JP5258324B2 - Hybrid grid interconnection system - Google Patents

Hybrid grid interconnection system Download PDF

Info

Publication number
JP5258324B2
JP5258324B2 JP2008044929A JP2008044929A JP5258324B2 JP 5258324 B2 JP5258324 B2 JP 5258324B2 JP 2008044929 A JP2008044929 A JP 2008044929A JP 2008044929 A JP2008044929 A JP 2008044929A JP 5258324 B2 JP5258324 B2 JP 5258324B2
Authority
JP
Japan
Prior art keywords
power
converter
battery
voltage
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008044929A
Other languages
Japanese (ja)
Other versions
JP2009205288A (en
Inventor
学 堤
彰訓 加藤
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2008044929A priority Critical patent/JP5258324B2/en
Publication of JP2009205288A publication Critical patent/JP2009205288A/en
Application granted granted Critical
Publication of JP5258324B2 publication Critical patent/JP5258324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、太陽光発電と風力発電を組み合わせた発電電力を商用電力系統等の他の電力系統に系統連系させるハイブリッド系統連系システムに関する。   The present invention relates to a hybrid grid interconnection system that grids a power generated by combining solar power generation and wind power generation with another power grid such as a commercial power grid.

従来より太陽光発電と風力発電とを組み合わせたハイブリッド系統連系システムがある。例えば特許文献1では、風力発電電力をバッテリに充電し、バッテリ電圧が所定値に達したら、太陽光発電電力と風力発電電力とバッテリ蓄電電力との合成電力をインバータの固定電力指令制御により系統に供給している。
しかしながら、この構成の場合、バッテリへの充電がまだ十分でなく太陽光発電電力単独で系統に供給される場合は最大電力点追従制御を実施できたが、バッテリが充電されて合成電力が供給されるようになると、太陽光発電電力の最大電力点追従運転ができず、太陽光発電の効率が低下していた。
一方で特許文献2に記載された技術がある。これは、太陽光発電用の系統連系インバータと風力発電用の系統連系インバータとを並列運転し、風力発電電力のバッテリへの充電は、交流で出力される風力発電機出力を整流して直接バッテリに充電している。このように構成することで、太陽光発電と風力発電の双方を並列運転させても太陽光発電電力は最大電力点追従運転が可能となっていた。
Conventionally, there is a hybrid grid connection system combining solar power generation and wind power generation. For example, in Patent Document 1, when wind power is charged to a battery and the battery voltage reaches a predetermined value, the combined power of the solar power, the wind power, and the battery stored power is fed to the system by fixed power command control of the inverter. Supply.
However, in this configuration, when the battery is still not sufficiently charged and the photovoltaic power alone is supplied to the system, the maximum power point tracking control can be performed, but the battery is charged and the combined power is supplied. As a result, the maximum power point tracking operation of the photovoltaic power generation could not be performed, and the efficiency of the photovoltaic power generation was reduced.
On the other hand, there is a technique described in Patent Document 2. This is because the grid-connected inverter for solar power generation and the grid-connected inverter for wind power generation are operated in parallel, and the wind power generation battery is charged by rectifying the output of the wind power generator output by alternating current. The battery is charged directly. With this configuration, even when both solar power generation and wind power generation are operated in parallel, the solar power generation power can be operated at the maximum power point.

