JP5405327B2 - Single-phase transformer and power distribution system using the same - Google Patents

Single-phase transformer and power distribution system using the same Download PDF

Info

Publication number
JP5405327B2
JP5405327B2 JP2010002137A JP2010002137A JP5405327B2 JP 5405327 B2 JP5405327 B2 JP 5405327B2 JP 2010002137 A JP2010002137 A JP 2010002137A JP 2010002137 A JP2010002137 A JP 2010002137A JP 5405327 B2 JP5405327 B2 JP 5405327B2
Authority
JP
Japan
Prior art keywords
winding
windings
peripheral side
iron core
phase transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010002137A
Other languages
Japanese (ja)
Other versions
JP2011142218A (en
Inventor
広 塩田
和弘 高本
洋輔 高井
隆雄 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2010002137A priority Critical patent/JP5405327B2/en
Publication of JP2011142218A publication Critical patent/JP2011142218A/en
Application granted granted Critical
Publication of JP5405327B2 publication Critical patent/JP5405327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、二脚鉄心を採用した場合の巻線の配置及び巻方向に改良を施した単相変圧器及びそれを用いた配電系統に関するものである。   The present invention relates to a single-phase transformer with improved winding arrangement and winding direction when a two-legged iron core is adopted, and a power distribution system using the single-phase transformer.

一般に、新幹線などの交流き電系統では、き電線側に生じる電圧降下の補償対策が重要である。そのため、交流き電の電圧補償システムに関しては様々な技術が提案されている(例えば、特許文献1)。このようなシステムにおいて、単相変圧器は基本的な構成要素であり、高い信頼性が求められている。   In general, in an AC feeder system such as a Shinkansen, it is important to take measures to compensate for a voltage drop that occurs on the feeder side. For this reason, various techniques have been proposed for an AC feeding voltage compensation system (for example, Patent Document 1). In such a system, the single-phase transformer is a basic component, and high reliability is required.

以下、二脚鉄心を採用した単相変圧器の従来例について、図8、図9を用いて説明する。図8は従来の単相変圧器の断面図、図9は図8のA−A断面図である。図8に示すように、単相変圧器には第1の鉄心脚1及び第2の鉄心脚2が互いに対向して配置されている。   Hereinafter, a conventional example of a single-phase transformer employing a two-legged iron core will be described with reference to FIGS. 8 is a cross-sectional view of a conventional single-phase transformer, and FIG. 9 is a cross-sectional view taken along line AA of FIG. As shown in FIG. 8, the first iron core leg 1 and the second iron core leg 2 are arranged opposite to each other in the single-phase transformer.

これら鉄心脚1、2は、その上部及び下部が継鉄部で連結されている。第1の鉄心脚1及び第2の鉄心脚2にはそれぞれ、まず二次巻線3a、3bが巻回され、さらにその外周に一次巻線4a、4bが同心状に巻回されている。つまり、鉄心脚1、2から見て、外周側に一次巻線4a、4bが巻かれ、内周側に二次巻線3a、3bが巻かれている(図9参照)。これらの巻線3a、3b、4a、4bはそれぞれ、並列あるいは直列に接続して構成されている。   These iron core legs 1 and 2 are connected at their upper and lower portions by yoke portions. Each of the first core leg 1 and the second core leg 2 is wound with the secondary windings 3a and 3b, and the primary windings 4a and 4b are concentrically wound around the outer periphery thereof. That is, when viewed from the core legs 1 and 2, the primary windings 4a and 4b are wound on the outer peripheral side, and the secondary windings 3a and 3b are wound on the inner peripheral side (see FIG. 9). These windings 3a, 3b, 4a, and 4b are respectively connected in parallel or in series.

特開2006−81325号公報JP 2006-81325 A

ところで、単相変圧器の二次側で短絡が生じると、通常時に流れる定格電流の数倍から十数倍もの大きさの短絡電流が巻線に流れる。そのため、巻線には強大な電磁力が発生し、巻線に対する機械力が増大する。既に述べたように、従来の単相変圧器では、一次巻線4a、4b及び二次巻線3a、3bを同心状に構成している。   By the way, when a short circuit occurs on the secondary side of the single-phase transformer, a short circuit current that is several times to a dozen times as large as the rated current that normally flows flows through the winding. Therefore, a strong electromagnetic force is generated in the winding, and the mechanical force on the winding increases. As already described, in the conventional single-phase transformer, the primary windings 4a and 4b and the secondary windings 3a and 3b are configured concentrically.

