 is closed. Then, as in the first case, the smoothing capacitor 27 is charged with the current limited by the resistor 21, and the detected voltage value V3 of the third voltmeter 31, that is, the charging voltage of the smoothing capacitor 27 is changed. Rise.

そして、検出電圧値V3すなわち平滑用キャパシタ27の充電電圧が所定値以上(ここでは280V)に達すると、第二のリレースイッチ22を閉成するとともに、第三のリレースイッチ20を開成する(ステップS11,S12)。 Then, when the detected voltage value V3, that is, the charging voltage of the smoothing capacitor 27 reaches a predetermined value or more (280 V in this case), the second relay switch 22 is closed and the third relay switch 20 is opened (step). S11, S12).

次いで、トランジスタ24,25のPWM制御を開始して、蓄電池13の出力電圧を昇圧して平滑用キャパシタ27に供給する(ステップS13)。そして、第三の電圧計31の検出電圧値V3と第四の電圧計32の検出電圧値V4の電位差が所定範囲内となったとき(ここでは高圧直流バスライン9とほぼ同電位となったとき)、第一のリレースイッチ29を閉成して(ステップS14,S15)、動作を終了する。 Then, the PWM control of the transistors 24 and 25 is started to boost the output voltage of the storage battery 13 and supply it to the smoothing capacitor 27 (step S13). When the potential difference between the detected voltage value V3 of the third voltmeter 31 and the detected voltage value V4 of the fourth voltmeter 32 is within a predetermined range (here, the potential is almost the same as that of the high voltage DC bus line 9). At this time, the first relay switch 29 is closed (steps S14 and S15), and the operation ends.

上記のように構成された太陽光発電システムの蓄電装置では、次に示す効果を得ることができる。
(1)蓄電装置12をコネクタ30を介して高圧直流バスライン9に接続するとき、あるいは高圧直流バスライン9に接続された蓄電装置12を起動するとき、蓄電装置12の平滑用キャパシタ27への突入電流の発生を防止することができる。従って、突入電流による第一のリレースイッチ29あるいはトランジスタ24の破壊を防止することができる。
With the power storage device of the photovoltaic power generation system configured as described above, the following effects can be obtained.
(1) When the power storage device 12 is connected to the high-voltage DC bus line 9 via the connector 30 or when the power storage device 12 connected to the high-voltage DC bus line 9 is activated, the smoothing capacitor 27 of the power storage device 12 is connected to the smoothing capacitor 27. Inrush current can be prevented from occurring. Therefore, it is possible to prevent the first relay switch 29 or the transistor 24 from being damaged by the inrush current.

(2)高圧直流バスライン9に電圧が印加されてない状態で、蓄電装置12から高圧直流バスライン9に蓄電池13の直流電圧を昇圧した高圧直流電圧を供給するとき、昇降圧回路18の起動に先立って蓄電池13から第三のリレースイッチ20及び抵抗21を介して電流値の上限が制限された充電電流が平滑用キャパシタ27に供給されて充電される。従って、蓄電池13から平滑用キャパシタ27に流れる突入電流の発生を防止することができる。 (2) When the high voltage DC voltage obtained by boosting the DC voltage of the storage battery 13 is supplied from the power storage device 12 to the high voltage DC bus line 9 in a state where the voltage is not applied to the high voltage DC bus line 9, the step-up/down circuit 18 is started. Prior to the above, the charging current with the upper limit of the current value is supplied from the storage battery 13 via the third relay switch 20 and the resistor 21 to the smoothing capacitor 27 to be charged. Therefore, it is possible to prevent generation of an inrush current flowing from the storage battery 13 to the smoothing capacitor 27.

(3)平滑用キャパシタ27の充電電圧が280Vに達すると、第二のリレースイッチ22から上限値が制限されない充電電流が昇降圧回路18及び平滑用キャパシタ27に供給される。そして、平滑用キャパシタ27の充電電圧が蓄電池13の出力電圧に近い電圧となると、昇降圧回路18の昇圧動作が開始され、昇降圧回路18の出力電圧が平滑用キャパシタ27で平滑されて360Vの直流電圧として高圧直流バスライン9に出力される。従って、昇降圧回路18の動作開始時には昇降圧回路18の出力電圧と平滑用キャパシタ27の充電電圧との電位差が小さいため、昇降圧回路18から平滑用キャパシタ27に流れる突入電流の発生を防止することができる。 (3) When the charging voltage of the smoothing capacitor 27 reaches 280V, the charging current whose upper limit value is not limited is supplied from the second relay switch 22 to the step-up/down circuit 18 and the smoothing capacitor 27. Then, when the charging voltage of the smoothing capacitor 27 becomes a voltage close to the output voltage of the storage battery 13, the boosting operation of the step-up/step-down circuit 18 is started, and the output voltage of the step-up/step-down circuit 18 is smoothed by the smoothing capacitor 27 to obtain 360V. It is output to the high voltage DC bus line 9 as a DC voltage. Therefore, at the start of the operation of the step-up/step-down circuit 18, the potential difference between the output voltage of the step-up/step-down circuit 18 and the charging voltage of the smoothing capacitor 27 is small, so that the generation of an inrush current flowing from the step-up/step-down circuit 18 to the smoothing capacitor 27 is prevented. be able to.