特開平10−174312号公報JP-A-10-174312 特開2000−116007号公報JP 2000-116007 A

しかし、上記特許文献2の技術は、風力発電電力をバッテリに蓄える際に、風力発電機出力(一般に三相交流電力)を整流器で整流し、整流した出力で直接バッテリに充電する技術が示されているが、この方式では出力電圧がバッテリで固定されるため、風力発電機の最大電力点での運転が行えず、風力発電電力を十分に利用するには至らなかった。
また、系統連系インバータを2台使用するし、風力発電電力を充電するバッテリと風力発電用系統連系インバータ間にバッテリ電力を太陽電池の出力特性に合わせるためコンバータが必要であるため、コスト高であったし装置の設置スペースも大きなものとなっていた。
However, the technique of the above-mentioned Patent Document 2 shows a technique of rectifying a wind power generator output (generally three-phase AC power) with a rectifier and charging the battery directly with the rectified output when storing the wind power generated in the battery. However, in this method, since the output voltage is fixed by the battery, the wind power generator cannot be operated at the maximum power point, and wind power generated power cannot be fully utilized.
In addition, since two grid-connected inverters are used and a converter is required to match the battery power to the output characteristics of the solar cell between the battery for charging the wind power and the grid-connected inverter for wind power generation, the cost is high. The installation space for the equipment was also large.

そこで、本発明はこのような問題点に鑑み、風力発電電力と太陽光発電電力の並列運転時においても、両者の最大電力点追従制御運転を常時実施でき、更に低コストで実現できるハイブリッド系統連系システムを提供することを目的とする。   Therefore, in view of such a problem, the present invention can always perform the maximum power point tracking control operation of both of the wind power generation power and the solar power generation power in parallel operation and can be realized at a lower cost. The purpose is to provide a system.

上記課題を解決する為に、請求項1の発明は、太陽光発電電力を昇圧してリンク部に出力する第1コンバータと、風力発電電力をバッテリに蓄電するための第2コンバータと、前記バッテリに蓄えられた電力を固定電力制御で昇圧して前記リンク部に出力するための第3コンバータと、リンク部の電力を交流変換して系統に出力するインバータとを有し、
前記バッテリ電圧を前記風力発電電圧より高く設定して、前記第2コンバータが昇圧チョッパによる昇圧制御を実施すると共に、前記インバータが前記リンク部電圧が所定値を保持するように出力正弦波電流を調整することを特徴とする。
この構成によれば、第1コンバータは太陽光発電電力を最大電力点追従制御しつつ昇圧してリンク部に出力させることができるし、第2コンバータは風力発電電力を最大電力点追従制御しつつバッテリに蓄電することができる。そして、双方の並列運転時においても両者を最大電力追従制御が継続して行うことができ、両発電電力を十分に利用することができる。
また、風力発電電力と太陽光発電電力が共通のインバータにより電力変換されるので、双方で独立したインバータを備える構成に比べてシステムを小形にできコストダウンを図ることができる。
In order to solve the above-mentioned problems, the invention of claim 1 includes a first converter that boosts photovoltaic power generation power and outputs the boosted power to a link unit, a second converter for storing wind power generation power in a battery, and the battery. A third converter for boosting the power stored in the fixed power control and outputting the boosted power to the link unit, and an inverter for converting the power of the link unit to AC and outputting it to the system,
The battery voltage is set higher than the wind power generation voltage, and the second converter performs boost control by the boost chopper, and the inverter adjusts the output sine wave current so that the link unit voltage maintains a predetermined value. It is characterized by doing.
According to this configuration, the first converter can boost the photovoltaic power generation power while performing maximum power point tracking control and output it to the link unit, and the second converter can perform wind power generation power maximum power point tracking control. The battery can be charged. And even at the time of both parallel operation, both can be continuously performed by maximum electric power follow-up control, and both generated electric power can fully be utilized.
In addition, since the wind power generation power and the solar power generation power are converted by a common inverter, the system can be made smaller and the cost can be reduced as compared with a configuration including independent inverters.

そして、風力発電の最大電力点での電圧が常にバッテリ電圧以下であるため、強風時を除けば最大電力点追従制御を容易に実施できる。 And since the voltage at the maximum power point of wind power generation is always below the battery voltage, maximum power point tracking control can be easily performed except during strong winds.

請求項の発明は、請求項に記載の発明において、第3コンバータは、一次巻線と二次巻線とを有する変圧器を備えた絶縁型コンバータであることを特徴とする。
この発明によれば、商用電力系統と風力発電機が絶縁されるので、風力発電機が絶縁劣化しても系統側の漏電遮断器が作動することがなくなり、そのために負荷への電力供給が停止するようなことがない。
According to a second aspect of the present invention, in the first aspect of the present invention, the third converter is an isolated converter including a transformer having a primary winding and a secondary winding.
According to this invention, since the commercial power system and the wind power generator are insulated, the earth leakage breaker on the system side does not operate even if the wind power generator is insulated and deteriorated. For this reason, power supply to the load is stopped. There is nothing to do.