この場合、巻線3a、3b、4a、4bに発生する電磁力の方向としては、巻線3a、3b、4a、4bの半径方向に対し、内側の二次巻線3a、3bでは内側へ向かい、外側の一次巻線4a、4bでは外側へ向かうことになる。これら巻線3a、3b、4a、4bの半径方向への電磁力(以下、半径方向電磁力)の大きさは、巻線3a、3b、4a、4bと鎖交する軸方向漏れ磁束の密度に比例する。   In this case, the direction of the electromagnetic force generated in the windings 3a, 3b, 4a and 4b is directed inward in the inner secondary windings 3a and 3b with respect to the radial direction of the windings 3a, 3b, 4a and 4b. The outer primary windings 4a and 4b go outward. The magnitude of the electromagnetic force in the radial direction of these windings 3a, 3b, 4a, and 4b (hereinafter referred to as radial electromagnetic force) depends on the density of the axial leakage magnetic flux interlinking with the windings 3a, 3b, 4a, and 4b. Proportional.

すなわち、巻線3a、3b、4a、4bの軸方向漏れ磁束が、巻線周方向に均等に分布しているのであれば、半径方向電磁力も巻線周方向に均等である。したがって、短絡電流の発生に伴って半径方向電磁力が増大したとしても、この力は巻線3a、3b、4a、4bに対して均等に作用する。そのため、巻線3a、3b、4a、4bの円形状態を変形させ易い機械力が、巻線3a、3b、4a、4bに加わる心配はない。   That is, if the axial leakage magnetic flux of the windings 3a, 3b, 4a, and 4b is evenly distributed in the winding circumferential direction, the radial electromagnetic force is also uniform in the winding circumferential direction. Therefore, even if the radial electromagnetic force increases with the occurrence of the short-circuit current, this force acts evenly on the windings 3a, 3b, 4a and 4b. Therefore, there is no fear that the mechanical force that easily deforms the circular state of the windings 3a, 3b, 4a, and 4b is applied to the windings 3a, 3b, 4a, and 4b.

しかしながら、巻線3a、3b、4a、4bの軸方向漏れ磁束が、巻線周方向に偏っていると、半径方向電磁力にも偏りを生じる。この場合には、短絡電流が発生すると、強い半径方向電磁力が巻線の半径方向に不均一に働き、巻線3a、3b、4a、4bの円形状態を変形させ易い、斜め方向の機械力が巻線3a、3b、4a、4bに加わってしまう。   However, if the axial leakage magnetic flux of the windings 3a, 3b, 4a and 4b is biased in the winding circumferential direction, the radial electromagnetic force is also biased. In this case, when a short-circuit current is generated, a strong radial electromagnetic force acts unevenly in the radial direction of the winding, and the mechanical force in the oblique direction is easy to deform the circular state of the windings 3a, 3b, 4a, and 4b. Is added to the windings 3a, 3b, 4a, 4b.

この点に関して、図10及び図11を用いて説明する。図10では、上記の図8、図9に示した単相変圧器において、電流方向と漏れ磁束を示している。図10に示すように、二次巻線3a、3b中には二次電流6a、6bが流れ、一次巻線4a、4b中には一次電流7a、7bが流れている。各電流の方向は白抜きの矢印及び丸で囲まれたクロス(×)またはドット(・)にて表す。   This point will be described with reference to FIGS. FIG. 10 shows the current direction and the leakage flux in the single-phase transformer shown in FIGS. As shown in FIG. 10, secondary currents 6a and 6b flow in the secondary windings 3a and 3b, and primary currents 7a and 7b flow in the primary windings 4a and 4b. The direction of each current is represented by a cross (x) or dot (•) surrounded by a white arrow and a circle.

二次電流6a及び一次電流7aによって漏れ磁束8aが発生し、二次電流6b及び一次電流7bによって漏れ磁束8bが発生する。漏れ磁束8a、8bは斜線入りの矢印にて示している。ここで、鉄心脚1、2に対する一次巻線4a、4bと二次巻線3a、3bの内外の位置関係は、二つの鉄心脚1、2において同一である。   A leakage flux 8a is generated by the secondary current 6a and the primary current 7a, and a leakage flux 8b is generated by the secondary current 6b and the primary current 7b. Leakage magnetic fluxes 8a and 8b are indicated by hatched arrows. Here, the internal and external positional relationships of the primary windings 4a, 4b and the secondary windings 3a, 3b with respect to the core legs 1, 2 are the same in the two core legs 1, 2.

このように、一次側と二次側との位置関係が等しいコイル同士が対向したとき、これらコイル同士が対向する場所の近傍では、漏れ磁束8aと漏れ磁束8bとは、互いに同じものとなる。したがって、コイル同士が向かい合う場所における漏れ磁束8a、8bの磁路長は、他の場所の漏れ磁束8a、8bの磁路長に比べて、実質的に半分となる。   Thus, when coils having the same positional relationship between the primary side and the secondary side face each other, the leakage magnetic flux 8a and the leakage magnetic flux 8b are the same in the vicinity of the place where these coils face each other. Therefore, the magnetic path lengths of the leakage magnetic fluxes 8a and 8b at the locations where the coils face each other are substantially halved compared to the magnetic path lengths of the leakage magnetic fluxes 8a and 8b at other locations.