(4)高圧直流バスライン9に360Vの高圧直流電圧が印加されている状態で蓄電装置12を起動するとき、蓄電池13から第三のリレースイッチ20及び抵抗21を介して電流値の上限が制限された充電電流で平滑用キャパシタ27を充電する。そして平滑用キャパシタ27の充電電位と高圧直流バスライン9との電位差が所定範囲内となったとき、第一のリレースイッチ29を閉成して平滑用キャパシタ27を高圧直流バスライン9に接続することができる。従って、高圧直流バスライン9から平滑用キャパシタ27に流れる突入電流の発生を防止することができる。 (4) When the high voltage DC voltage of 360V is applied to the high voltage DC bus line 9, when the power storage device 12 is started, the upper limit of the current value is limited from the storage battery 13 via the third relay switch 20 and the resistor 21. The smoothing capacitor 27 is charged with the generated charging current. When the potential difference between the charging potential of the smoothing capacitor 27 and the high voltage DC bus line 9 is within a predetermined range, the first relay switch 29 is closed to connect the smoothing capacitor 27 to the high voltage DC bus line 9. be able to. Therefore, it is possible to prevent the inrush current from flowing from the high voltage DC bus line 9 to the smoothing capacitor 27.

(5)高圧直流バスライン9から平滑用キャパシタ27に360Vの高圧直流電圧が供給されている状態で、昇降圧回路18を降圧動作させると、300Vの蓄流電圧で蓄電池13を充電することができる。 (5) When the buck-boost circuit 18 is stepped down while the high-voltage DC bus line 9 supplies a high-voltage DC voltage of 360 V to the smoothing capacitor 27, the storage battery 13 can be charged with a stored voltage of 300 V. it can.

(6)第一のリレースイッチ29には、第三のリレースイッチ20及び抵抗21に相当する電流制限回路を並列に接続することなく、高圧直流バスライン9から平滑用キャパシタ27への突入電流の発生を防止することができる。従って、第一のリレースイッチ29に並列にリレースイッチ及び抵抗を接続する必要がないので、蓄電装置12の部品コストを低減することができるとともに、蓄電装置12を小型化することができる。 (6) The inrush current from the high voltage DC bus line 9 to the smoothing capacitor 27 is connected to the first relay switch 29 without connecting a current limiting circuit corresponding to the third relay switch 20 and the resistor 21 in parallel. Occurrence can be prevented. Therefore, since it is not necessary to connect the relay switch and the resistor in parallel to the first relay switch 29, it is possible to reduce the cost of parts of the power storage device 12 and to downsize the power storage device 12.

なお、上記実施形態は以下のように変更してもよい。
・第三のリレースイッチ20は、半導体スイッチで構成してもよい。
・充放電制御部15は、例えば、実施形態で説明した種々の制御を実現するように構成されたコンピュータ可読命令を格納した1つ以上のメモリと、そのコンピュータ可読命令を実行するように構成された1つ以上のプロセッサとを備えてもよい。または、充放電制御部15は、特定用途向けIC(ASIC)等の集積回路であってもよい。
The above embodiment may be modified as follows.
The third relay switch 20 may be a semiconductor switch.
The charge/discharge control unit 15 is configured to execute, for example, one or more memories that store computer-readable instructions configured to realize various controls described in the embodiments, and the computer-readable instructions. And one or more processors. Alternatively, the charge/discharge control unit 15 may be an integrated circuit such as an application-specific IC (ASIC).