本発明によれば、第1コンバータは太陽光発電電力を最大電力点追従制御しつつ昇圧してリンク部に出力させることができるし、第2コンバータは風力発電電力を最大電力点追従制御しつつバッテリに蓄電することができる。そして、双方の並列運転時においても両者を最大電力追従制御が継続して行うことができ、両発電電力を十分に利用することができる。
また、風力発電電力と太陽光発電電力が共通のインバータにより電力変換されるので、双方で独立したインバータを備える構成に比べてシステムを小形にできコストダウンを図ることができる。
According to the present invention, the first converter can boost the photovoltaic power generation power while performing maximum power point tracking control and output it to the link unit, and the second converter can perform wind power generation power maximum power point tracking control. The battery can be charged. And even at the time of both parallel operation, both can be continuously performed by maximum electric power follow-up control, and both generated electric power can fully be utilized.
In addition, since the wind power generation power and the solar power generation power are converted by a common inverter, the system can be made smaller and the cost can be reduced as compared with a configuration including independent inverters.

以下、本発明を具体化した実施の形態を、図面に基づいて詳細に説明する。図1は本発明に係るハイブリッド系統連系システムの一例を示す回路図であり、1は太陽光発電する太陽電池、2は風力発電機、3は太陽光発電電力を昇圧してリンク部Rに出力する第1コンバータ、4は風力発電電力をバッテリ5に蓄電するための第2コンバータ、6はバッテリ5に蓄えられた電力を固定電力制御で昇圧してリンク部Rに出力する第3コンバータ、7はリンク部Rの電圧が所定値になるように出力正弦波電流を調整して系統に電力を出力するインバータである。
尚、9は平滑用コンデンサ、10は商用電源、11は発電した電力を供給する負荷を示している。また、第1〜第3コンバータ、及びインバータは、それぞれCPUを有した制御回路により各スイッチング素子がオン/オフ制御されるが、これら制御回路は省略してある。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram showing an example of a hybrid grid-connected system according to the present invention, where 1 is a solar battery for photovoltaic power generation, 2 is a wind power generator, and 3 is a booster for photovoltaic power generation to link part R. A first converter for output, 4 is a second converter for storing wind-generated power in the battery 5, and 6 is a third converter for boosting the power stored in the battery 5 by fixed power control and outputting it to the link unit R, Reference numeral 7 denotes an inverter that adjusts the output sine wave current so that the voltage of the link section R becomes a predetermined value and outputs power to the system.
Reference numeral 9 denotes a smoothing capacitor, 10 denotes a commercial power supply, and 11 denotes a load for supplying generated power. In the first to third converters and the inverter, each switching element is on / off controlled by a control circuit having a CPU, but these control circuits are omitted.

第1コンバータ3は、スイッチング素子Q1、コイルL1等を備えた昇圧チョッパで構成され、太陽電池の100〜350V程度の発電電圧を380V程度の電圧に変換して、次段のインバータ7の系統連系に必要な電源電圧(リンク電圧)を供給するよう構成されている。そして、最大電力点追従制御により、太陽電池1の出力電力が最大となるように調整しながらリンク部Rに電流を出力する。   The first converter 3 is composed of a step-up chopper provided with a switching element Q1, a coil L1, and the like. The first converter 3 converts a power generation voltage of about 100 to 350 V of the solar cell into a voltage of about 380 V, and connects the inverter 7 in the next stage. The power supply voltage (link voltage) necessary for the system is supplied. And current is output to the link part R, adjusting so that the output power of the solar cell 1 may become the maximum by maximum power point tracking control.

