JP5454067B2 - Cooling system for power converter - Google Patents

Cooling system for power converter Download PDF

Info

Publication number
JP5454067B2
JP5454067B2 JP2009233959A JP2009233959A JP5454067B2 JP 5454067 B2 JP5454067 B2 JP 5454067B2 JP 2009233959 A JP2009233959 A JP 2009233959A JP 2009233959 A JP2009233959 A JP 2009233959A JP 5454067 B2 JP5454067 B2 JP 5454067B2
Authority
JP
Japan
Prior art keywords
cooling
power converter
cooling device
semiconductor element
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009233959A
Other languages
Japanese (ja)
Other versions
JP2011083135A5 (en
JP2011083135A (en
Inventor
尚 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2009233959A priority Critical patent/JP5454067B2/en
Publication of JP2011083135A publication Critical patent/JP2011083135A/en
Publication of JP2011083135A5 publication Critical patent/JP2011083135A5/ja
Application granted granted Critical
Publication of JP5454067B2 publication Critical patent/JP5454067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、交流−直流間の電力変換を行う電力変換器を冷却する電力変換器用冷却システムに関する。   The present invention relates to a cooling system for a power converter that cools a power converter that performs power conversion between AC and DC.

産業分野においてはアクチュエータとして交流電動機を用いることが多い。そして、電動機を可変速駆動するためには直流−交流電力変換器(インバータ)が必要である。また、インバータの電源として交流−直流電力変換器(コンバータ)が用いられる。電力変換器は複数の電力用半導体素子で構成される。   In the industrial field, an AC motor is often used as an actuator. In order to drive the electric motor at a variable speed, a DC-AC power converter (inverter) is required. An AC-DC power converter (converter) is used as a power source for the inverter. The power converter is composed of a plurality of power semiconductor elements.

電力用半導体素子は、ジャンクション部(接合部ということもある)において電力損失などにより発熱する。この熱が所定の許容値を超えると電力用半導体素子が破壊または劣化するおそれがある。このため、電力変換器には電力用半導体素子の過熱防止のための冷却装置が取り付けられることが多い。冷却装置の種類は様々であるが例えば、低容量用の空冷方式、大容量用の水冷方式がある。空冷方式は、冷媒である空気を電力変換器内に循環させるためにファンを利用する。一方、水冷方式では、冷媒である水を電力変換器内に循環させるために水冷用ポンプを利用する。   The power semiconductor element generates heat due to power loss or the like at a junction (also referred to as a junction). If this heat exceeds a predetermined allowable value, the power semiconductor element may be destroyed or deteriorated. For this reason, a cooling device for preventing overheating of the power semiconductor element is often attached to the power converter. There are various types of cooling devices, for example, there are an air cooling system for low capacity and a water cooling system for large capacity. The air cooling system uses a fan to circulate air, which is a refrigerant, in the power converter. On the other hand, in the water cooling system, a water cooling pump is used to circulate water as a refrigerant in the power converter.

一般に、冷却装置の冷却能力は、電力変換器(電力用半導体素子)の発熱が最大値となる場合にも電力用半導体素子の破壊が起こらないように定められる。そして、冷却装置は電力変換器の電源が入っている間は常時一定出力の駆動を行う。このような冷却装置を含む冷却システムについては特許文献1に開示がある。   In general, the cooling capacity of the cooling device is determined so that the power semiconductor element is not destroyed even when the heat generated by the power converter (power semiconductor element) reaches a maximum value. The cooling device always drives a constant output while the power converter is powered on. Patent Document 1 discloses a cooling system including such a cooling device.

特開平11−341824号公報JP-A-11-341824

近年、産業分野においては地球環境保護の観点から装置等のランニングコスト低減、省エネルギーへの要求が高まっている。ここで、電力変換器に用いられる電力用半導体素子の発熱量は、当該電力変換器の動作状況に応じて時々刻々変化するものである。具体的には、電力用半導体素子の発熱量は導通電流、印加電圧、スイッチングなどに大きく依存するものである。   In recent years, in the industrial field, there has been an increasing demand for reduction in running costs and energy saving of devices and the like from the viewpoint of protecting the global environment. Here, the calorific value of the power semiconductor element used in the power converter changes from moment to moment according to the operating condition of the power converter. Specifically, the amount of heat generated by the power semiconductor element greatly depends on conduction current, applied voltage, switching, and the like.