そのため、コイル同士が対向する場所近傍では、他の場所と比べて、磁気抵抗も1/2になる。この結果、図11に示すごとく、磁気抵抗が小さい箇所つまりコイル同士が向かい合う場所では漏れ磁束8a、8bの密度が高くなり(図11の一点鎖線で囲んだA部分)、それ以外の場所では漏れ磁束8a、8bの密度は低くなる(図11の二点鎖線で囲んだB部分)。   Therefore, in the vicinity of the place where the coils face each other, the magnetic resistance is also halved compared to other places. As a result, as shown in FIG. 11, the density of the leakage magnetic fluxes 8a and 8b is high at a location where the magnetic resistance is small, that is, where the coils face each other (A portion surrounded by a one-dot chain line in FIG. 11). The density of the magnetic fluxes 8a and 8b is low (B portion surrounded by a two-dot chain line in FIG. 11).

以上述べたように、二組のコイルにおいて、一次側と二次側との位置関係が等しい場合、コイル同士の向かい合う場所と、それ以外の場所とでは、漏れ磁束8a、8bの密度に違いがある。したがって、漏れ磁束8a、8bの密度に比例する内側半径方向電磁力は、巻線3a、3b、4a、4bの半径方向に偏って作用することになる。   As described above, in the two sets of coils, when the positional relationship between the primary side and the secondary side is the same, there is a difference in the density of the leakage magnetic fluxes 8a and 8b between the place where the coils face each other and the other place. is there. Therefore, the inner radial electromagnetic force proportional to the density of the leakage magnetic fluxes 8a and 8b acts biased in the radial direction of the windings 3a, 3b, 4a and 4b.

特に、鉄心脚の外周側に位置する巻線では、外側半径方向電磁力を巻線の導体に生じる引張応力でのみ耐える必要がある。このため、外側半径方向電磁力が巻線の周方向に偏って強く作用すれば、外周側に位置する巻線は円形状態を保つことが困難となり、巻線が変形する原因となっていた。   In particular, in the winding positioned on the outer peripheral side of the iron core leg, it is necessary to endure the outer radial electromagnetic force only by the tensile stress generated in the conductor of the winding. For this reason, if the outer radial electromagnetic force is biased and acts strongly in the circumferential direction of the winding, it is difficult to keep the winding located on the outer circumferential side in a circular state, which causes the winding to be deformed.

本発明は、かかる従来の事情に鑑みて提案されたものであって、その目的は、軸方向漏れ磁束の分布を巻線の周方向に均等化して、変圧器の二次短絡時に生じる半径方向電磁力を巻線の周方向に均等にすることで巻線の変形を防止し、これにより耐短絡機械力の向上を図って、信頼性の高い単相変圧器及びそれを用いた配電系統を提供することにある。   The present invention has been proposed in view of such conventional circumstances, and its purpose is to equalize the distribution of axial leakage magnetic flux in the circumferential direction of the winding, and to generate a radial direction during secondary short-circuiting of the transformer. By making the electromagnetic force uniform in the circumferential direction of the winding, deformation of the winding is prevented, thereby improving the short-circuit resistance mechanical force, and a highly reliable single-phase transformer and a power distribution system using the same It is to provide.

上記目的を達成するため、本発明に係る単相変圧器は、二つの鉄心脚を対向して配置し、前記鉄心脚の上部及び下部の継鉄部で連結し、各鉄心脚には一次巻線及び二次巻線を同心状に巻回し、これら一次巻線及び二次巻線をそれぞれ並列または直列接続した単相変圧器において、一方の前記鉄心脚には前記一次巻線を外周側に、前記二次巻線を内周側にそれぞれ巻回し、前記他方の鉄心脚には前記一次巻線を内周側に、前記二次巻線を外周側にそれぞれ巻回し、さらに、二つの前記鉄心脚中に形成される主磁束の方向が互いに逆向きになり、前記外周側の前記一次巻線と、前記外周側の前記二次巻線とを流れる電流の方向が、互いに逆向きとなるように構成したことを特徴とする。 In order to achieve the above object, a single-phase transformer according to the present invention has two core legs arranged opposite to each other and connected by upper and lower yoke portions of the core legs, and each core leg has a primary winding. In a single-phase transformer in which a wire and a secondary winding are wound concentrically, and the primary winding and the secondary winding are respectively connected in parallel or in series, one of the iron core legs has the primary winding on the outer peripheral side. The secondary winding is wound on the inner peripheral side, the other iron core leg is wound on the primary winding on the inner peripheral side, and the secondary winding is wound on the outer peripheral side. direction of the main magnetic flux formed in the core leg Ri Do in opposite directions, and the primary winding of the outer peripheral side, the direction of the current flowing through said secondary winding of the outer peripheral side, and opposite to each other characterized by being configured such that.