第2コンバータ4は、風力発電機2の発電電力をバッテリ5に充電するための充電装置であり、スイッチング素子Q2、コイルL2等を備えた昇圧チョッパで構成されている。風力発電機2の出力電力が最大となるよう一次電流を制御して風力発電機の回転数を調整することで最大電力点追従制御を実施して、二次側に接続されたバッテリ5に充電する。   The second converter 4 is a charging device for charging the battery 5 with the electric power generated by the wind power generator 2, and includes a step-up chopper provided with a switching element Q2, a coil L2, and the like. The primary current is controlled so that the output power of the wind power generator 2 is maximized, and the rotation speed of the wind power generator is adjusted to perform the maximum power point tracking control, and the battery 5 connected to the secondary side is charged. To do.

例えば、風力発電機2が24Vバッテリ接続用である場合、バッテリ5は48V充電のものが使用され、このような特性を示す風力発電機2を使用する場合、風力発電機2は例えば図2に示すような出力電力と回転数の関係を有している。この図2から、例えば風速9.7m/s以下では最大電力点の電圧が48V以下となることがわかる。
そこで、風力発電機2が出力する電流(第2コンバータ4の一次電流)を制御することで風力発電機2の回転数を調整できるため、このように風速が弱い場合は一次電流を制御することで最大電力点追従制御が可能となる。一方、最大電力点の電圧が48V以上となった場合は、スイッチング素子Q2を連続オフしてバッテリ5の直結動作が行われる。
For example, when the wind power generator 2 is for connecting a 24V battery, the battery 5 is charged with 48V, and when using the wind power generator 2 exhibiting such characteristics, the wind power generator 2 is shown in FIG. As shown, there is a relationship between the output power and the rotational speed. From FIG. 2, it can be seen that the voltage at the maximum power point is 48 V or less, for example, at a wind speed of 9.7 m / s or less.
Therefore, since the rotation speed of the wind power generator 2 can be adjusted by controlling the current output from the wind power generator 2 (primary current of the second converter 4), the primary current is controlled when the wind speed is low in this way. This enables maximum power point tracking control. On the other hand, when the voltage at the maximum power point is 48 V or more, the switching element Q2 is continuously turned off and the battery 5 is directly connected.

第3コンバータ6は、スイッチング素子Q3の組から成るフルブリッジ回路で構成した入力部13と、一次巻線14aと二次巻線14bから成るトランス14と、ダイオードブリッジ回路で構成した出力回路15を備えたDC−DCコンバータで構成された絶縁型のコンバータで構成されている。そして、バッテリ5の充電電圧が所定値まで上昇した場合に、第1コンバータ3と並列運転して系統連系に必要な電圧(リンク電圧)を次段のインバータ7に供給するためにバッテリ電圧を昇圧する。バッテリ5は最大電力点がないため、固定電力制御により一定電流をリンク部Rに出力し、バッテリ電圧が所定値まで下降したら停止する。   The third converter 6 includes an input unit 13 configured by a full bridge circuit including a set of switching elements Q3, a transformer 14 including a primary winding 14a and a secondary winding 14b, and an output circuit 15 configured by a diode bridge circuit. It is comprised with the insulation type converter comprised with the provided DC-DC converter. When the charging voltage of the battery 5 rises to a predetermined value, the battery voltage is supplied in order to supply the voltage (link voltage) necessary for system interconnection to the next stage inverter 7 by operating in parallel with the first converter 3. Boost the pressure. Since the battery 5 does not have a maximum power point, the battery 5 outputs a constant current to the link portion R by fixed power control, and stops when the battery voltage drops to a predetermined value.