例えば、電力変換器は、鉄鋼圧延ライン用のスラブ搬送テーブルや主機圧延機等のように材料が通過する時のみ負荷がかかる装置に用いられる場合がある。このように電力変換器に間欠的に負荷がかかる場合には、電力用半導体素子の発熱量は負荷状況により大きく異なる。更に電力用半導体素子の発熱量はスラブ搬送テーブルや主機圧延機等の電動機トルク、速度によっても変動するものである。   For example, the power converter may be used for an apparatus that is loaded only when a material passes, such as a slab transfer table for a steel rolling line or a main rolling mill. Thus, when a load is intermittently applied to the power converter, the amount of heat generated by the power semiconductor element varies greatly depending on the load condition. In addition, the amount of heat generated by the power semiconductor element varies depending on the motor torque and speed of the slab transfer table, main machine rolling mill, and the like.

従って、電力用半導体素子の発熱量が低い場合は冷却装置の冷却能力も低減させてよい。しかしながら、特許文献1の冷却装置は常に、電力用半導体素子の発熱が最大値となる場合を想定して駆動する。そのため、冷却装置の冷却能力を低減させてもよい場合にまで電力変換器(半導体素子)の過剰な冷却が行われる。よって冷却システムの省エネルギー化などが出来ない問題があった。   Therefore, when the calorific value of the power semiconductor element is low, the cooling capacity of the cooling device may be reduced. However, the cooling device of Patent Document 1 is always driven on the assumption that the heat generation of the power semiconductor element is the maximum value. Therefore, excessive cooling of the power converter (semiconductor element) is performed until the cooling capacity of the cooling device may be reduced. Therefore, there was a problem that the cooling system could not save energy.

また、特許文献1の冷却装置は常に出力の高い状態で運転していることになるため、冷却装置(冷却システム)からの騒音を低減できない問題もあった。   Moreover, since the cooling device of Patent Document 1 is always operated in a high output state, there is a problem that noise from the cooling device (cooling system) cannot be reduced.

本発明は、上述のような課題を解決するためになされたもので、半導体素子の冷却を行う冷却システムの省エネルギー化および低騒音化ができる電力変換器用冷却システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cooling system for a power converter that can save energy and reduce noise in a cooling system that cools a semiconductor element.

本願の発明にかかる電力変換器用冷却システムは、電力変換器に用いられるIGBTとダイオードを有する半導体素子と、直流コンデンサと、該直流コンデンサの両端に接続された直流コンデンサ電圧検出部と、該電力変換器の相電流を検出する相電流検出部と、該半導体素子に取り付けられた冷却フィンと、該冷却フィンの温度を検出する温度検出部と、制御回路と、該直流コンデンサ電圧検出部、該相電流検出部、該温度検出部、及び該制御回路と接続され、これらから得た情報に基づき該IGBTのターンオン損失、該IGBTのターンオフ損失、該IGBTの定常損失、該ダイオードの順損失、及び該ダイオードのリカバリ損失を演算し、これらの損失から該半導体素子の発熱量予測値を演算する演算部と、該半導体素子を冷却する冷却装置と、該冷却装置を制御する冷却装置制御部とを備える。該冷却装置制御部は、該半導体素子の温度が所定値を超えないように、該発熱量予測値が高い場合は該冷却装置の冷却能力を高め、該発熱量予測値が低い場合は該冷却能力を低減した制御を行うことを特徴とする。
A cooling system for a power converter according to the invention of the present application includes a semiconductor element having an IGBT and a diode used in the power converter , a DC capacitor, a DC capacitor voltage detecting unit connected to both ends of the DC capacitor, and the power conversion. A phase current detector for detecting the phase current of the detector, a cooling fin attached to the semiconductor element, a temperature detector for detecting the temperature of the cooling fin, a control circuit, the DC capacitor voltage detector, the phase The IGBT is connected to the current detection unit, the temperature detection unit, and the control circuit, and based on the information obtained therefrom, the turn-on loss of the IGBT, the turn-off loss of the IGBT, the steady loss of the IGBT, the forward loss of the diode, and the calculating a recovery loss of the diode, cooling a calculation unit for calculating the calorific value predicted value of the semiconductor element, the semiconductor element from these losses Comprising a retirement unit, and a cooling device control unit for controlling the cooling device. The cooling device control unit increases the cooling capacity of the cooling device when the predicted heat generation amount is high so that the temperature of the semiconductor element does not exceed a predetermined value, and the cooling device when the predicted heat generation amount is low. It is characterized by performing control with reduced capacity.

