JP6231900B2 - Photovoltaic power generation facility for grid connection - Google Patents

Photovoltaic power generation facility for grid connection Download PDF

Info

Publication number
JP6231900B2
JP6231900B2 JP2014027590A JP2014027590A JP6231900B2 JP 6231900 B2 JP6231900 B2 JP 6231900B2 JP 2014027590 A JP2014027590 A JP 2014027590A JP 2014027590 A JP2014027590 A JP 2014027590A JP 6231900 B2 JP6231900 B2 JP 6231900B2
Authority
JP
Japan
Prior art keywords
transformer
interconnection
auxiliary
breaker
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014027590A
Other languages
Japanese (ja)
Other versions
JP2015154642A (en
Inventor
貴志 森本
貴志 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2014027590A priority Critical patent/JP6231900B2/en
Publication of JP2015154642A publication Critical patent/JP2015154642A/en
Application granted granted Critical
Publication of JP6231900B2 publication Critical patent/JP6231900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

本発明は、太陽電池アレイが発電した直流電力を交流電力に変換した後、配電系統の配電線に供給するようにした系統連系用太陽光発電設備に関するものである。   The present invention relates to a grid interconnection solar power generation facility that converts DC power generated by a solar cell array into AC power and then supplies it to a distribution line of a distribution system.

太陽電池アレイが発電した直流電力を交流電力に変換して配電系統に供給する系統連系用太陽光発電設備は、例えば図2に示した単線結線図のように構成される。図2において、1は6,600Vの高圧配電線、2は太陽電池アレイ、3は、太陽電池アレイ2が出力する直流電圧を商用周波数の三相交流電圧に変換するインバータを備えたパワーコンディショナ(PCS)4と、補機5と、補機5への通電回路に過電流及び事故電流が流れた時に補機5への通電を停止する配線用遮断器(MCCB)6とを金属ケース7内に収容して構成したパワーコンディショナ盤である。補機5は、パワーコンディショナ4を冷却する送風機や、盤内を照明する照明器具等を含む補助的な機器である。   The grid-connection solar power generation facility that converts the DC power generated by the solar cell array into AC power and supplies it to the distribution system is configured, for example, as shown in the single-line diagram shown in FIG. In FIG. 2, 1 is a high-voltage distribution line of 6,600V, 2 is a solar cell array, 3 is a power conditioner including an inverter that converts a DC voltage output from the solar cell array 2 into a commercial-phase three-phase AC voltage. (PCS) 4, auxiliary machine 5, and circuit breaker (MCCB) 6 for stopping energization of auxiliary machine 5 when an overcurrent and an accident current flow through the energization circuit to auxiliary machine 5 It is a power conditioner panel that is housed and configured inside. The auxiliary machine 5 is an auxiliary device including a blower that cools the power conditioner 4 and a lighting device that illuminates the interior of the panel.

10は、パワーコンディショナ4が出力する三相交流電圧を高圧配電線1の電圧まで昇圧する連系用変圧器で、昇圧変圧器11を絶縁媒体とともにタンク12内に収容することにより構成される。   Reference numeral 10 denotes an interconnection transformer that boosts the three-phase AC voltage output from the power conditioner 4 to the voltage of the high-voltage distribution line 1 and is configured by housing the step-up transformer 11 in the tank 12 together with the insulating medium. .

昇圧変圧器11の二次側は、高圧連系盤15に接続されている。高圧連系盤15は、系統連系用変圧器10の二次側と三相の高圧配電線1との間に挿入される三相の遮断器16と、変圧器10側から遮断器16に流れ込む電流を検出する変流器(CT)17と、変流器17の出力から過電流が検出されたときに一定の時限後に遮断器16に遮断指令を与え、変流器17の出力から短絡電流が検出されたときには直ちに遮断器16に遮断指令を与える保護継電器(OCR)18とを金属ケース19内に収容したものである。   The secondary side of the step-up transformer 11 is connected to the high-voltage interconnection panel 15. The high-voltage interconnection panel 15 includes a three-phase circuit breaker 16 inserted between the secondary side of the grid interconnection transformer 10 and the three-phase high-voltage distribution line 1, and the circuit breaker 16 from the transformer 10 side. A current transformer (CT) 17 that detects the current that flows in, and when an overcurrent is detected from the output of the current transformer 17, a shut-off command is given to the circuit breaker 16 after a certain period of time, and a short circuit occurs from the output of the current transformer 17 A protective relay (OCR) 18 that immediately gives a break command to the breaker 16 when a current is detected is housed in a metal case 19.

図示の例では、遮断器16として真空開閉器(VCB)が用いられており、パワーコンディショナ盤3と高圧連系盤15との間の回路に事故電流が流れたときに、事故電流が配電線1に注入されるのを防ぐために、遮断器16を開いて昇圧変圧器11とその一次側につながる回路とを高圧配電線1から解列する。   In the illustrated example, a vacuum switch (VCB) is used as the circuit breaker 16, and when an accident current flows through the circuit between the power conditioner panel 3 and the high voltage interconnection panel 15, the accident current is distributed. In order to prevent injection into the electric wire 1, the circuit breaker 16 is opened, and the step-up transformer 11 and the circuit connected to the primary side thereof are disconnected from the high-voltage distribution line 1.