以上の構成を有する本発明では、漏れ磁束の巻線周方向分布を決定する磁気抵抗の値は、巻線の周方向で均等になる。したがって、軸方向漏れ磁束密度に比例する半径方向電磁力もまた、巻線の周方向で均等化される。これにより、変圧器の二次側で短絡が発生して半径方向電磁力が増大しても、この電磁力が巻線の周方向に偏って作用することはなく、外周側に位置する巻線の円形状態が変形するおそれがない。   In the present invention having the above configuration, the value of the magnetic resistance that determines the distribution of leakage flux in the circumferential direction of the winding is uniform in the circumferential direction of the winding. Therefore, the radial electromagnetic force proportional to the axial leakage flux density is also equalized in the circumferential direction of the winding. Thus, even if a short circuit occurs on the secondary side of the transformer and the radial electromagnetic force increases, the electromagnetic force is not biased in the circumferential direction of the winding, and the winding located on the outer circumferential side There is no risk of deformation of the circular state.

本発明によれば、軸方向漏れ磁束の分布を巻線の周方向に均等化することにより、変圧器の二次側で短絡が発生した場合でも、生じる強力な半径方向電磁力を巻線の周方向に均等に作用させて、耐短絡機械力の向上を図って巻線の変形を防止することができ、信頼性を高めた単相変圧器及びそれを用いた配電系統を提供することができる。   According to the present invention, even if a short circuit occurs on the secondary side of the transformer, the distribution of the axial leakage magnetic flux is made uniform in the circumferential direction of the winding. To provide a single-phase transformer with improved reliability and a power distribution system using the same, which can act evenly in the circumferential direction to improve the short-circuit mechanical force and prevent deformation of the winding. it can.

本発明に係る第1の実施形態の断面図。Sectional drawing of 1st Embodiment which concerns on this invention. 第1の実施形態における巻線の巻回状況を示す説明図。Explanatory drawing which shows the winding condition of the coil | winding in 1st Embodiment. 第1の実施形態の断面図(電流の方向と漏れ磁束を含む)。Sectional drawing of 1st Embodiment (The direction of electric current and a leakage magnetic flux are included.) 第1の実施形態において漏れ磁束の周方向分布を示す平面図。The top view which shows the circumferential direction distribution of leakage magnetic flux in 1st Embodiment. 本発明に係る第2の実施形態の断面図。Sectional drawing of 2nd Embodiment which concerns on this invention. 第2の実施形態の断面図(電流の方向と漏れ磁束を含む)。Sectional drawing of 2nd Embodiment (The direction of electric current and a leakage magnetic flux are included). 第2の実施形態において漏れ磁束の周方向分布を示す平面図。The top view which shows the circumferential direction distribution of the leakage magnetic flux in 2nd Embodiment. 従来の単相変圧器の断面図。Sectional drawing of the conventional single phase transformer. 図8のA−A断面図。AA sectional drawing of FIG. 従来の単相変圧器の断面図(電流の方向と漏れ磁束を含む)。Sectional drawing of a conventional single-phase transformer (including current direction and leakage flux). 従来の単相変圧器において漏れ磁束の周方向分布を示す平面図。The top view which shows the circumferential direction distribution of the leakage magnetic flux in the conventional single phase transformer.

(1)第1の実施形態
[構成]
以下、本発明に係る第1の実施形態について、図1〜図4を参照して具体的に説明する。第1の実施形態は、新幹線などの交流き電系統に用いられる単相変圧器に適用されている。
(1) First Embodiment [Configuration]
Hereinafter, the first embodiment according to the present invention will be specifically described with reference to FIGS. The first embodiment is applied to a single-phase transformer used in an AC feeder system such as a bullet train.

図1は第1の実施形態を示す鉄心と巻線の断面図、図2は巻線の巻回状況を示す説明図、図3は第1の実施形態における電流の方向を示す断面図、図4は第1の実施形態における漏れ磁束の周方向の分布を示す平面図である。なお、図8〜図11にて示した従来例と同一の部材に関しては同一符号を付して説明は省略する。   FIG. 1 is a cross-sectional view of an iron core and a winding showing the first embodiment, FIG. 2 is an explanatory view showing the winding state of the winding, and FIG. 3 is a cross-sectional view showing the direction of current in the first embodiment. 4 is a plan view showing the distribution of leakage magnetic flux in the circumferential direction in the first embodiment. FIG. In addition, the same code | symbol is attached | subjected about the same member as the prior art example shown in FIGS. 8-11, and description is abbreviate | omitted.