本発明によれば電力変換器用冷却システムの省エネルギー化および低騒音化ができる。   According to the present invention, energy saving and noise reduction of a cooling system for a power converter can be achieved.

電力変換器用冷却システムのブロック図である。It is a block diagram of the cooling system for power converters. 電力変換起用冷却システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the cooling system for electric power conversion induction.

実施の形態
本実施形態は図1、2を参照して説明する。図1は本実施形態の電力変換器用冷却システムのブロック図である。本実施形態の電力変換器11は3相交流インバータと直流コンデンサ18を備える。電力変換器11は電力用半導体素子としてIGBT、FWD(フリーホイールダイオード)、クランプダイオードを備える。IGBTのゲート駆動信号はIGBTのゲートと接続されたゲート回路22により伝送される。ゲート回路22は制御回路20からスイッチングの情報を受け取る。一方、直流コンデンサ18は3相交流インバータの前段に接続されるものである。直流コンデンサ18はたとえば整流回路を経由して電源に接続される。直流コンデンサ18の両端には直流コンデンサ電圧検出部12が接続される。これにより直流コンデンサ18の両端の電圧測定が可能である。
Embodiment This embodiment will be described with reference to FIGS. FIG. 1 is a block diagram of a cooling system for a power converter according to this embodiment. The power converter 11 of this embodiment includes a three-phase AC inverter and a DC capacitor 18. The power converter 11 includes an IGBT, an FWD ( free wheel diode), and a clamp diode as power semiconductor elements. The gate drive signal of the IGBT is transmitted by the gate circuit 22 connected to the gate of the IGBT. The gate circuit 22 receives switching information from the control circuit 20. On the other hand, the DC capacitor 18 is connected to the preceding stage of the three-phase AC inverter. The DC capacitor 18 is connected to a power source via a rectifier circuit, for example. A DC capacitor voltage detector 12 is connected to both ends of the DC capacitor 18. As a result, the voltage across the DC capacitor 18 can be measured.

さらに、3相交流インバータの各相(U相、V相、W相)には相電流検出部13が接続され、各相の電流を測定する。そして各相は、負荷であれば特に限定されないが、モータ24に接続される。   Further, a phase current detector 13 is connected to each phase (U phase, V phase, W phase) of the three-phase AC inverter, and the current of each phase is measured. Each phase is not particularly limited as long as it is a load, but is connected to the motor 24.

電力変換器11の中で発熱する部分はIGBT、FWD、クランプダイオードである(以後、IGBT、FWD、クランプダイオードの電力用半導体素子を半導体素子と称する場合がある、また、FWD、クランプダイオードをダイオードと称する場合がある)。これらは放熱性のよい基板に実装される。そして、半導体素子を冷却するために当該基板には冷却フィンが取り付けられる。さらに、本実施形態ではこの冷却フィンに冷却フィンの温度を検出する温度検出部14が固定される。 The parts that generate heat in the power converter 11 are IGBTs, FWDs , and clamp diodes (hereinafter, power semiconductor elements such as IGBTs, FWDs , and clamp diodes may be referred to as semiconductor elements, and FWDs , clamps). The diode may be referred to as a diode). These are mounted on a substrate with good heat dissipation. A cooling fin is attached to the substrate in order to cool the semiconductor element. Furthermore, in this embodiment, the temperature detection part 14 which detects the temperature of a cooling fin is fixed to this cooling fin.