図2において25は、パワーコンディショナ盤7内の補機に電源電圧を与える補機電源盤である。図示の補機電源盤25は、昇圧変圧器11の出力電圧を降圧する補機変圧器26と、一端が補機変圧器26の一次端子に接続されて、補機変圧器26への入力を開閉する三相の負荷開閉器(LBS)27と、補機変圧器26の二次電流を開閉する配線用遮断器(MCCB)28とをケース29内に収容したものである。図示の例では、負荷開閉器27が、可動接触子の内部に高圧ヒューズを内蔵した高圧カットアウトスイッチからなっていて、補機電源盤25内の回路を過電流及び事故電流が流れたときに可動接触子内に設けられたヒューズが溶断して補機変圧器26とその二次側の回路とを高圧配電線1から解列する。   In FIG. 2, reference numeral 25 denotes an auxiliary machine power supply panel that applies a power supply voltage to the auxiliary machine in the power conditioner board 7. The auxiliary machine power supply panel 25 shown in the figure has an auxiliary machine transformer 26 that steps down the output voltage of the step-up transformer 11 and one end connected to the primary terminal of the auxiliary machine transformer 26, and inputs to the auxiliary machine transformer 26. A three-phase load switch (LBS) 27 that opens and closes and a circuit breaker (MCCB) 28 that opens and closes the secondary current of the auxiliary transformer 26 are accommodated in a case 29. In the illustrated example, the load switch 27 is composed of a high voltage cutout switch with a high voltage fuse built in the movable contact, and when an overcurrent and an accident current flow through the circuit in the auxiliary machine power panel 25. The fuse provided in the movable contact is melted to disconnect the auxiliary transformer 26 and the secondary circuit from the high-voltage distribution line 1.

なお補機変圧器26の一次側をパワーコンディショナの出力端に接続することも考えられるが、補機変圧器26の一次側をパワーコンディショナの出力端に接続すると、パワーコンディショナから補機変圧器側に大きな負荷電流が流れるため、損失が多くなり、好ましくない。これに対し、上記のように、補機変圧器26の一次側を昇圧変圧器11の二次側に接続するようにすると、補機変圧器26に流れる負荷電流を少なくすることができるため、損失を少なくすることができる。   Although it is conceivable to connect the primary side of the auxiliary transformer 26 to the output end of the power conditioner, if the primary side of the auxiliary transformer 26 is connected to the output end of the power conditioner, the auxiliary conditioner is connected to the auxiliary machine. Since a large load current flows to the transformer side, the loss increases, which is not preferable. In contrast, if the primary side of the auxiliary transformer 26 is connected to the secondary side of the step-up transformer 11 as described above, the load current flowing through the auxiliary transformer 26 can be reduced. Loss can be reduced.

図2に示された系統連系型太陽光発電設備と類似の構成を有する設備は、例えば特許文献1に示されている。またパワーコンディショナが、パワーコンディショナ4を冷却する送風機や、盤内を照明する照明器具等の補機を必要とすることは,例えば特許文献2に示されている。   A facility having a configuration similar to that of the grid-connected photovoltaic power generation facility shown in FIG. 2 is disclosed in Patent Document 1, for example. Further, for example, Patent Document 2 shows that the power conditioner requires an auxiliary device such as a blower for cooling the power conditioner 4 and a lighting fixture for illuminating the inside of the panel.

特開2013−544484号公報JP 2013-544484 A 特開2013−143809号公報JP 2013-143809 A

図2に示した従来の太陽光発電設備では、連系変圧器10とは別に、補機変圧器26を負荷開閉器27及び配線用遮断器28と共にケース29内に収納して構成した補機電源盤25を設けていたため、発電設備に設ける盤の数が多くなり、太陽光発電設備の構成が複雑になるという問題があった。また補機電源盤25内には、事故発生時に補機変圧器26を系統から解列するために負荷開閉器27を設けると共に、補機変圧器の二次側回路を流れる過電流を遮断するための配線用遮断器28を設けていたため、部品点数が多くなり、コストが高くなるのを避けられなかった。   In the conventional photovoltaic power generation facility shown in FIG. 2, in addition to the interconnection transformer 10, an auxiliary machine 26 is configured such that an auxiliary machine transformer 26 is housed in a case 29 together with a load switch 27 and a wiring circuit breaker 28. Since the power supply panel 25 is provided, there is a problem in that the number of panels provided in the power generation facility increases, and the configuration of the solar power generation facility becomes complicated. In addition, a load switch 27 is provided in the auxiliary machine power panel 25 to disconnect the auxiliary transformer 26 from the system when an accident occurs, and an overcurrent flowing through the secondary circuit of the auxiliary transformer is cut off. Since the circuit breaker 28 for wiring is provided, it is inevitable that the number of parts increases and the cost increases.