2…パワーコンディショナー、9…高圧直流バスライン、12…蓄電装置、15…充放電制御部、16…電流選択回路、18…昇降圧回路、20…制限電流側リレースイッチ(第三のリレースイッチ)、21…抵抗、22…非制限電流側リレースイッチ(第二のリレースイッチ)、23…コイル、24,25…トランジスタ、27…平滑用キャパシタ、29…スイッチ回路(第一のリレースイッチ)、30…コネクタ、31…充電電圧検出用電圧計(第三の電圧計)、32…高圧電圧検出用電圧計(第四の電圧計)。 2... Power conditioner, 9... High-voltage DC bus line, 12... Power storage device, 15... Charge/discharge control unit, 16... Current selection circuit, 18... Buck-boost circuit, 20... Limited current side relay switch (third relay switch) , 21... Resistor, 22... Non-restricted current side relay switch (second relay switch), 23... Coil, 24, 25... Transistor, 27... Smoothing capacitor, 29... Switch circuit (first relay switch), 30 ... connector, 31... voltmeter for detecting charging voltage (third voltmeter), 32... voltmeter for detecting high voltage (fourth voltmeter).

Claims (6)

第一の端子に供給される低電圧側の第一の直流電圧をPWM制御により昇圧して第二の端子に出力する昇圧動作と、前記第二の端子に供給される高電圧側の第二の直流電圧をPWM制御により降圧して前記第一の端子に出力する降圧動作を行う昇降圧回路と、
前記第二の端子と前記昇降圧回路との間に接続されて、前記昇降圧回路の昇圧出力電圧を平滑する平滑用キャパシタと、
前記第一の端子と前記昇降圧回路との間に介在されて、前記平滑用キャパシタに供給される充電電流を制限電流と非制限電流のいずれかに切り替える電流選択回路と、
前記平滑用キャパシタと前記第二の端子との間に介在されるスイッチ回路と、
前記平滑用キャパシタが充電されていない状態から前記昇圧動作を開始するときには、前記制限電流で前記平滑用キャパシタを充電した後に前記非制限電流を前記昇降圧回路に供給して前記昇圧動作を開始し、前記第二の端子に前記第二の直流電圧が供給されているときには、前記制限電流で前記平滑用キャパシタを充電した後に前記昇圧動作による昇圧電圧で前記平滑用キャパシタを充電し、前記平滑用キャパシタの充電電圧と前記第二の直流電圧との電位差を縮小した後に前記スイッチ回路を閉成する充放電制御部と
を備えたことを特徴とする蓄電装置用昇降圧装置。
A step-up operation of stepping up the low-voltage side first DC voltage supplied to the first terminal by PWM control and outputting the boosted voltage to the second terminal, and a second step of the high-voltage side supplied to the second terminal. A step-up/down circuit for performing a step-down operation of stepping down the DC voltage of the device by PWM control and outputting the voltage to the first terminal,
A smoothing capacitor connected between the second terminal and the step-up/down circuit to smooth the boosted output voltage of the step-up/down circuit;
A current selection circuit interposed between the first terminal and the step-up/down circuit to switch the charging current supplied to the smoothing capacitor to either a limited current or a non-limited current,
A switch circuit interposed between the smoothing capacitor and the second terminal,
When starting the boosting operation from a state where the smoothing capacitor is not charged, after charging the smoothing capacitor with the limiting current, the non-limiting current is supplied to the buck-boost circuit to start the boosting operation. When the second DC voltage is supplied to the second terminal, the smoothing capacitor is charged with the boosted voltage by the boosting operation after charging the smoothing capacitor with the limiting current, and the smoothing capacitor is charged with the smoothing capacitor. A step-up/down device for a power storage device, comprising: a charge/discharge control unit that closes the switch circuit after reducing a potential difference between a charging voltage of a capacitor and the second DC voltage.
充放電可能とした蓄電池と、
前記蓄電池から供給される低電圧側の第一の直流電圧をPWM制御により昇圧してコネクタを介して高圧直流バスラインに出力する昇圧動作と、前記高圧直流バスラインから前記コネクタに供給される高電圧側の第二の直流電圧をPWM制御により降圧して前記蓄電池に供給する降圧動作を行う昇降圧回路と、
前記コネクタと前記昇降圧回路との間に接続されて、前記昇降圧回路の昇圧出力電圧を平滑する平滑用キャパシタと、
前記蓄電池と前記昇降圧回路との間に介在されて、前記平滑用キャパシタに供給される充電電流を制限電流と非制限電流のいずれかに切り替える電流選択回路と、
前記平滑用キャパシタと前記高圧直流バスラインとの間に介在されるスイッチ回路と、
前記平滑用キャパシタが充電されていない状態から前記昇圧動作を開始するときには、前記制限電流で前記平滑用キャパシタを充電した後に前記非制限電流を前記昇降圧回路に供給して前記昇圧動作を開始し、前記高圧直流バスラインから前記コネクタに前記第二の直流電圧が供給されているときには、前記制限電流で前記平滑用キャパシタを充電した後に前記昇圧動作による昇圧電圧で前記平滑用キャパシタを充電し、前記平滑用キャパシタの充電電圧と前記第二の直流電圧との電位差を縮小した後に前記スイッチ回路を閉成する充放電制御部と
を備えたことを特徴とする蓄電装置。
A storage battery that can be charged and discharged,
A step-up operation of stepping up the low-voltage side first DC voltage supplied from the storage battery by PWM control and outputting the boosted voltage to the high-voltage DC bus line via the connector, and a high-voltage supplied from the high-voltage DC bus line to the connector. A step-up/down circuit that performs a step-down operation of stepping down the second DC voltage on the voltage side by PWM control and supplying it to the storage battery;
A smoothing capacitor connected between the connector and the step-up/down circuit to smooth the boosted output voltage of the step-up/down circuit;
A current selection circuit that is interposed between the storage battery and the step-up/down circuit and switches the charging current supplied to the smoothing capacitor to either a limited current or a non-limited current,
A switch circuit interposed between the smoothing capacitor and the high-voltage DC bus line,
When starting the boosting operation from a state where the smoothing capacitor is not charged, after charging the smoothing capacitor with the limiting current, the non-limiting current is supplied to the buck-boost circuit to start the boosting operation. When the second DC voltage is supplied from the high-voltage DC bus line to the connector, the smoothing capacitor is charged with the boost voltage by the boosting operation after charging the smoothing capacitor with the limiting current, A power storage device comprising: a charge/discharge control unit that closes the switch circuit after reducing the potential difference between the charging voltage of the smoothing capacitor and the second DC voltage.
請求項2に記載の蓄電装置において、
前記スイッチ回路は、前記コネクタと前記平滑用キャパシタとの間に介在されるリレースイッチで構成したことを特徴とする蓄電装置。
The power storage device according to claim 2,
The power storage device, wherein the switch circuit comprises a relay switch interposed between the connector and the smoothing capacitor.
請求項2又は3に記載の蓄電装置において、
前記電流選択回路は、
制限電流側リレースイッチと抵抗との直列回路に、非制限電流側リレースイッチを並列に接続して構成し、
前記充放電制御部は、前記制限電流を前記平滑用キャパシタに供給するとき、前記制限電流側リレースイッチのみを閉成することを特徴とする蓄電装置。
The power storage device according to claim 2 or 3,
The current selection circuit,
In the series circuit of the limiting current side relay switch and the resistor, the non-limiting current side relay switch is connected in parallel,
The charge/discharge control unit closes only the limit current side relay switch when supplying the limit current to the smoothing capacitor.
請求項2乃至4のいずれか1項に記載の蓄電装置において、
前記平滑用キャパシタの充電電圧を検出する充電電圧検出用電圧計と、
前記第二の直流電圧を検出する高圧電圧検出用電圧計と
を備え、
前記充放電制御部は、前記充電電圧検出用電圧計の検出電圧と、前記高圧電圧検出用電圧計の検出電圧との電位差の縮小に基づいて前記スイッチ回路を閉成することを特徴とする蓄電装置。
The power storage device according to any one of claims 2 to 4,
A charging voltage detecting voltmeter for detecting the charging voltage of the smoothing capacitor,
A high voltage detecting voltmeter for detecting the second DC voltage,
The charging/discharging control unit closes the switch circuit based on reduction of a potential difference between a detection voltage of the charging voltage detecting voltmeter and a detection voltage of the high voltage detecting voltmeter. apparatus.
請求項2乃至5のいずれか1項に記載の蓄電装置において、
前記昇降圧回路は、前記電流選択回路からコイル及びトランジスタのボディダイオードを介して前記平滑用キャパシタに充電電流を供給することを特徴とする蓄電装置。
The power storage device according to any one of claims 2 to 5,
The step-up/down circuit supplies a charging current from the current selection circuit to the smoothing capacitor via a coil and a body diode of a transistor.
JP2019541963A 2017-09-15 2018-08-21 Buck-boost device for power storage device and power storage device Active JP6711466B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017177667 2017-09-15
JP2017177667 2017-09-15
PCT/JP2018/030823 WO2019054138A1 (en) 2017-09-15 2018-08-21 Step-up/down device for power storage device and power storage device

Publications (2)