本実施形態の電力変換器用冷却システムは演算部15を備える。演算部15とは半導体素子のジャンクション部の発熱量予測値を演算する部分である。演算部15は、直流コンデンサ電圧検出部12、相電流検出部13、温度検出部14、制御回路20と接続されている。よって、演算部15は直流コンデンサ18の電圧と、相電流と、冷却フィン温度と、IGBTのスイッチング状態の情報を取得できる。   The power converter cooling system of the present embodiment includes a calculation unit 15. The calculating part 15 is a part which calculates the predicted heat generation value of the junction part of the semiconductor element. The calculation unit 15 is connected to the DC capacitor voltage detection unit 12, the phase current detection unit 13, the temperature detection unit 14, and the control circuit 20. Therefore, the calculating part 15 can acquire the information of the voltage of the DC capacitor 18, the phase current, the cooling fin temperature, and the switching state of the IGBT.

演算部15には冷却装置制御部16が接続される。後述するが冷却装置制御部16は冷却装置17の冷却能力を調整する制御を行う。ここで、本実施形態における冷却装置17は冷却ファンである。したがって冷却フィンは冷却ファンの空冷機能により冷却され、半導体素子を冷却(放熱)する。本実施形態の電力変換器11と電力変換器用冷却システムは上述の構成を備える。   A cooling device control unit 16 is connected to the calculation unit 15. As will be described later, the cooling device control unit 16 performs control to adjust the cooling capacity of the cooling device 17. Here, the cooling device 17 in this embodiment is a cooling fan. Therefore, the cooling fin is cooled by the air cooling function of the cooling fan, and cools (dissipates heat) the semiconductor element. The power converter 11 and the power converter cooling system of the present embodiment have the above-described configuration.

以後、図2を参照して電力変換器用冷却システムの動作について説明する。図2は電力変換器用冷却システムの動作を説明するフローチャートである。まず、演算部15は半導体素子の導通電流と印加電圧の値を取得する(ステップ50)。半導体素子の導通電流は相電流検出部13の電流および、制御回路20から得られるIGBTのスイッチング状態の情報から把握される。一方、半導体素子の印加電圧は直流コンデンサ電圧検出部12の電圧により把握される。   Hereinafter, the operation of the cooling system for the power converter will be described with reference to FIG. FIG. 2 is a flowchart for explaining the operation of the cooling system for the power converter. First, the computing unit 15 acquires the values of the conduction current and applied voltage of the semiconductor element (step 50). The conduction current of the semiconductor element is grasped from the current of the phase current detector 13 and information on the switching state of the IGBT obtained from the control circuit 20. On the other hand, the applied voltage of the semiconductor element is grasped by the voltage of the DC capacitor voltage detector 12.

次いで、ステップ51へと処理が進められる。ステップ51では演算部15はIGBTジャンクション部、ダイオードジャンクション部の発熱量予測値を演算する。最初に、IGBTジャンクション部の発熱量予測値の演算について説明する。IGBTにおける発生損失としては、ターンオン損失、ターンオフ損失、オン定常損失に分けられる。ターンオン損失およびターンオフ損失はIGBTのスイッチングの際に発生する損失である。これらの損失はスイッチング時の導通電流及び印加電圧の積から求める。オン定常損失はオン時の飽和電圧と導通電流の積を時間積分して求める。IGBTジャンクション部の発熱量予測値はこれらの損失の総和と、IGBTジャンクション部から温度検出部14までの熱抵抗から演算される。   Next, the process proceeds to step 51. In step 51, the calculation unit 15 calculates the predicted heat generation values of the IGBT junction unit and the diode junction unit. First, the calculation of the predicted heat generation value of the IGBT junction will be described. The loss generated in the IGBT is divided into a turn-on loss, a turn-off loss, and an on-steady loss. The turn-on loss and the turn-off loss are losses generated when the IGBT is switched. These losses are obtained from the product of the conduction current at switching and the applied voltage. The on-state steady loss is obtained by time integration of the product of the saturation voltage and the conduction current when on. The predicted heat generation value of the IGBT junction is calculated from the sum of these losses and the thermal resistance from the IGBT junction to the temperature detector 14.