本発明の目的は、従来必要とした補機電源盤を省略して発電設備を構成する盤の数を少なくするとともに、昇圧変圧器を系統から解列する遮断器を補機変圧器を系統から解列する開閉器として共用し、またパワーコンディショナ盤内に設けられた配線遮断器を補機変圧器の過負荷電流を遮断する配線用遮断器として共用することにより、部品点数を削減して構成の簡素化とコストの低減とを図ることができるようにした系統連系用太陽光発電設備を提供することにある。   The purpose of the present invention is to reduce the number of panels constituting the power generation equipment by omitting the conventionally required auxiliary power supply panel, and to provide a circuit breaker for disconnecting the step-up transformer from the system. The number of parts can be reduced by sharing the circuit breaker for disconnecting and sharing the circuit breaker provided in the inverter cabinet as the circuit breaker for interrupting the overload current of the auxiliary transformer. An object of the present invention is to provide a grid-connected solar power generation facility that can simplify the configuration and reduce the cost.

本発明は、太陽電池アレイが出力する直流電圧を商用周波数の交流電圧に変換するインバータを備えたパワーコンディショナと、パワーコンディショナが出力する交流電圧を連系する配電系統の電圧まで昇圧する昇圧変圧器と、昇圧変圧器の二次側の電圧を変圧してパワーコンディショナを冷却する送風機を含む補機に与える電源電圧を出力する補機変圧器と、昇圧変圧器の二次側と配電系統の配電線との間に挿入される連系遮断器と、連系遮断器に流れ込む電流を検出する連系用電流検出器と、前記連系用電流検出器により検出される電流が設定値以上であるときに前記連系遮断器に遮断指令を与える連系用保護継電器と、前記補機変圧器の二次側に過負荷電流が流れたときに該過負荷電流を遮断する配線用遮断器とを備えた系統連系用太陽光発電設備を対象としたものである。   The present invention relates to a power conditioner including an inverter that converts a DC voltage output from a solar cell array into an AC voltage having a commercial frequency, and a booster that boosts the AC voltage output from the power conditioner to a voltage of a distribution system connected to the power conditioner. A transformer, an auxiliary transformer that outputs a power supply voltage to an auxiliary machine including a blower that transforms a voltage on the secondary side of the step-up transformer and cools the power conditioner, and a secondary side of the step-up transformer and the power distribution A connection breaker inserted between the distribution lines of the system, a connection current detector for detecting a current flowing into the connection breaker, and a current detected by the connection current detector are set values. A connection protection relay that gives a disconnection command to the connection breaker when it is above, and a wiring break that cuts off the overload current when an overload current flows to the secondary side of the auxiliary transformer For grid connection with It is intended for photovoltaic equipment.

本発明においては、前記の目的を達成するため、昇圧変圧器と補機変圧器とが共通のタンク内に収容されて補機電源機能付き連系変圧器が構成される。またパワーコンディショナと、補機と、配線用遮断器とが共通のケース内に収容されてパワーコンディショナ盤が構成され、昇圧変圧器の二次側から補機変圧器の一次側に流れ込む電流を検出する補機変圧器一次電流検出器と、補機変圧器一次電流検出器が設定値以上の電流を検出したときに連系遮断器に遮断指令を与える補機変圧器解列用保護継電器とが、連系遮断器と、連系用電流検出器と、連系用保護継電器とともに共通のケース内に収容されて高圧連系盤が構成される。本発明においては、連系遮断器が、補機変圧器に設定値以上の電流が流れ込んだときに補機変圧器を配電線から解列する開閉器を兼ねている。   In the present invention, in order to achieve the above object, the step-up transformer and the auxiliary transformer are accommodated in a common tank to constitute an interconnected transformer with an auxiliary power function. Also, the power conditioner, auxiliary equipment, and circuit breaker are housed in a common case to form a power conditioner panel, and the current that flows from the secondary side of the step-up transformer to the primary side of the auxiliary transformer Auxiliary transformer primary current detector, and a protective relay for disconnecting the auxiliary transformer that gives a disconnection command to the interconnection breaker when the auxiliary transformer primary current detector detects a current exceeding the set value Are housed in a common case together with the interconnection breaker, the interconnection current detector, and the interconnection protection relay to constitute a high voltage interconnection panel. In the present invention, the interconnection breaker also serves as a switch for disconnecting the auxiliary transformer from the distribution line when a current exceeding the set value flows into the auxiliary transformer.

本発明によれば、パワーコンディショナが出力する交流電圧を連系する配電系統の電圧まで昇圧する昇圧変圧器と、パワーコンディショナ盤内の補機に電源電圧を供給する補機変圧器とを共通のタンク内に収容して、補機電源機能付き昇圧変圧器を構成したので、従来必要とした補機電源盤を省略して設備に設ける盤の数を少なくすることができる。   According to the present invention, the step-up transformer that boosts the AC voltage output from the power conditioner to the voltage of the power distribution system, and the auxiliary transformer that supplies the power supply voltage to the auxiliary machine in the power conditioner panel. Since the step-up transformer with auxiliary power supply function is configured in a common tank, it is possible to reduce the number of panels provided in the facility by omitting the auxiliary power supply panel that has been required conventionally.