第1の実施形態の構成上の特徴は次の点にある。すなわち、第1の鉄心脚1では外周側に一次巻線4aが、内周側に二次巻線3aがそれぞれ巻回されている。また、第2の鉄心脚2では第1の鉄心脚1の配置とは反対に、内周側に一次巻線4bが、外周側に二次巻線3bがそれぞれ巻回されている。   The structural features of the first embodiment are as follows. That is, in the first core leg 1, the primary winding 4a is wound on the outer peripheral side, and the secondary winding 3a is wound on the inner peripheral side. In the second core leg 2, the primary winding 4 b is wound on the inner peripheral side and the secondary winding 3 b is wound on the outer peripheral side, contrary to the arrangement of the first core leg 1.

図1中において二重丸で囲まれたクロス(×)及びドット(・)は、各巻線の端子U(またはu)から端子V(またはv)へ向かう巻方向を示しており、図1に示した一次巻線4a、4bの巻方向を模式的に表現すると図2のようになる。   In FIG. 1, a cross (×) and a dot (•) surrounded by a double circle indicate the winding direction from the terminal U (or u) to the terminal V (or v) of each winding. FIG. 2 is a schematic representation of the winding directions of the primary windings 4a and 4b shown.

図1及び図2から判るように、第1の鉄心脚1に巻回した二次巻線3a、一次巻線4aと、第2の鉄心脚2に巻回した二次巻線3b、一次巻線4bでは、その巻方向が二つの鉄心脚1、2で逆にしてある。これは、第1の鉄心脚1中に誘起する主磁束5aの向きと、第2の鉄心脚2中に誘起する主磁束5bの向きを、互いに上下逆にすることで、鉄心脚1、2からなる鉄心中に主磁束5a、5bを循環させるためである。なお、一次巻線4a、4b及び二次巻線3a、3b中に流れる一次電流7a、7b及び二次電流6a、6bは、互いのアンペアターンを打ち消す方向に流れるようになっている。   As can be seen from FIGS. 1 and 2, the secondary winding 3a and the primary winding 4a wound around the first core leg 1, the secondary winding 3b wound around the second core leg 2 and the primary winding. In the wire 4b, the winding direction is reversed between the two iron core legs 1 and 2. This is because the direction of the main magnetic flux 5a induced in the first iron core leg 1 and the direction of the main magnetic flux 5b induced in the second iron core leg 2 are turned upside down with respect to each other. This is because the main magnetic fluxes 5a and 5b are circulated in the iron core. The primary currents 7a and 7b and the secondary currents 6a and 6b flowing in the primary windings 4a and 4b and the secondary windings 3a and 3b flow in a direction that cancels the ampere turns.

[作用効果]
以上の構成を有する第1の実施形態の作用効果は次の通りである。図3では図2の構成における巻線3a、3b、4a、4b中の電流の方向を示している。ここでは、前記図10と同様、各電流6a、6b、7a、7bの方向は白抜きの矢印及び丸で囲まれたクロス(×)またはドット(・)にて表し、漏れ磁束8a、8bは斜線入りの矢印にて表している。
[Function and effect]
The operational effects of the first embodiment having the above-described configuration are as follows. FIG. 3 shows the direction of current in the windings 3a, 3b, 4a and 4b in the configuration of FIG. Here, as in FIG. 10, the directions of the currents 6a, 6b, 7a and 7b are represented by white arrows and circled crosses (x) or dots (.), And the leakage magnetic fluxes 8a and 8b are Represented by hatched arrows.

第1の実施形態では、鉄心脚1、2における一次巻線4a、4bと二次巻線3a、3bの内外の位置関係が反対である。このため、コイル同士が対向する場所つまり鉄心脚1、2から見て最外周に位置する一次巻線4a及び二次巻線3bの近傍では、図10に示した従来例と異なり、漏れ磁束8aと漏れ磁束8bとは相違している。   In the first embodiment, the internal and external positional relationships of the primary windings 4a and 4b and the secondary windings 3a and 3b in the iron core legs 1 and 2 are opposite. Therefore, in the vicinity of the primary winding 4a and the secondary winding 3b located at the outermost periphery when viewed from the iron core legs 1 and 2 where the coils face each other, unlike the conventional example shown in FIG. Is different from the leakage magnetic flux 8b.

したがって、漏れ磁束8a、8bの磁路長は、コイル同士が向かい合う場所あっても、他の場所のそれと変わりがなく、磁気抵抗も同じである。この結果、図4に示すように、巻線3a、3b、4a、4bの全周において磁気抵抗が均等であり、漏れ磁束8a、8bは図4に示すように巻線3a、3b、4a、4bの周方向に対し均等に分布することになる。   Therefore, the magnetic path lengths of the leakage magnetic fluxes 8a and 8b are the same as those in other places even if the coils face each other, and the magnetic resistance is the same. As a result, as shown in FIG. 4, the magnetic resistance is uniform over the entire circumference of the windings 3 a, 3 b, 4 a, 4 b, and the leakage flux 8 a, 8 b becomes the windings 3 a, 3 b, 4 a, 4b is distributed evenly in the circumferential direction.