Publication Number Publication Date
JP6711466B2 true JP6711466B2 (en) 2020-06-17
JPWO2019054138A1 JPWO2019054138A1 (en) 2020-07-09

Family

ID=65722676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019541963A Active JP6711466B2 (en) 2017-09-15 2018-08-21 Buck-boost device for power storage device and power storage device

Country Status (4)

Country Link
US (1) US10826318B2 (en)
JP (1) JP6711466B2 (en)
CN (1) CN111095713B (en)
WO (1) WO2019054138A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058821A1 (en) * 2017-09-22 2019-03-28 株式会社村田製作所 Power storage apparatus
JP7196826B2 (en) * 2019-12-13 2022-12-27 株式会社オートネットワーク技術研究所 SWITCH DEVICE, CURRENT DETERMINATION METHOD AND COMPUTER PROGRAM
WO2023073681A1 (en) * 2021-10-26 2023-05-04 Universitas Indonesia Dc-dc converter for household appliances

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276193B2 (en) * 2005-03-03 2009-06-10 株式会社明電舎 Charging method for instantaneous voltage drop compensator
JP3907123B1 (en) * 2006-02-17 2007-04-18 株式会社パワーシステム Charging device for capacitor storage power supply
JP4552904B2 (en) 2006-06-23 2010-09-29 トヨタ自動車株式会社 Vehicle power supply device and vehicle equipped with the same
JP5358990B2 (en) * 2008-03-21 2013-12-04 株式会社明電舎 Power converter
WO2010052947A1 (en) * 2008-11-04 2010-05-14 株式会社村田製作所 Vehicular power unit
JP2011010508A (en) * 2009-06-29 2011-01-13 Toyota Motor Corp Electric power supply system
EP2717416B1 (en) * 2011-05-27 2016-01-06 Toyota Jidosha Kabushiki Kaisha Power source system, vehicle comprising power source system, and method for controlling power source system
JP5767873B2 (en) * 2011-06-28 2015-08-26 株式会社東芝 Power storage device and power storage system
JP5850164B2 (en) * 2012-08-30 2016-02-03 株式会社安川電機 Power storage device
JP6065920B2 (en) * 2012-12-21 2017-01-25 トヨタ自動車株式会社 Charge control device using in-vehicle solar cell
JP2014128164A (en) * 2012-12-27 2014-07-07 Noritz Corp Power conditioner and photovoltaic power generation system
WO2016157962A1 (en) * 2015-03-30 2016-10-06 株式会社村田製作所 Power supply device
JP6722058B2 (en) * 2015-10-22 2020-07-15 株式会社デンソー Power system controller

Also Published As

Publication number Publication date
CN111095713A (en) 2020-05-01
JPWO2019054138A1 (en) 2020-07-09
CN111095713B (en) 2023-05-23
US20200203985A1 (en) 2020-06-25
US10826318B2 (en) 2020-11-03
WO2019054138A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
JP6741169B2 (en) Power supply device, power control device, power supply device relay determination method
US9479060B2 (en) Control circuit, battery power supply device and control method
US20140049994A1 (en) Device for synchronous dc-dc conversion and synchronous dc-dc converter
JP6330822B2 (en) Fuel cell system and control method thereof
JP6711466B2 (en) Buck-boost device for power storage device and power storage device
JP2011530969A (en) Device, system and method for linking multiple solar cell arrays
JP5284447B2 (en) Distributed power system
EP3553928A1 (en) Snubber circuit and power conversion system using same
US20190237994A1 (en) Uninterruptible power supply
EP1511152A1 (en) Uninterruptible power supply
CN108832710B (en) Charging and discharging balance converter for uninterrupted power supply
CN108574404B (en) Duty ratio control circuit and soft start method of bidirectional DCDC converter
CN110855170A (en) Photovoltaic inverter and capacitor discharge circuit
WO2016157962A1 (en) Power supply device
JP2015056933A (en) Power conversion apparatus
JP6962379B2 (en) Power storage device
KR20200116585A (en) System and method for vehicle start using solar cell
JP6300664B2 (en) Railway vehicle power circuit
JP6296878B2 (en) Grid-connected inverter and generated power estimation method
JP6922784B2 (en) Power converter and power conversion system
JP6146663B2 (en) Charging circuit and flash discharge lamp lighting device
JP2005110410A (en) Charge control unit of accumulator battery
WO2019065420A1 (en) Power conditioner and photovoltaic power generation system
JP2012115060A (en) Power supply unit
JP2022136925A (en) DC/DC converter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200310

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150