また本発明によれば、昇圧変圧器を系統から解列する遮断器を補機変圧器を系統から解列する開閉器として共用し、またパワーコンディショナ盤内に設けられた配線遮断器を補機変圧器の過負荷電流を遮断する配線用遮断器として共用するようにしたので、部品点数を削減してコストの低減を図ることができる。   Further, according to the present invention, the circuit breaker for disconnecting the step-up transformer from the system is shared as a switch for disconnecting the auxiliary transformer from the system, and the circuit breaker provided in the power conditioner panel is supplemented. Since it is shared as a circuit breaker for cutting off the overload current of the machine transformer, the number of parts can be reduced and the cost can be reduced.

本発明の実施形態の構成を示した単線結線図である。It is the single line connection figure which showed the structure of embodiment of this invention. 従来の系統連系用太陽光発電設備の構成を示した単線結線図である。It is the single line connection figure which showed the structure of the conventional grid connection photovoltaic power generation equipment.

図1は、本発明に係る系統連系用太陽光発電設備の構成例を示した単線結線図である。同図において、1は6,600Vの高圧配電線、2は太陽電池セルを縦横に並べて構成した太陽電池モジュールを更に複数個並べて構成した太陽電池アレイである。太陽電池アレイ2は、一般には複数台設けられて日照条件がよい場所に設置されている。   FIG. 1 is a single-line connection diagram showing a configuration example of a grid interconnection photovoltaic power generation facility according to the present invention. In the figure, reference numeral 1 denotes a high-voltage distribution line of 6,600V, and 2 denotes a solar cell array configured by further arranging a plurality of solar cell modules configured by arranging solar cells vertically and horizontally. The solar cell array 2 is generally installed in a place where a plurality of solar cell arrays 2 are provided and the sunshine conditions are good.

3は、パワーコンディショナ(PCS)4と、補機5と、補機5への通電回路に過電流及び事故電流が流れた時に補機5への通電を停止する配線用遮断器(MCCB)6とを接地電位に保たれる金属ケース7内に収容して構成したパワーコンディショナ盤である。パワーコンディショナ4は、太陽電池アレイ2が出力する直流電圧を昇圧するチョッパや、チョッパにより昇圧された直流電圧を商用周波数の三相交流電圧に変換するインバータや、インバータの出力から高調波を除去するフィルタ等を備えた公知のものである。パワーコンディショナ盤3内には、太陽電池アレイの出力電圧を最大出力を取り出すことができる電圧に保つようにパワーコンディショナ4を制御する制御装置等が更に収容されているがこれらの図示は省略されている。   3 is a power conditioner (PCS) 4, an auxiliary machine 5, and a circuit breaker (MCCB) that stops energization of the auxiliary machine 5 when an overcurrent and an accident current flow through the energization circuit to the auxiliary machine 5. 6 is a power conditioner panel constructed by housing 6 in a metal case 7 maintained at the ground potential. The power conditioner 4 removes harmonics from the chopper that boosts the DC voltage output from the solar cell array 2, the inverter that converts the DC voltage boosted by the chopper into a three-phase AC voltage of commercial frequency, and the output of the inverter. It is a well-known thing provided with the filter etc. which do. The power conditioner panel 3 further accommodates a control device for controlling the power conditioner 4 so as to keep the output voltage of the solar cell array at a voltage at which the maximum output can be taken out. Has been.

パワーコンディショナ盤3のケース7には、パワーコンディショナ4の入力端子に接続された正負の直流入力端子3aと、パワーコンディショナ4の交流出力端子に接続された三相の交流出力端子3bと、配線用遮断器6を通して補機5に接続される三相の交流入力端子3cとが取り付けられ、太陽電池アレイ2の直流出力が直流遮断器8と直流入力端子3aとを通してパワーコンディショナ4に入力されている。補機5は、パワーコンディショナ4を制御する制御装置や、パワーコンディショナ4を冷却する送風機や、盤内を照明する照明器具等を含む補助的な機器(パワーコンディショナ以外の機器)である。   The case 7 of the power conditioner panel 3 includes positive and negative DC input terminals 3 a connected to the input terminals of the power conditioner 4, and three-phase AC output terminals 3 b connected to the AC output terminal of the power conditioner 4. A three-phase AC input terminal 3c connected to the auxiliary machine 5 through the wiring breaker 6 is attached, and the DC output of the solar cell array 2 is supplied to the power conditioner 4 through the DC breaker 8 and the DC input terminal 3a. Have been entered. The auxiliary machine 5 is an auxiliary device (equipment other than the power conditioner) including a control device that controls the power conditioner 4, a blower that cools the power conditioner 4, a lighting device that illuminates the interior of the panel, and the like. .