すなわち、第1の実施形態においては、軸方向磁束密度を巻線3a、3b、4a、4bの周方向に均等化することができ、巻線3a、3b、4a、4bに発生する内側半径方向電磁力及び外側半径方向電磁力は均等になる。そのため、巻線3a、3b、4a、4bへ作用する機械力が、巻線3a、3b、4a、4bを変形させる心配がない。   That is, in the first embodiment, the axial magnetic flux density can be equalized in the circumferential direction of the windings 3a, 3b, 4a, 4b, and the inner radial direction generated in the windings 3a, 3b, 4a, 4b. The electromagnetic force and the outer radial electromagnetic force are equal. Therefore, there is no concern that the mechanical force acting on the windings 3a, 3b, 4a, 4b deforms the windings 3a, 3b, 4a, 4b.

特に、鉄心脚1の外周側に位置する一次巻線4a及び鉄心脚2の外周側に位置する二次巻線3bは、外側半径方向電磁力を各巻線4a、3aの導体に生じる引張応力でのみ耐えなくてならないが、電磁力は均等に発生するので、巻線4a、3aが円形状態から変形するおそれがない。以上のように、第1の実施形態によれば、変圧器の二次側で短絡が生じても、巻線3a、3b、4a、4bの変形を確実に防止することができ、耐短絡機械力を向上させて、高い信頼性を得ることができる。   In particular, the primary winding 4a located on the outer peripheral side of the iron core leg 1 and the secondary winding 3b located on the outer peripheral side of the iron core leg 2 are caused by the tensile stress generated in the conductors of the respective windings 4a and 3a by the outer radial electromagnetic force. However, since the electromagnetic force is generated uniformly, there is no possibility that the windings 4a and 3a are deformed from the circular state. As described above, according to the first embodiment, even if a short circuit occurs on the secondary side of the transformer, the deformation of the windings 3a, 3b, 4a, and 4b can be reliably prevented, and the short circuit resistant machine Power can be improved and high reliability can be obtained.

(2)第2の実施形態
[構成]
続いて、本発明に係る単相変圧器の第2の実施形態について、図5〜図7を参照して具体的に説明する。図5は第2の実施形態を示す鉄心と巻線の断面図、図6は第2の実施形態における電流の方向を示す断面図、図7は第2の実施形態における漏れ磁束の周方向の分布を示す平面図である。なお、図1〜図4ならびに図8〜図11にて示した部材と同一の部材に関しては同一符号を付している。
(2) Second Embodiment [Configuration]
Next, a second embodiment of the single-phase transformer according to the present invention will be specifically described with reference to FIGS. FIG. 5 is a cross-sectional view of the iron core and windings showing the second embodiment, FIG. 6 is a cross-sectional view showing the direction of current in the second embodiment, and FIG. 7 is a circumferential direction of leakage magnetic flux in the second embodiment. It is a top view which shows distribution. In addition, the same code | symbol is attached | subjected about the member same as the member shown in FIGS. 1-4 and FIGS. 8-11.

第2の実施形態では、一次巻線4a、4bまたは二次巻線3a、3bもしくは両巻線3a、3b、4a、4bが2つ以上に分割され、さらに、分割した各巻線3a、3b、4a、4bは、鉄心脚1、2の内周側から外周側へ交互に巻回するように構成されている。   In the second embodiment, the primary windings 4a, 4b or the secondary windings 3a, 3b or both windings 3a, 3b, 4a, 4b are divided into two or more, and the divided windings 3a, 3b, 4a, 4b is comprised so that it may wind alternately from the inner peripheral side of the iron core legs 1 and 2 to the outer peripheral side.

図5に示した例では、第1の鉄心脚1の二次巻線3aと、第2の鉄心脚2の一次巻線4bが二分割されている。そして、第1の鉄心脚1では内周側から外周側に向かって、二次巻線3a、一次巻線4a、二次巻線3aの順番で巻かれている。また、第2の鉄心脚2では内周側から外周側に向かって、一次巻線4b、二次巻線3b、一次巻線4bの順番で巻かれている。   In the example shown in FIG. 5, the secondary winding 3 a of the first core leg 1 and the primary winding 4 b of the second core leg 2 are divided into two parts. In the first core leg 1, the secondary winding 3a, the primary winding 4a, and the secondary winding 3a are wound in this order from the inner peripheral side to the outer peripheral side. In the second core leg 2, the primary winding 4b, the secondary winding 3b, and the primary winding 4b are wound in this order from the inner peripheral side to the outer peripheral side.