次に、ダイオードジャンクション部の発熱量予測値の演算について説明する。ダイオードにおける発生損失は順損失とリカバリー損失に分けられる。順損失はダイオードに電流が導通している時の損失である。順損失はダイオード導通時の飽和電圧および導通電流の積の時間積分から求める。リカバリー損失はダイオードが導通状態から非導通状態になる際に発生する損失である。リカバリー損失はダイオードが導通状態から非導通状態になる際の導通電流および印加電圧の積から求める。ダイオードジャンクション部の発熱量予測値は、これらの損失の総和と、ダイオードジャンクション部からから温度検出部14までの熱抵抗から演算される。なお、演算部15はステップ50か51において温度検出部14の温度を取得する。   Next, calculation of the predicted heat generation value of the diode junction portion will be described. The loss generated in the diode is divided into forward loss and recovery loss. The forward loss is a loss when a current is conducted to the diode. The forward loss is obtained from the time integration of the product of the saturation voltage and the conduction current when the diode is conducting. The recovery loss is a loss that occurs when the diode changes from a conductive state to a non-conductive state. The recovery loss is obtained from the product of the conduction current and the applied voltage when the diode is changed from the conductive state to the non-conductive state. The predicted value of heat generation at the diode junction is calculated from the sum of these losses and the thermal resistance from the diode junction to the temperature detector 14. In addition, the calculating part 15 acquires the temperature of the temperature detection part 14 in step 50 or 51.

次いで、ステップ52へと処理が進められる。ステップ52では演算部15で演算した発熱量予測値が冷却装置制御部16へ伝送される。   Next, the process proceeds to step 52. In step 52, the predicted heat generation value calculated by the calculation unit 15 is transmitted to the cooling device control unit 16.

次いで、ステップ53へと処理が進められる。冷却装置制御部16は発熱量予測値を参照して半導体素子のジャンクション部の温度が所定値を超えないように冷却装置17を制御する。すなわち、発熱量予測値が高い場合は冷却装置の冷却能力を高める制御を行う。そして、発熱量予測値が低い場合は冷却装置の冷却能力を低減した制御を行う。冷却装置の制御は冷却ファンのオンオフあるいは、冷却ファンへの供給電力の調整によって行われる。   Next, the process proceeds to step 53. The cooling device control unit 16 controls the cooling device 17 with reference to the predicted heat generation value so that the temperature of the junction portion of the semiconductor element does not exceed a predetermined value. That is, when the predicted heat generation value is high, control is performed to increase the cooling capacity of the cooling device. And when the calorific value prediction value is low, control which reduced the cooling capacity of the cooling device is performed. The cooling device is controlled by turning on / off the cooling fan or adjusting the power supplied to the cooling fan.

本実施形態の電力変換器用冷却システムによれば、冷却装置の冷却能力が発熱量予測値に応じて調節される。したがって、冷却装置の冷却能力を低減させてもよい場合にまで電力変換器を過剰に冷却することを回避できる。よって電力変換器用冷却システムの省エネルギー化ができる。   According to the cooling system for a power converter of the present embodiment, the cooling capacity of the cooling device is adjusted according to the predicted calorific value. Therefore, excessive cooling of the power converter can be avoided until the cooling capacity of the cooling device may be reduced. Therefore, energy saving of the cooling system for the power converter can be achieved.