図1において、30は補機電源機能付き連系変圧器で、パワーコンディショナ4が出力する100V又は200Vの低圧交流電圧を、連系する配電系統の高圧配電線1の電圧(6600V)まで昇圧する昇圧変圧器11と、昇圧変圧器11の二次側の電圧を変圧してパワーコンディショナ盤3内の補機に与える電源電圧(この例では100V)を出力する補機変圧器26とを共通のタンク31内に絶縁媒体とともの収容することにより構成される。補機電源機能付き連系変圧器30の設置面積を縮小するため、昇圧変圧器11と補機変圧器26とは、横に並べるのではなく、昇圧変圧器11の上に補機変圧器26を重ねて配置して、補機変圧器26の鉄心を昇圧変圧器11の鉄心に機械的に支持する構造にするのが好ましい。   In FIG. 1, reference numeral 30 denotes an interconnection transformer with an auxiliary power supply function, which boosts a low-voltage AC voltage of 100 V or 200 V output from the power conditioner 4 to a voltage (6600 V) of the high-voltage distribution line 1 of the interconnection system. A step-up transformer 11 and an auxiliary transformer 26 that transforms the voltage on the secondary side of the step-up transformer 11 and outputs a power supply voltage (100 V in this example) to the auxiliary device in the power conditioner panel 3. It is configured by being housed together with an insulating medium in a common tank 31. In order to reduce the installation area of the interconnection transformer 30 with the auxiliary power supply function, the step-up transformer 11 and the auxiliary transformer 26 are not arranged side by side, but on the step-up transformer 11. Are preferably arranged so that the iron core of the auxiliary transformer 26 is mechanically supported by the iron core of the step-up transformer 11.

本実施形態において、発電設備内の交流回路は、殆ど三相回路であって、昇圧変圧器11及び補機変圧器26は共に三相変圧器であるため、タンク30には、昇圧変圧器11の三相の一次端子に接続された一次ブッシング端子30aと、昇圧変圧器11の三相の二次端子に接続された三相の二次ブッシング端子30bと、補機変圧器26の三相の一次端子に接続され三相の一次ブッシング端子30cと、補機変圧器26の三相の二次端子に接続された三相の二次ブッシング端子30dとの、合計12個のブッシング端子が取り付けられている。なおブッシング端子は、タンク30を貫通した状態で取り付けられた絶縁ブッシングと、該絶縁ブッシングの中心を貫通した貫通導体と、該貫通導体の一端及び他端にそれぞれ設けられた端子部とを有する公知のものである。   In the present embodiment, the AC circuit in the power generation facility is almost a three-phase circuit, and both the step-up transformer 11 and the auxiliary transformer 26 are three-phase transformers. A primary bushing terminal 30a connected to the three-phase primary terminal, a three-phase secondary bushing terminal 30b connected to the three-phase secondary terminal of the step-up transformer 11, and a three-phase primary terminal of the auxiliary transformer 26. A total of 12 bushing terminals, that is, a three-phase primary bushing terminal 30c connected to the primary terminal and a three-phase secondary bushing terminal 30d connected to the three-phase secondary terminal of the auxiliary transformer 26 are attached. ing. The bushing terminal has an insulating bushing attached in a state of penetrating the tank 30, a through conductor penetrating through the center of the insulating bushing, and a terminal portion provided at one end and the other end of the through conductor, respectively. belongs to.

補機電源機能付き連系変圧器30の昇圧変圧器11の一次側につながる一次ブッシング端子30aは接続導体C1を通してパワーコンディショナ盤3の出力端子3bに接続され、補機電源機能付き連系変圧器30の補機変圧器26の二次側につながる二次ブッシング端子30dは接続導体C2を通してパワーコンディショナ盤3の入力端子3cに接続されている。   The primary bushing terminal 30a connected to the primary side of the step-up transformer 11 of the interconnection transformer 30 with auxiliary power supply function is connected to the output terminal 3b of the power conditioner panel 3 through the connection conductor C1, and the interconnection transformer with auxiliary power supply function is provided. The secondary bushing terminal 30d connected to the secondary side of the auxiliary transformer 26 of the capacitor 30 is connected to the input terminal 3c of the power conditioner panel 3 through the connection conductor C2.