[作用効果]
以上の構成を有する第2の実施形態では、鉄心脚1、2から見て最外周に位置する二次巻線3a及び一次巻線4bの近傍では、漏れ磁束8a、8bは図6に示すように、互いに異なっており、漏れ磁束8a、8bの周方向分布は均等化する(図7参照)。このため、分割した巻線から構成される単相変圧器において、上記第1の実施形態と同様の作用効果を獲得することができる。
[Function and effect]
In the second embodiment having the above configuration, the leakage magnetic fluxes 8a and 8b are as shown in FIG. 6 in the vicinity of the secondary winding 3a and the primary winding 4b located on the outermost periphery when viewed from the core legs 1 and 2. And the circumferential distribution of the leakage magnetic fluxes 8a and 8b is equalized (see FIG. 7). For this reason, in the single phase transformer comprised from the divided | segmented coil | winding, the effect similar to the said 1st Embodiment can be acquired.

(3)他の実施形態
なお、本発明は、以上の実施形態に限定されるものではなく、各部材の形状などは適宜変更可能である。例えば、本発明は、直列巻線及び分路巻線を有する単巻変圧器にも適用可能である。
(3) Other Embodiments The present invention is not limited to the above embodiments, and the shape and the like of each member can be changed as appropriate. For example, the present invention can be applied to a single-turn transformer having a series winding and a shunt winding.

すなわち、一次巻線と二次巻線の共通部分ではない直列巻線は、一方の鉄心脚では外周側に、他方の鉄心脚では内周側に巻回する。また、一次巻線と二次巻線の共通部分である分路巻線は、一方の鉄心脚では内周側に、他方の鉄心脚では外周側に巻回する。さらに、二つの鉄心脚中の主磁束の方向を互いに逆向きとする。このような実施形態では、き電系統における変圧器として好適な単巻変圧器において、上記第1の実施形態と同様の作用効果が得られる。   That is, the series winding that is not the common part of the primary winding and the secondary winding is wound on the outer peripheral side in one iron core leg and on the inner peripheral side in the other iron core leg. Further, the shunt winding, which is a common part of the primary winding and the secondary winding, is wound on the inner peripheral side of one iron core leg and on the outer peripheral side of the other iron core leg. Furthermore, the directions of the main magnetic fluxes in the two iron core legs are opposite to each other. In such an embodiment, the same effect as that of the first embodiment can be obtained in the auto-transformer suitable as the transformer in the feeder system.

さらには、単巻変圧器とした実施形態の変形例として、直列巻線または分路巻線もしくは両巻線を2つ以上に分割し、分割した各巻線を鉄心脚の内側から外側へ交互に巻回しても良い。なお、巻線の分割数は適宜変更可能であり、分割する対象は一次巻線だけ、または二次巻線だけでは良いし、あるいは両方とも分割して構成しても良い。   Furthermore, as a modification of the embodiment of the single-winding transformer, the series winding or the shunt winding or both windings are divided into two or more, and each divided winding is alternately turned from the inside to the outside of the core leg. It may be wound. Note that the number of winding divisions can be changed as appropriate, and the division target may be only the primary winding or the secondary winding, or both may be divided.

1…第1の鉄心脚
2…第2の鉄心脚
3a、3b…二次巻線
4a、4b…一次巻線
5a、5b…主磁束
6a、6b…二次電流
7a、7b…一次電流
8a、8b…漏れ磁束
DESCRIPTION OF SYMBOLS 1 ... 1st iron core leg 2 ... 2nd iron core leg 3a, 3b ... Secondary winding 4a, 4b ... Primary winding 5a, 5b ... Main magnetic flux 6a, 6b ... Secondary current 7a, 7b ... Primary current 8a, 8b ... Leakage magnetic flux

Claims (4)

二つの鉄心脚を対向して配置し、前記鉄心脚の上部及び下部の継鉄部で連結し、各鉄心脚には一次巻線及び二次巻線を同心状に巻回し、これら一次巻線及び二次巻線をそれぞれ並列または直列接続した単相変圧器において、
一方の前記鉄心脚には前記一次巻線を外周側に、前記二次巻線を内周側にそれぞれ巻回し、
前記他方の鉄心脚には前記一次巻線を内周側に、前記二次巻線を外周側にそれぞれ巻回し、
さらに、二つの前記鉄心脚中に形成される主磁束の方向が互いに逆向きになり、
前記外周側の前記一次巻線と、前記外周側の前記二次巻線とを流れる電流の方向が、互いに逆向きとなるように構成したことを特徴とする単相変圧器。
Two iron core legs are arranged opposite to each other, and are connected by upper and lower yoke portions of the iron core legs, and a primary winding and a secondary winding are concentrically wound around each iron core leg. And a single-phase transformer with secondary windings connected in parallel or in series,
On one of the iron core legs, the primary winding is wound on the outer peripheral side, and the secondary winding is wound on the inner peripheral side,
On the other iron core leg, the primary winding is wound on the inner peripheral side, and the secondary winding is wound on the outer peripheral side, respectively.
Further, Ri Do in directions opposite to each other of the main magnetic flux formed in two of the core legs,
A single-phase transformer configured such that directions of currents flowing through the primary winding on the outer peripheral side and the secondary winding on the outer peripheral side are opposite to each other .
前記一次巻線を直列巻線とし、前記二次巻線を分路巻線として単巻変圧器としたことを特徴とする請求項1記載の単相変圧器。   2. The single-phase transformer according to claim 1, wherein the primary winding is a series winding and the secondary winding is a shunt winding to form a single-winding transformer. 前記一次巻線また前記は二次巻線もしくはその両方を2つ以上に分割し、
分割した巻線は前記鉄心脚の内側から外側へ交互に巻回したことを特徴とする請求項1または2に記載の単相変圧器。
Dividing the primary winding or the secondary winding or both into two or more;
The single-phase transformer according to claim 1 or 2, wherein the divided windings are alternately wound from the inside to the outside of the iron core leg.
前記請求項1〜3のいずれか1項に記載の単相変圧器を用いたことを特徴とする配電系統。   A power distribution system using the single-phase transformer according to any one of claims 1 to 3.
JP2010002137A 2010-01-07 2010-01-07 Single-phase transformer and power distribution system using the same Active JP5405327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002137A JP5405327B2 (en) 2010-01-07 2010-01-07 Single-phase transformer and power distribution system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002137A JP5405327B2 (en) 2010-01-07 2010-01-07 Single-phase transformer and power distribution system using the same

Publications (2)

Publication Number Publication Date
JP2011142218A JP2011142218A (en) 2011-07-21
JP5405327B2 true JP5405327B2 (en) 2014-02-05

Family

ID=44457869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002137A Active JP5405327B2 (en) 2010-01-07 2010-01-07 Single-phase transformer and power distribution system using the same

Country Status (1)

Country Link
JP (1) JP5405327B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988182B2 (en) 2011-03-22 2015-03-24 Sunedison, Inc. Transformers and methods for constructing transformers
JP2014127471A (en) * 2012-12-25 2014-07-07 Mitsubishi Electric Corp Transformer and dc/dc converter using the same
CN104064329A (en) * 2013-03-22 2014-09-24 王勇 High-frequency pulse transformer with planar magnetic core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999581U (en) * 1982-12-23 1984-07-05 株式会社東芝 Trance
JP2583907B2 (en) * 1987-10-09 1997-02-19 日本精密計測株式会社 Step-down device
JP2545469Y2 (en) * 1990-11-28 1997-08-25 株式会社ダイヘン Composite transformer
JPH06314626A (en) * 1993-04-30 1994-11-08 Hirai Denkeiki Kk Winding type current transformer
JPH06318525A (en) * 1993-05-07 1994-11-15 Toshiba Corp Single-phase auto-transformer
JP3744616B2 (en) * 1996-08-29 2006-02-15 Necトーキン株式会社 Power factor improving reactor

Also Published As

Publication number Publication date
JP2011142218A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP2008210998A (en) Reactor element with air gap
CN108231361B (en) Electromagnetic equipment, motor drive, mechanical device and fairing
US9716414B2 (en) Stator of rotating electric machine
US20150228393A1 (en) High-Voltage Transformer Apparatus with Adjustable Leakage
JP5405327B2 (en) Single-phase transformer and power distribution system using the same
JP2017169419A (en) Stator of rotary electric machine
EP2787515B1 (en) Inductor gap spacer
US20160268037A1 (en) Stationary Induction Electric Apparatus and Method for Making the Same
CN109804441B (en) Transformer and power converter provided with same
CN107924760A (en) Current transformer module
US20180204670A1 (en) Stationary Induction Apparatus
JP2012222963A (en) Rotary electric machine
KR20150095819A (en) A transformer high voltage coil assembly
US10381151B2 (en) Transformer using coupling coil
US11915856B2 (en) Electromagnetic induction device having a low losses winding
JP2010251543A (en) Resin molded coil
JP5247756B2 (en) Transformer for converter
US10147539B2 (en) Magnetic core of rotating transformer
JP2009088084A (en) Stationary induction apparatus
JP2018190769A (en) Winding for stationary induction apparatus
JP2015026734A (en) Reactor device
US20210398742A1 (en) Electrical component, especially transformer or inductor
WO2017154361A1 (en) Stationary induction electrical apparatus
JPH09205024A (en) Electromagnetic induction machine
JPH05114522A (en) Zero phase current transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5405327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350