インバータ7は、スイッチング素子Q4の組から成るフルブリッジ回路とコイルL4及びコンデンサC4等で構成され、リンク部Rの直流電力を交流電力に変換して系統(商用電力系統)に正弦波電流を出力する電力変換装置であり、変換する際にリンク部Rの電圧を一定(例えば、380Vで一定)に保つ制御を実施している。具体的に、リンク部Rの電圧が下降した場合は上昇させるために出力電流を減少させ、リンク部Rの電圧が上昇した場合は下降させるために出力電流を増加させる制御を実施し、直流電力を交流電力に変換している。   The inverter 7 is composed of a full bridge circuit composed of a set of switching elements Q4, a coil L4, a capacitor C4, and the like. The inverter 7 converts the DC power of the link portion R into AC power and outputs a sine wave current to the system (commercial power system). This is a power conversion device that performs control to keep the voltage of the link section R constant (for example, constant at 380 V) during conversion. Specifically, when the voltage of the link unit R decreases, the output current is decreased to increase the voltage, and when the voltage of the link unit R increases, control is performed to increase the output current to decrease the voltage. Is converted into AC power.

このように、第1コンバータは太陽光発電電力を最大電力点追従制御しつ昇圧してリンク部に出力させることができるし、第2コンバータは風力発電電力を最大電力点追従制御しつつバッテリに蓄電することができる。そして、双方の並列運転時においても両者を最大電力追従制御が継続して行うことができ、両発電電力を十分に利用することができる。
また、風力発電電力と太陽光発電電力が共通のインバータにより電力変換されるので、双方で独立したインバータを備える構成に比べてシステムを小形にできコストダウンを図ることができる。
更に、風力発電電圧よりバッテリ電圧を高く設定して第2コンバータを昇圧コンバータで構成することで、強風時を除いて最大電力点追従制御を実現できるし、強風時のバッテリ直結動作においても、よほどの強風に成らない限り動作点は最大電力点の近傍にある。そのため、ほぼ全ての風力下において、風力エネルギーを効率よく電気エネルギーに変換できる。
また、商用電力系統と風力発電機が絶縁されるので、風力発電機が絶縁劣化しても系統側の漏電遮断器が作動することがなくなり、そのために負荷への電力供給が停止するようなことがない。
As described above, the first converter can boost the photovoltaic power generation power at the maximum power point tracking control and output it to the link unit, and the second converter can control the wind power generation power to the battery while performing the maximum power point tracking control. It can be charged. And even at the time of both parallel operation, both can be continuously performed by maximum electric power follow-up control, and both generated electric power can fully be utilized.
In addition, since the wind power generation power and the solar power generation power are converted by a common inverter, the system can be made smaller and the cost can be reduced as compared with a configuration including independent inverters.
Furthermore, by setting the battery voltage higher than the wind power generation voltage and configuring the second converter with a step-up converter, maximum power point tracking control can be realized except during strong winds. Unless the wind is strong, the operating point is near the maximum power point. Therefore, wind energy can be efficiently converted into electric energy under almost all wind power.
In addition, since the commercial power system and the wind power generator are insulated, the earth leakage breaker on the system side will not operate even if the wind power generator is insulated and deteriorated, so that the power supply to the load stops. There is no.

尚、上記実施形態は、第3コンバータを絶縁型で構成しているが、第2コンバータのようにコイルとスイッチング素子の組で構成しても良い。   In the above embodiment, the third converter is configured as an insulation type, but may be configured as a combination of a coil and a switching element as in the second converter.

本発明に係るハイブリッド系統連系システムの実施形態の一例を示す回路図である。It is a circuit diagram showing an example of an embodiment of a hybrid system interconnection system concerning the present invention. 風力発電機の出力特性の一例を示す出力電力−回転数特性図である。It is an output electric power-rotation speed characteristic figure which shows an example of the output characteristic of a wind power generator.

符号の説明Explanation of symbols

1・・太陽電池、2・・風力発電機、3・・第1コンバータ、4・・第2コンバータ、5・・バッテリ、6・・第3コンバータ、7・・インバータ。   1 .... solar cell, 2 .... wind power generator, 3 .... first converter, 4 .... second converter, 5 .... battery, 6 .... third converter, 7 .... inverter.