図1において、40は高圧連系盤である。この高圧連系盤は、昇圧変圧器11の二次側と配電系統の配電線1との間に挿入される連系遮断器16と、連系遮断器16に流れ込む電流を検出する連系用電流検出器17と、連系用電流検出器17により検出される電流が設定値以上であるときに連系遮断器16に遮断指令を与える連系用保護継電器18と、昇圧変圧器11の二次側から補機変圧器26の一次側に流れ込む電流を検出する補機変圧器一次電流検出器41と、補機変圧器一次電流検出器41が設定値以上の電流を検出したときに連系遮断器16に遮断指令を与える補機変圧器解列用保護継電器42とを接地電位に保たれる共通の金属ケース43内に収容することにより構成される。   In FIG. 1, 40 is a high-pressure interconnection board. This high-voltage interconnection panel is for an interconnection breaker 16 that is inserted between the secondary side of the step-up transformer 11 and the distribution line 1 of the distribution system, and for detecting the current flowing into the interconnection breaker 16. A current detector 17, a connection protection relay 18 that gives a disconnection command to the connection breaker 16 when the current detected by the connection current detector 17 is equal to or greater than a set value, and a step-up transformer 11. Auxiliary transformer primary current detector 41 that detects a current flowing from the secondary side to the primary side of auxiliary transformer 26 and an interconnection when the auxiliary transformer primary current detector 41 detects a current greater than a set value. The auxiliary transformer disconnection protection relay 42 that gives a break command to the breaker 16 is housed in a common metal case 43 that is kept at the ground potential.

ケース43には、遮断器16の一端に接続導体44を通して接続された入力端子40aと、遮断器16の他端に接続された出力端子40bと、入力端子40aに接続導体45を通して接続された出力端子40cとが取り付けられている。入力端子40aは接続導体C3を通して連系変圧器30の出力端子30bに接続され、昇圧変圧器11が出力する交流電圧が、出力端子30bと接続導体C3と入力端子40aと接続導体44とを通して連系遮断器16の一端に入力されている。出力端子40cは、接続導体C4を通して連系変圧器30の一次ブッシング端子30cに接続され、昇圧変圧器11の二次側が、出力端子30bと接続導体C3と、入力端子40aと、接続導体45と、出力端子40cと、接続導体C4と、一次側ブッシング端子30cとを通して、補機変圧器26の一次側に接続されている。   The case 43 has an input terminal 40a connected to one end of the circuit breaker 16 through the connection conductor 44, an output terminal 40b connected to the other end of the circuit breaker 16, and an output connected to the input terminal 40a through the connection conductor 45. A terminal 40c is attached. The input terminal 40a is connected to the output terminal 30b of the interconnection transformer 30 through the connection conductor C3, and the AC voltage output from the step-up transformer 11 is connected through the output terminal 30b, the connection conductor C3, the input terminal 40a, and the connection conductor 44. It is input to one end of the system breaker 16. The output terminal 40c is connected to the primary bushing terminal 30c of the interconnection transformer 30 through the connection conductor C4. The secondary side of the step-up transformer 11 is the output terminal 30b, the connection conductor C3, the input terminal 40a, the connection conductor 45, The output terminal 40c, the connection conductor C4, and the primary side bushing terminal 30c are connected to the primary side of the auxiliary transformer 26.

高圧連系盤40内の変流器17は、接続導体44を一次側貫通導体とするように設けられて、遮断器16がオン状態にあるときに遮断器16を通して流れる電流を検出する。連系遮断器16の他端が接続された出力端子40bは、接続導体C5を通して高圧配電線1の連系点に接続される。   The current transformer 17 in the high voltage interconnection panel 40 is provided so that the connection conductor 44 is a primary side through conductor, and detects a current flowing through the circuit breaker 16 when the circuit breaker 16 is in an ON state. The output terminal 40b to which the other end of the interconnection breaker 16 is connected is connected to the interconnection point of the high-voltage distribution line 1 through the connection conductor C5.

本実施形態においても、遮断器16は真空開閉器(VCB)からなっている。遮断器16は、遮断器16とパワーコンディショナ盤3との間の回路に事故電流が流れて保護継電器18が遮断指令を発生したときに開いて昇圧変圧器11を配電線1から解列する。遮断器16はまた、接続導体45から補機変圧器26を経てパワーコンディショナ盤3内の補機5に至る回路で事故が発生して保護継電器42が遮断指令を発生したときに開いて補機変圧器26を配電線1から解列する。   Also in this embodiment, the circuit breaker 16 consists of a vacuum switch (VCB). The circuit breaker 16 opens when the fault current flows through the circuit between the circuit breaker 16 and the power conditioner panel 3 and the protective relay 18 generates a circuit break command, and disconnects the step-up transformer 11 from the distribution line 1. . The circuit breaker 16 is also opened and compensated when an accident occurs in the circuit from the connection conductor 45 through the auxiliary transformer 26 to the auxiliary machine 5 in the power conditioner panel 3 and the protective relay 42 generates a cutoff command. The machine transformer 26 is disconnected from the distribution line 1.

上記のように、パワーコンディショナ4が出力する交流電圧を連系する配電系統の電圧まで昇圧する昇圧変圧器11と、パワーコンディショナ盤内の補機5に電源電圧を供給する補機変圧器とを共通のタンク31内に収容して、補機電源機能付き昇圧変圧器30を構成すると、図2に示した従来の発電設備で必要とした補機電源盤25を省略して設備に設ける盤の数を少なくすることができ、盤を設置するために必要な面積を縮小することができる。   As described above, the step-up transformer 11 that boosts the AC voltage output from the power conditioner 4 to the voltage of the power distribution system, and the auxiliary transformer that supplies the power supply voltage to the auxiliary machine 5 in the power conditioner panel. Are installed in a common tank 31 to constitute the step-up transformer 30 with auxiliary power supply function, and the auxiliary power supply panel 25 required in the conventional power generation equipment shown in FIG. The number of boards can be reduced, and the area required for installing the boards can be reduced.

また上記のように、昇圧変圧器11及びその一次側の回路を系統から解列する遮断器16を、補機変圧器26とその負荷側の回路とを系統から解列する開閉器として共用し、またパワーコンディショナ盤内に設けられた配線遮断器6を補機変圧器26の過負荷電流を遮断する配線用遮断器として共用するようにすると、部品点数を削減してコストの低減を図ることができる。   Further, as described above, the circuit breaker 16 that disconnects the step-up transformer 11 and its primary circuit from the system is shared as a switch that disconnects the auxiliary transformer 26 and its load circuit from the system. In addition, if the wiring breaker 6 provided in the power conditioner panel is shared as a wiring breaker that cuts off the overload current of the auxiliary transformer 26, the number of parts is reduced and the cost is reduced. be able to.

1 高圧配電線
2 太陽電池アレイ
3 パワーコンディショナ盤
4 パワーコンディショナ
5 パワーコンディショナの補機
6 配線用遮断器
7 ケース
11 昇圧変圧器
16 連系遮断器
17 連系用電流検出器
18 連系用保護継電器
26 補機変圧器
30 補機電源機能付き連系変圧器
31 タンク
40 高圧連系盤
41 補機変圧器一次電流検出器
42 補機変圧器解列用保護継電器
DESCRIPTION OF SYMBOLS 1 High voltage distribution line 2 Solar cell array 3 Power conditioner panel 4 Power conditioner 5 Power conditioner auxiliary equipment 6 Circuit breaker 7 Case 11 Step-up transformer 16 Interconnection breaker 17 Interconnection current detector 18 Interconnection Protective relay 26 Auxiliary transformer 30 Auxiliary transformer with power supply function 31 Tank 40 High voltage interconnection panel 41 Auxiliary transformer primary current detector 42 Auxiliary transformer disconnection protective relay

Claims (1)

太陽電池アレイが出力する直流電圧を商用周波数の交流電圧に変換するインバータを備えたパワーコンディショナと、前記パワーコンディショナが出力する交流電圧を連系する配電系統の電圧まで昇圧する昇圧変圧器と、前記昇圧変圧器の二次側の電圧を変圧して前記パワーコンディショナを冷却する送風機を含む補機に与える電源電圧を出力する補機変圧器と、前記昇圧変圧器の二次側と前記配電系統の配電線との間に挿入される連系遮断器と、前記連系遮断器に流れ込む電流を検出する連系用電流検出器と、前記連系用電流検出器により検出される電流が設定値以上であるときに前記連系遮断器に遮断指令を与える連系用保護継電器と、前記補機変圧器の二次側に過負荷電流が流れたときに該過負荷電流を遮断する配線用遮断器とを備えた系統連系用太陽光発電設備において、
前記昇圧変圧器と補機変圧器とが共通のタンク内に収容されて補機電源機能付き連系変圧器が構成され、
前記パワーコンディショナと、前記補機と、前記配線用遮断器とが共通のケース内に収容されてパワーコンディショナ盤が構成され、
前記昇圧変圧器の二次側から前記補機変圧器の一次側に流れ込む電流を検出する補機変圧器一次電流検出器と、前記補機変圧器一次電流検出器が設定値以上の電流を検出したときに前記連系遮断器に遮断指令を与える補機変圧器解列用保護継電器とが、前記連系遮断器と、前記連系用電流検出器と、前記連系用保護継電器とともに共通のケース内に収容されて高圧連系盤が構成され、
前記連系遮断器は、前記補機変圧器に設定値以上の電流が流れ込んだときに前記補機変圧器とその二次側の回路を配電線から解列する開閉器を兼ねていることを特徴とする太陽光発電設備。
A power conditioner including an inverter that converts a DC voltage output from the solar cell array into an AC voltage of commercial frequency, and a step-up transformer that boosts the AC voltage output from the power conditioner to a voltage of a distribution system connected to the power conditioner; An auxiliary transformer that outputs a power supply voltage to be supplied to an auxiliary machine including a blower that transforms a voltage on the secondary side of the step-up transformer to cool the power conditioner, a secondary side of the step-up transformer, and the An interconnection breaker inserted between the distribution lines of the distribution system, an interconnection current detector for detecting a current flowing into the interconnection breaker, and a current detected by the interconnection current detector A protective relay for interconnection that gives an interruption command to the interconnection breaker when a set value is exceeded, and wiring that cuts off the overload current when an overload current flows to the secondary side of the auxiliary transformer With circuit breaker for In the photovoltaic power generation facilities for system interconnection,
The step-up transformer and the auxiliary transformer are housed in a common tank to form an interconnected transformer with an auxiliary power function,
The power conditioner panel is configured by accommodating the power conditioner, the auxiliary machine, and the wiring breaker in a common case,
Auxiliary transformer primary current detector for detecting current flowing from the secondary side of the step-up transformer to the primary side of the auxiliary transformer, and the auxiliary transformer primary current detector detects a current greater than a set value. The auxiliary transformer disconnection protection relay that gives a disconnection command to the interconnection breaker when the interconnection breaker, the interconnection current detector, and the interconnection protection relay are common Housed in a case to form a high-pressure interconnection panel,
The interconnection breaker also serves as a switch that disconnects the auxiliary transformer and its secondary circuit from the distribution line when a current greater than a set value flows into the auxiliary transformer. A featured solar power generation facility.
JP2014027590A 2014-02-17 2014-02-17 Photovoltaic power generation facility for grid connection Active JP6231900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014027590A JP6231900B2 (en) 2014-02-17 2014-02-17 Photovoltaic power generation facility for grid connection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014027590A JP6231900B2 (en) 2014-02-17 2014-02-17 Photovoltaic power generation facility for grid connection

Publications (2)

Publication Number Publication Date
JP2015154642A JP2015154642A (en) 2015-08-24
JP6231900B2 true JP6231900B2 (en) 2017-11-15

Family

ID=53896370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014027590A Active JP6231900B2 (en) 2014-02-17 2014-02-17 Photovoltaic power generation facility for grid connection

Country Status (1)

Country Link
JP (1) JP6231900B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577010B (en) * 2015-12-30 2019-06-18 杭州禾迈电力电子技术有限公司 The auxiliary electric circuit of pressure and control method in photovoltaic DC-to-AC converter
CN106330095B (en) * 2016-09-27 2018-04-10 华北电力大学 Collect system fault locating method in a kind of large-sized photovoltaic power station
JP7111493B2 (en) * 2018-04-04 2022-08-02 株式会社Nttファシリティーズ Power conversion system and photovoltaic system
CN110806524B (en) * 2019-11-19 2021-11-23 苏州协鑫新能源运营科技有限公司 Method and system for judging faults and power generation conditions of photovoltaic power station

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835933Y1 (en) * 1969-02-28 1973-10-29
JPH09191579A (en) * 1995-07-21 1997-07-22 Kensetsusho Kanto Chiho Kensetsu Kyokucho Outdoor integrated type power generating equipment utilizing solar energy
JP2002218736A (en) * 2001-01-23 2002-08-02 Nissin Electric Co Ltd Power converter
JP4524057B2 (en) * 2001-09-19 2010-08-11 北陸電力株式会社 Charge / discharge system for secondary battery for power storage
JP5458912B2 (en) * 2010-01-28 2014-04-02 株式会社明電舎 AC / DC converter
JP2012200049A (en) * 2011-03-18 2012-10-18 Toshiba Corp Power-generation plant and method of protecting the same

Also Published As

Publication number Publication date
JP2015154642A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US10211625B2 (en) Mitigation of arc flash hazard in photovoltaic power plants
US7576449B2 (en) Method for converting direct voltage into three-phase alternating voltage
US9620956B2 (en) Socket for a solar panel with a protective circuit
US9525287B2 (en) Inverter system and method for operation of a photovoltaic installation for feeding electrical power into a medium-voltage power supply grid
US11196272B2 (en) Rapid de-energization of DC conductors with a power source at both ends
US20130271888A1 (en) Photovoltaic System and Apparatus for Operating a Photovoltaic System
JP6231900B2 (en) Photovoltaic power generation facility for grid connection
US20160248246A1 (en) Detecting faults in electricity grids
US10797485B2 (en) Power conditioner, power supply system, and current control method
JP2018033296A (en) Safety device for solar power generation facility
JP2012160667A (en) Photovoltaic power generation system
Hartung et al. Limitation of short circuit current by an I S-limiter
US20120033351A1 (en) Motor control center and bus assembly therefor
RU161785U1 (en) DC VOLTAGE STABILIZER
RU2450405C1 (en) Rectifying voltage stabiliser
EP2905852B1 (en) Electrical low-voltage power distribution equipment
CN209948516U (en) Voltage transformer cabinet for million-kilowatt nuclear power station
RU107000U1 (en) RECTIFIER AND STABILIZER
WO2023101652A1 (en) Solution preventing permanent deformation in an arc fault event or short circuit event
JP6331612B2 (en) Distribution system protection device and substation equipment
CN114284090A (en) Input cutting circuit and photovoltaic system
CN117154645A (en) Protection method for direct-current side short circuit of inverter, inverter and photovoltaic inversion system
US20150108845A1 (en) Energy supply system and conductor loop enclosure
MX2011008493A (en) Motor control center and bus assembly therefor.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171020

R150 Certificate of patent or registration of utility model

Ref document number: 6231900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250