また、本実施形態の電力変換器用冷却システムは電力変換器の動作中であっても冷却装置の冷却能力を低減することがあるので冷却装置からの騒音を低減できる。   Moreover, since the cooling system for power converters of this embodiment may reduce the cooling capacity of the cooling device even during operation of the power converter, noise from the cooling device can be reduced.

本実施形態の冷却装置は冷却ファンにより冷却フィンを空冷するものであるが本発明はこれに限定されない。すなわち、冷却ファンに代えて水を冷媒として用いる水冷用ポンプなどを用いてもよい。また、冷却フィン又は水冷用ポンプは複数備える構成としてもよい。これにより、冷却フィン又は水冷用ポンプの駆動台数の増減により冷却装置の冷却能力を増減させることができる。   Although the cooling device of this embodiment cools the cooling fins with a cooling fan, the present invention is not limited to this. That is, instead of the cooling fan, a water cooling pump using water as a refrigerant may be used. A plurality of cooling fins or water cooling pumps may be provided. Thereby, the cooling capacity of a cooling device can be increased / decreased by increase / decrease in the drive number of a cooling fin or a water cooling pump.

11 電力変換器、 12 直流コンデンサ電圧検出部、 13 相電流検出部13、 15 演算部、 16 冷却装置制御部、 17 冷却装置、 18 直流コンデンサ、 20 制御回路、 24 モータ   DESCRIPTION OF SYMBOLS 11 Power converter, 12 DC capacitor voltage detection part, 13 Phase current detection part 13, 15 Calculation part, 16 Cooling device control part, 17 Cooling device, 18 DC capacitor, 20 Control circuit, 24 Motor

Claims (2)

電力変換器に用いられるIGBTとダイオードを有する半導体素子と、
直流コンデンサと、
前記直流コンデンサの両端に接続された直流コンデンサ電圧検出部と、
前記電力変換器の相電流を検出する相電流検出部と、
前記半導体素子を冷却する冷却フィンと、
前記冷却フィンの温度を検出する温度検出部と、
制御回路と、
前記直流コンデンサ電圧検出部、前記相電流検出部、前記温度検出部、及び前記制御回路と接続され、これらから得た情報に基づき前記IGBTのターンオン損失、前記IGBTのターンオフ損失、前記IGBTの定常損失、前記ダイオードの順損失、及び前記ダイオードのリカバリ損失を演算し、これらの損失から前記半導体素子の発熱量予測値を演算する演算部と、
前記半導体素子を冷却する冷却装置と、
前記冷却装置を制御する冷却装置制御部とを備え、
前記冷却装置制御部は、前記半導体素子の温度が所定値を超えないように、前記発熱量予測値が高い場合は前記冷却装置の冷却能力を高め、前記発熱量予測値が低い場合は前記冷却能力を低減した制御を行うことを特徴とする電力変換器用冷却システム。
A semiconductor device having an IGBT and a diode used in a power converter ;
A DC capacitor;
A DC capacitor voltage detector connected to both ends of the DC capacitor;
A phase current detector for detecting a phase current of the power converter;
Cooling fins for cooling the semiconductor element;
A temperature detector for detecting the temperature of the cooling fin;
A control circuit;
Connected to the DC capacitor voltage detector, the phase current detector, the temperature detector, and the control circuit, and based on information obtained from these, the turn-on loss of the IGBT, the turn-off loss of the IGBT, and the steady loss of the IGBT Calculating a forward loss of the diode, and a recovery loss of the diode, and calculating a predicted heat generation amount of the semiconductor element from these losses ;
A cooling device for cooling the semiconductor element;
A cooling device control unit for controlling the cooling device,
The cooling device control unit increases the cooling capacity of the cooling device when the predicted heat generation amount is high and prevents the cooling when the predicted heat generation value is low so that the temperature of the semiconductor element does not exceed a predetermined value. A cooling system for a power converter characterized by performing control with reduced capacity.
前記冷却装置は複数のファン又は複数の水冷用ポンプを備え、
前記冷却装置制御部は前記複数のファン又は前記複数の水冷用ポンプの駆動台数を増減させることにより、前記冷却能力を増減させることを特徴とする請求項1に記載の電力変換器用冷却システム。
The cooling device includes a plurality of fans or a plurality of water cooling pumps,
2. The cooling system for a power converter according to claim 1, wherein the cooling device control unit increases or decreases the cooling capacity by increasing or decreasing the number of driving of the plurality of fans or the plurality of water cooling pumps.
JP2009233959A 2009-10-08 2009-10-08 Cooling system for power converter Active JP5454067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009233959A JP5454067B2 (en) 2009-10-08 2009-10-08 Cooling system for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009233959A JP5454067B2 (en) 2009-10-08 2009-10-08 Cooling system for power converter

Publications (3)

Publication Number Publication Date
JP2011083135A JP2011083135A (en) 2011-04-21
JP2011083135A5 JP2011083135A5 (en) 2012-05-17
JP5454067B2 true JP5454067B2 (en) 2014-03-26

Family

ID=44076610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009233959A Active JP5454067B2 (en) 2009-10-08 2009-10-08 Cooling system for power converter

Country Status (1)

Country Link
JP (1) JP5454067B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014CN04093A (en) 2011-11-30 2015-07-10 Mitsubishi Electric Corp
JP5895548B2 (en) * 2012-01-18 2016-03-30 三菱自動車工業株式会社 Vehicle cooling device
KR101504578B1 (en) 2012-09-11 2015-03-20 주식회사 우진산전 Pump auto control apparatus of heat-block for a tarin
KR20150144024A (en) * 2014-06-16 2015-12-24 엘에스산전 주식회사 Method for controlling temperature of inverter system by contolling a fan

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833104A (en) * 1994-07-13 1996-02-02 Meidensha Corp Cooling method for power converter of electric motor vehicle
JPH11341824A (en) * 1998-05-27 1999-12-10 Toyo Electric Mfg Co Ltd Forcedly cooling device for inverter
JP2005143232A (en) * 2003-11-07 2005-06-02 Yaskawa Electric Corp Protection method for power semiconductor device
JP2005218226A (en) * 2004-01-29 2005-08-11 Yaskawa Electric Corp Method and apparatus for controlling motor
JP4796841B2 (en) * 2005-12-28 2011-10-19 株式会社日立産機システム Power converter and control method thereof

Also Published As

Publication number Publication date
JP2011083135A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP6067105B2 (en) Power conversion apparatus, motor drive apparatus including the same, blower including the same, compressor, air conditioner including them, refrigerator, and refrigerator
US7312593B1 (en) Thermal regulation of AC drive
US10605500B2 (en) Heat pump device, air conditioner, and freezer
JP2018068028A (en) Electric power conversion system and air conditioner
JP3625429B2 (en) Power converter control device
JP6330350B2 (en) Power supply device and control method of power supply device
JP5454067B2 (en) Cooling system for power converter
WO2018051719A1 (en) Inverter apparatus and vehicle electric compressor provided with same
JP5984470B2 (en) Power converter, compressor, blower, air conditioner, and refrigerator
JP2008061404A (en) Power conversion equipment
JP2012210012A (en) Power module
JP2022118033A (en) air conditioner
RU2615492C1 (en) Power conversion device
JP2005143232A (en) Protection method for power semiconductor device
JP6532567B1 (en) Power converter
JP2010115110A (en) Inverter control device of air conditioner
JP2008211964A (en) Motor drive controller, hybrid system, and drive control method of motor drive controller
KR20140096627A (en) Power converting apparatus and air conditioner having the same
KR101925035B1 (en) Power transforming apparatus and air conditioner including the same
JP2013084648A (en) Cooling system
JP2011083135A5 (en)
JP5590015B2 (en) Inverter device and air conditioner equipped with the same
JPH11255442A (en) Elevator control device
CN214422040U (en) Energy conversion device based on elevator braking and elevator
JP7296821B2 (en) DC power supply, motor drive and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5454067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250