Claims (2)

太陽光発電電力を昇圧してリンク部に出力する第1コンバータと、風力発電電力をバッテリに蓄電するための第2コンバータと、前記バッテリに蓄えられた電力を固定電力制御で昇圧して前記リンク部に出力するための第3コンバータと、リンク部の電力を交流変換して系統に出力するインバータとを有し、
前記バッテリ電圧を前記風力発電電圧より高く設定して、前記第2コンバータが昇圧チョッパによる昇圧制御を実施すると共に、
前記インバータが前記リンク部電圧が所定値を保持するように出力正弦波電流を調整することを特徴とするハイブリッド系統連系システム。
A first converter that boosts photovoltaic power and outputs it to the link unit, a second converter that stores wind-generated power in a battery, and boosts the power stored in the battery by fixed power control to link A third converter for outputting to the unit, and an inverter for converting the power of the link unit to AC and outputting to the system,
The battery voltage is set higher than the wind power generation voltage, and the second converter performs boost control by a boost chopper,
The hybrid system interconnection system, wherein the inverter adjusts an output sine wave current so that the link unit voltage maintains a predetermined value.
第3コンバータは、一次巻線と二次巻線とを有する変圧器を備えた絶縁型コンバータである請求項1記載のハイブリッド系統連系システム。 The hybrid system interconnection system according to claim 1, wherein the third converter is an insulating converter including a transformer having a primary winding and a secondary winding.
JP2008044929A 2008-02-26 2008-02-26 Hybrid grid interconnection system Expired - Fee Related JP5258324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008044929A JP5258324B2 (en) 2008-02-26 2008-02-26 Hybrid grid interconnection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044929A JP5258324B2 (en) 2008-02-26 2008-02-26 Hybrid grid interconnection system

Publications (2)

Publication Number Publication Date
JP2009205288A JP2009205288A (en) 2009-09-10
JP5258324B2 true JP5258324B2 (en) 2013-08-07

Family

ID=41147502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044929A Expired - Fee Related JP5258324B2 (en) 2008-02-26 2008-02-26 Hybrid grid interconnection system

Country Status (1)

Country Link
JP (1) JP5258324B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218483B2 (en) 2010-07-09 2013-06-26 ソニー株式会社 Power control device
KR101640468B1 (en) * 2013-12-20 2016-07-18 전자부품연구원 Converter for hybrid generation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174312A (en) * 1996-12-13 1998-06-26 Nippon Electric Ind Co Ltd System interconnection operating method for hybrid power supply system involving photovoltaic power generation and wind power generation
JP4765162B2 (en) * 2000-12-04 2011-09-07 株式会社Gsユアサ Power storage type solar power generation system
JP2008011589A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Hybrid type power generating device

Also Published As

Publication number Publication date
JP2009205288A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5124114B2 (en) Power conditioner with power storage function
US8987939B2 (en) Hybrid power system with variable speed genset
US7880334B2 (en) Power supply control for power generator
JP5344759B2 (en) Power distribution system
JP2011200096A (en) Power storage system
WO2014045563A1 (en) Power conditioner, and method for controlling same
JP2009207234A (en) Linkage system of hybrid system
US20070228836A1 (en) Power generation system and method
WO2007122849A1 (en) System interconnection power conditioner and system interconnection power supply system
JP5541982B2 (en) DC power distribution system
WO2015011931A1 (en) Power conversion device, power management method, and power management system
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
JP6151649B2 (en) Power conversion device and power conversion method
KR101130320B1 (en) Standby power supply system for wind turbine system
JP5931345B2 (en) Uninterruptible power supply system
KR101764651B1 (en) Power applying apparatus and method for controlling connecting photovoltaic power generating apparatus
US20210050728A1 (en) Inverter arrangement for wind power installations and photovoltaic installations
JP5258324B2 (en) Hybrid grid interconnection system
JP5931346B2 (en) Uninterruptible power supply system
JP2012120364A (en) Power supply system
JP5959969B2 (en) Solar power system
JP2009151832A (en) Power conversion device
JP2016067137A (en) Power generator
KR101566802B1 (en) Charging system for charging DC link
KR101668335B1 (en) Single phase inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees