JP4940190B2 - Carbon nanotube production equipment - Google Patents

Carbon nanotube production equipment Download PDF

Info

Publication number
JP4940190B2
JP4940190B2 JP2008174928A JP2008174928A JP4940190B2 JP 4940190 B2 JP4940190 B2 JP 4940190B2 JP 2008174928 A JP2008174928 A JP 2008174928A JP 2008174928 A JP2008174928 A JP 2008174928A JP 4940190 B2 JP4940190 B2 JP 4940190B2
Authority
JP
Japan
Prior art keywords
iron plate
acid solution
cnt
strip
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008174928A
Other languages
Japanese (ja)
Other versions
JP2010013318A (en
Inventor
勝記 井手
和高 小城
英一 杉山
毅 野間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008174928A priority Critical patent/JP4940190B2/en
Publication of JP2010013318A publication Critical patent/JP2010013318A/en
Application granted granted Critical
Publication of JP4940190B2 publication Critical patent/JP4940190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有用性の高い繊維状のナノカーボン例えばカーボンナノチューブを効率的に製造するナノカーボン製造装置に関する。   The present invention relates to a nanocarbon production apparatus for efficiently producing highly useful fibrous nanocarbon such as carbon nanotubes.

カーボンナノチューブの生成法には、アーク放電法、レーザー蒸着法、化学気相成長法(CVD法)などが挙げられる。
アーク放電法は、正負のグラファイト電極間にアーク放電を起こすことでグラファイトが蒸発し、陰極先端に凝縮したカーボンの堆積物の中にカーボンナノチューブが生成される方法である(例えば、特許文献1参照)。レーザー蒸着法は、高温に過熱した不活性ガス中に金属触媒を混合したグラファイト試料を入れ、レーザー照射することによりカーボンナノチューブを生成する方法である(例えば、特許文献2参照)。
Examples of the method for producing the carbon nanotube include an arc discharge method, a laser vapor deposition method, and a chemical vapor deposition method (CVD method).
The arc discharge method is a method in which graphite is evaporated by causing an arc discharge between positive and negative graphite electrodes, and carbon nanotubes are generated in a carbon deposit condensed at the tip of the cathode (see, for example, Patent Document 1). ). The laser vapor deposition method is a method of generating a carbon nanotube by putting a graphite sample mixed with a metal catalyst in an inert gas heated to a high temperature and irradiating it with a laser (see, for example, Patent Document 2).

一般に、上記アーク放電法やレーザー蒸発法では結晶性の良いカーボンナノチューブが生成できるが、生成するカーボンナノチューブの量が少なく大量生成に難しいと言われている。
CVD法には、反応炉の中に配置した基板にカーボンナノチューブを生成させる気相成長基板法(例えば、特許文献3参照)と、触媒金属と炭素源を一緒に高温の炉に流動させカーボンナノチューブを生成する流動気相法(例えば、特許文献4参照)の二つの方法がある。
In general, the arc discharge method or the laser evaporation method can produce carbon nanotubes with good crystallinity, but it is said that the amount of carbon nanotubes to be produced is small and difficult to produce in large quantities.
In the CVD method, a vapor phase growth substrate method (for example, refer to Patent Document 3) in which carbon nanotubes are generated on a substrate disposed in a reaction furnace, and a catalyst metal and a carbon source are flowed together in a high-temperature furnace. There are two methods such as a fluidized gas phase method (see, for example, Patent Document 4).

しかし、上記気相成長基板法は、バッジ処理であるので大量生産が難しい。また、流動気相法は、温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいとされている。さらに、流動気相法の発展型として、高温の炉の中に、触媒兼用流動材で流動層を形成し、炭素原料を供給して繊維状のナノカーボンを生成する方法も提案されている。しかし、炉内の温度の均一性が低く結晶性の良いカーボンナノチューブを生成するのが難しいと考えられる。   However, since the vapor phase growth substrate method is a badge process, mass production is difficult. Further, the fluidized gas phase method is said to be difficult to produce carbon nanotubes with low temperature uniformity and good crystallinity. Further, as a development type of the fluidized gas phase method, a method of forming a fibrous nanocarbon by forming a fluidized bed with a fluid material also serving as a catalyst in a high-temperature furnace and supplying a carbon raw material has been proposed. However, it is considered difficult to produce carbon nanotubes with low temperature uniformity in the furnace and good crystallinity.

しかして、純度及び安定性の高いカーボンナノチューブを低コストで効率よく量産することができるようになれば、カーボンナノチューブの特性を生かしたナノテクノロジー製品を低コストで大量に供給することが可能になる。
特開2000−95509号公報 特開平10−273308号公報 特開2000−86217号公報 特開2003−342840号公報
If carbon nanotubes with high purity and stability can be mass-produced efficiently at low cost, it will be possible to supply large quantities of nanotechnology products that make use of the characteristics of carbon nanotubes at low cost. .
JP 2000-95509 A Japanese Patent Laid-Open No. 10-273308 JP 2000-86217 A JP 2003-342840 A

本発明はこうした事情を考慮してなされたもので、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができるナノカーボン製造装置を提供することを目的とする。   The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a nanocarbon production apparatus capable of efficiently mass-producing highly functional nanocarbon having high purity and stability at low cost.

本発明に係るカーボンナノチューブ製造装置は、内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にカーボンナノチューブが生成される無端状の帯状鉄板と、帯状鉄板を加熱する加熱手段と、反応容器内に炭素原料を供給する炭素原料供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、帯状鉄板に生成されたカーボンナノチューブを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段と、前記帯状鉄板の表面に酸液を塗布する酸液塗布ブラシと、前記帯状鉄板に酸液を供給して帯状鉄板を活性化させる鉄板活性化手段とを具備し、前記鉄板活性化手段は、一端が前記酸液塗布ブラシまで延出する酸液供給ノズルと、酸液を収容する酸液収容タンクと、この酸液収容タンク内の酸液を、酸液供給ノズルを通して酸液塗布ブラシに送るポンプとを備えていることを特徴とする。 The carbon nanotube production apparatus according to the present invention includes a reaction vessel capable of maintaining the inside in a reducing atmosphere, an endless strip-shaped iron plate that is provided in the reaction vessel and is driven by a roller and on the surface of which carbon nanotubes are generated, A heating means for heating the strip iron plate, a carbon raw material supply means for supplying a carbon raw material into the reaction vessel, an inert gas supply means for supplying an inert gas into the reaction vessel, and a carbon nanotube generated on the strip iron plate Scraping and collecting means for collecting, gas exhaust means for exhausting the gas in the reaction vessel, an acid solution applying brush for applying an acid solution to the surface of the strip-shaped iron plate, and a strip-shaped iron plate by supplying an acid solution to the strip-shaped iron plate An iron plate activating means for activating the acid plate, wherein the iron plate activating means has an acid solution supply nozzle having one end extending to the acid solution application brush, and an acid solution container for containing the acid solution. A tank, the acid liquid in the acid solution contained in the tank, characterized in that it comprises a pump for sending to the acid solution application brush through acid solution supply nozzle.

本発明によれば、純度および安定性の高い高機能のナノカーボンを低コストで効率よく量産することができる。   According to the present invention, highly functional nanocarbon having high purity and stability can be mass-produced efficiently at low cost.

以下、本発明のナノカーボン製造装置について更に詳しく説明する。
本願第1,第2の発明において、帯状鉄板としては鉄の純度の高い鉄板もしくは鉄を含んだ炭素鋼からなる鉄板を用いることができる。ここで、鉄の純度が高い鉄板とは、純度が90%以上であることを意味する。
本願第2の発明において、「表面処理された」とは、帯状鉄板をサンドペーパー等で磨いた後、塩酸等により処理することを意味する。
本発明において、不活性ガスとしては、例えば窒素ガス,アルゴンガスが挙げられる。また、炭化水素としては、例えばエタノール(バイオエタノールを含む)が挙げられる。
Hereinafter, the nanocarbon production apparatus of the present invention will be described in more detail.
In the first and second inventions of the present application, as the strip-shaped iron plate, an iron plate having high iron purity or an iron plate made of carbon steel containing iron can be used. Here, the iron plate having a high iron purity means that the purity is 90% or more.
In the second invention of the present application, “surface-treated” means that the band-shaped iron plate is polished with sandpaper or the like and then treated with hydrochloric acid or the like.
In the present invention, examples of the inert gas include nitrogen gas and argon gas. Examples of the hydrocarbon include ethanol (including bioethanol).

本発明において、炭化水素供給手段は、一般にエタノール等の炭化水素を供給するための炭化水素供給ノズルと、炭化水素を収容する炭化水素収容タンクと、このタンク内の炭化水素を鉄板上に送るためのポンプとから構成されている。不活性ガス供給手段は、例えば窒素等の不活性ガスを供給するための不活性ガス供給ノズルと、不活性ガスを収容する不活性ガス収容タンクと、このタンク内の不活性ガスを反応容器内に送るためのポンプとから構成されている。鉄板活性化手段は、例えば塩酸等の酸液を供給するための酸液供給ノズルと、酸液を収容する酸液収容タンクと、このタンク内の酸液を生成されたナノカーボンを落とした後の鉄板に送るためのポンプとから構成されている。ガス排気手段は、反応容器に設けられた排気ノズルと、水等の液体を収容する液封タンクと、排気ノズルと液封タンクを接続する配管と、反応容器内のガスを排気するためのポンプにより構成されている。液封タンクに液体を収容するのは、ナノカーボン製造装置で発生するガスの逆流を防ぐためである。   In the present invention, the hydrocarbon supply means generally includes a hydrocarbon supply nozzle for supplying hydrocarbons such as ethanol, a hydrocarbon storage tank for storing hydrocarbons, and for sending the hydrocarbons in the tank onto the iron plate. And the pump. The inert gas supply means includes, for example, an inert gas supply nozzle for supplying an inert gas such as nitrogen, an inert gas storage tank for storing the inert gas, and the inert gas in the tank in the reaction vessel. And a pump for sending to. The iron plate activation means includes, for example, an acid solution supply nozzle for supplying an acid solution such as hydrochloric acid, an acid solution storage tank that stores the acid solution, and a nanocarbon that has generated the acid solution in the tank. And a pump for sending to the iron plate. The gas exhaust means includes an exhaust nozzle provided in the reaction vessel, a liquid seal tank for storing a liquid such as water, a pipe connecting the exhaust nozzle and the liquid seal tank, and a pump for exhausting the gas in the reaction vessel It is comprised by. The reason why the liquid is stored in the liquid seal tank is to prevent the backflow of gas generated in the nanocarbon manufacturing apparatus.

次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べることに限定されない。
(第1の実施形態)
図1は、本発明の第1の実施形態に係るカーボンナノチューブ(CNT)製造装置の概略図である。
同製造装置は、内部を還元雰囲気に保持しうる反応容器1と、表面にナノカーボン(例えばカーボンナノチューブ)2が生成される無端状の帯状鉄板3と、加熱手段としてのヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、カーボンナノチューブ掻き取り回収手段(以下、CNT掻き取り回収手段と呼ぶ)7と、鉄板活性化手段8と、ガス排気手段9を備えている。
Next, embodiments of the present invention will be described with reference to the drawings. Note that the present embodiment is not limited to the following description.
(First embodiment)
FIG. 1 is a schematic view of a carbon nanotube (CNT) manufacturing apparatus according to the first embodiment of the present invention.
The manufacturing apparatus includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, an endless strip-shaped iron plate 3 on which nanocarbon (for example, carbon nanotubes) 2 is generated, a heater 4 as a heating means, a hydrocarbon, A supply means 5, an inert gas supply means 6, a carbon nanotube scraping and collecting means (hereinafter referred to as CNT scraping and collecting means) 7, an iron plate activating means 8, and a gas exhaust means 9 are provided.

前記帯状鉄板3は例えば鉄の純度の高い鉄板(純度:99.5%)であり、駆動ローラ10と従動ローラ11により矢印Aのように回転移動するようになっている。帯状鉄板3は、ヒータ4、該ヒータ4を固定して保温する耐熱材12、及び熱を遮断する断熱材13で囲まれている。ヒータ4には、ヒータ制御手段14が電気的に接続されている。ヒータ4と帯状鉄板3との空間には、炭化水素供給手段5から炭化水素原料例えばエタノールBが供給されるようになっている。   The strip-shaped iron plate 3 is, for example, an iron plate having high iron purity (purity: 99.5%), and is rotated and moved as indicated by an arrow A by a driving roller 10 and a driven roller 11. The strip-shaped iron plate 3 is surrounded by a heater 4, a heat-resistant material 12 that fixes and keeps the heater 4 warm, and a heat-insulating material 13 that blocks heat. A heater control means 14 is electrically connected to the heater 4. A hydrocarbon raw material such as ethanol B is supplied from the hydrocarbon supply means 5 to the space between the heater 4 and the strip-shaped iron plate 3.

炭化水素供給手段5は、例えばエタノールBをヒータ4と帯状鉄板3との空間に供給する炭化水素供給ノズル16と、このノズル16に接続する炭化水素収容タンク17と、図示しない液送用ポンプとを備えている。前記帯状鉄板3,駆動ローラ10,従動ローラ11,ヒータ4,耐熱材12,断熱材13,後述する掻き取り板,研磨ブラシ,酸液塗布ブラシは、筐体18により囲まれている。この筐体18の外周部には、例えばロックウールからなる保温材19が設けられている。前記不活性ガス供給手段6は、反応容器1内に不活性ガス例えば窒素ガスCを供給する不活性ガス供給ノズル20と、このノズル20に接続する不活性ガス収容タンク21と、図示しないポンプとを備えている。   The hydrocarbon supply means 5 includes, for example, a hydrocarbon supply nozzle 16 that supplies ethanol B to the space between the heater 4 and the belt-shaped iron plate 3, a hydrocarbon storage tank 17 connected to the nozzle 16, a liquid feed pump (not shown), It has. The belt-like iron plate 3, the driving roller 10, the driven roller 11, the heater 4, the heat-resistant material 12, the heat insulating material 13, a scraping plate, a polishing brush, and an acid solution application brush described later are surrounded by a casing 18. A heat insulating material 19 made of rock wool, for example, is provided on the outer periphery of the housing 18. The inert gas supply means 6 includes an inert gas supply nozzle 20 for supplying an inert gas such as nitrogen gas C into the reaction vessel 1, an inert gas storage tank 21 connected to the nozzle 20, a pump (not shown), It has.

前記CNT掻き取り回収手段7は、従動ローラ11の真下で帯状鉄板3に近接して配置されたカーボンナノチューブ掻き取り板(以下、CNT掻き取り板と呼ぶ)22と、掻き取り板22により掻き取ったカーボンナノチューブ(以下、CNTと呼ぶ)2を収容するカーボンナノチューブ回収缶(以下、CNT回収缶と呼ぶ)23により構成されている。前記ガス排気手段8は、反応容器1の下流側(図中の右側)に設けられた排気ノズル24と、水25を収容する水封タンク26と、排気ノズル24と水封タンク26を接続する配管27と、図示しないガス吸引用ポンプにより構成されている。   The CNT scraping and collecting means 7 includes a carbon nanotube scraping plate (hereinafter referred to as a CNT scraping plate) 22 disposed immediately below the driven roller 11 and in the vicinity of the strip-shaped iron plate 3, and a scraping plate 22 for scraping. And a carbon nanotube recovery can (hereinafter referred to as a CNT recovery can) 23 that accommodates carbon nanotubes (hereinafter referred to as a CNT) 2. The gas exhaust means 8 connects an exhaust nozzle 24 provided on the downstream side (right side in the drawing) of the reaction vessel 1, a water seal tank 26 for storing water 25, and the exhaust nozzle 24 and the water seal tank 26. The pipe 27 and a gas suction pump (not shown) are included.

前記反応容器1の下部側で且つ掻き取り板22の更に下流側には、帯状鉄板2の表面を研磨する研磨ブラシ29、及び研磨を終えた帯状鉄板2の表面に酸液を塗布する酸液塗布ブラシ30が夫々設けられている。研磨ブラシ29の真下には、帯状鉄板3を磨いた研磨粉31を回収する研磨粉回収缶32が配置されている。酸液塗布ブラシ30の真下には、帯状鉄板3の表面を酸処理した酸液33を回収する酸液回収缶34が配置されている。酸液塗布ブラシ30には、酸液供給ノズル35と酸液例えば塩酸Dを収容する酸液収容タンク37からなる鉄板活性化手段8により塩酸Dが供給されるようになっている。前記従動ローラ10の近くの反応容器1には、帯状鉄板3に生成されるCNT2を直接観察するための覗き窓38が設けられている。   On the lower side of the reaction vessel 1 and further downstream of the scraping plate 22, a polishing brush 29 for polishing the surface of the strip-shaped iron plate 2 and an acid solution for applying an acid solution to the surface of the strip-shaped iron plate 2 that has been polished. A coating brush 30 is provided for each. Immediately below the polishing brush 29, a polishing powder recovery can 32 for recovering the polishing powder 31 obtained by polishing the belt-like iron plate 3 is disposed. An acid solution recovery can 34 for recovering an acid solution 33 obtained by acid-treating the surface of the belt-shaped iron plate 3 is disposed directly below the acid solution application brush 30. The acid solution application brush 30 is supplied with hydrochloric acid D by an iron plate activating means 8 comprising an acid solution supply nozzle 35 and an acid solution storage tank 37 for storing an acid solution such as hydrochloric acid D. The reaction vessel 1 near the driven roller 10 is provided with a viewing window 38 for directly observing the CNT 2 generated on the belt-like iron plate 3.

次に、CNTを生成する方法について検証した試験について、図2の概略的な工程図を参照して説明する。
1)まず、図2の(A)のように純度99.5%の鉄板41の表面Sをサンドペーパーで磨いた後、図2の(B)のように表面Sを塩酸で表面処理する。つづいて、表面処理した鉄板41を、原料供給手段42,不活性ガス供給手段43,排気ガス回収手段44及び加熱手段45を備えた反応容器46の中に入れ、500〜1000℃程度まで加熱する(図2の(C)参照)。
Next, the test verified about the method of producing CNTs will be described with reference to the schematic process diagram of FIG.
1) First, the surface treatment of the surface S 2 with hydrochloric acid as after polished surface S 1 of a purity of 99.5% iron plate 41 as in shown in FIG. 2 (A) with sandpaper, shown in FIG. 2 (B) To do. Subsequently, the surface-treated iron plate 41 is placed in a reaction vessel 46 having a raw material supply means 42, an inert gas supply means 43, an exhaust gas recovery means 44, and a heating means 45, and is heated to about 500 to 1000 ° C. (Refer to FIG. 2C).

2)次に、鉄板41を冷却してから取り出したところ、鉄板41の表面にCNT47が生成された(図2の(D)参照)。つづいて、図2の(E)に示すような鉄板41上のCNT47を、カッター48により掻き落とす(図2の(F)参照)。その結果、図2の(G)のようにCNT47が回収された。
図3は、前記生成方法でCNT47を生成した写真の外形を描いたものである。即ち、図3は、鉄板41をステンレス線49で天板50に吊り下げた状態で加熱してCNT47を生成したことを示している。
2) Next, when the iron plate 41 was cooled and taken out, CNTs 47 were generated on the surface of the iron plate 41 (see FIG. 2D). Subsequently, the CNT 47 on the iron plate 41 as shown in FIG. 2E is scraped off by the cutter 48 (see FIG. 2F). As a result, CNT 47 was recovered as shown in FIG.
FIG. 3 shows the outline of a photograph in which the CNT 47 is generated by the above-described generation method. That is, FIG. 3 shows that the steel plate 41 is heated while being suspended from the top plate 50 by the stainless steel wire 49 to generate the CNT 47.

次に、図1のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段6を使って例えば窒素ガスを供給し、内部を窒素雰囲気に置換する。その後、帯状鉄板3を回転移動させ、ヒータ制御手段14の電源を入れ、カーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。その気体と十分に暖められた鉄板表面の鉄触媒と反応してCNT2を還元雰囲気で生成して生長する。帯状鉄板3の表面に生長したCNT2は、従動ローラ11の下部に設けられたCNT掻き取り板22で掻き落とされ、下部のCNT回収缶23に回収される。帯状鉄板3は、従動ローラ11で冷却された後、右へ移動し、研磨ブラシ29で磨き金属表面を露出させ、酸液塗付ブラシ30で表面を活性化して触媒効果を向上させる。その状態で鉄板3とヒータ4間のカーボンナノチューブ生成部に戻され、再度カーボンを生成する。
Next, a manufacturing method using the CNT manufacturing apparatus of FIG. 1 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen gas is supplied using the inert supply means 6 and the inside is replaced with a nitrogen atmosphere. Then, the strip-shaped iron plate 3 is rotated and moved, the heater control means 14 is turned on, and the temperature is raised until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means 5 is started. It becomes gas. The gas reacts with a sufficiently heated iron catalyst on the surface of the iron plate to produce CNT2 in a reducing atmosphere and grow. The CNTs 2 grown on the surface of the belt-like iron plate 3 are scraped off by a CNT scraping plate 22 provided at the lower portion of the driven roller 11 and collected in a lower CNT collection can 23. The belt-like iron plate 3 is cooled by the driven roller 11 and then moved to the right, the polished metal surface is exposed by the polishing brush 29, and the surface is activated by the acid solution coating brush 30 to improve the catalytic effect. In this state, the carbon nanotubes are returned to the carbon nanotube generator between the iron plate 3 and the heater 4 to generate carbon again.

第1の実施形態に係るナノカーボン製造装置は、図1に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される無端状の帯状鉄板3と、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、CNT掻き取り回収手段7と、鉄板活性化手段8と、ガス排気手段9を備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、昇温、帯状鉄板3表面へのCNT生成、CNT2の掻き落とし、帯状鉄板3の活性化を順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 1, the nanocarbon production apparatus according to the first embodiment includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, an endless strip-shaped iron plate 3 on which CNT2 is generated, and a heater 4. And a hydrocarbon supplying means 5, an inert gas supplying means 6, a CNT scraping and collecting means 7, an iron plate activating means 8, and a gas exhausting means 9, so that there is little catalyst and purity. Can be obtained. Further, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise, the CNT generation on the surface of the strip iron plate 3, the CNT 2 scraping off, and the activation of the strip iron plate 3 can be automatically performed in sequence. Therefore, it is possible to efficiently mass-produce highly functional CNT2 having high purity and stability at low cost.

(第2の実施形態)
図4は、本発明の第2の実施形態に係るCNT製造装置の概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
第2の実施形態に係るナノカーボン製造装置は、図1の場合と比べて、研磨ブラシ,酸液塗布ブラシ,研磨粉回収缶,酸液回収缶及び鉄板活性化手段を省いた点、及びCNTを掻き取り板で掻き取る際,鉄触媒の一部残す点が異なることを特徴とする。
(Second Embodiment)
FIG. 4 is a schematic view of a CNT manufacturing apparatus according to the second embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
Compared with the case of FIG. 1, the nanocarbon manufacturing apparatus which concerns on 2nd Embodiment is a point which excluded the polishing brush, the acid solution application brush, the abrasive powder collection can, the acid solution recovery can, and the iron plate activation means, and CNT It is characterized in that a part of the iron catalyst remains when scraping off with a scraping plate.

次に、図4のCNT製造装置でのCNTの製造方法について説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段6を使って例えば窒素を供給し、内部を窒素雰囲気に置換する。その後、帯状鉄板3を回転移動させ、ヒータ制御手段14の電源を入れ、CNT生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。その気体と十分に暖められた鉄板表面の鉄触媒と反応してCNT2を還元雰囲気で生成して生長する。帯状鉄板3の表面に生長したCNT3は、従動ローラ10の下部に設けられたCNT掻き取り板22で掻き落とされ、下部のCNT回収缶23に回収される。この掻き取りの際に触媒として機能する鉄触媒を殆ど残す。これが元になり再度CNT2が生成することになる。
Next, a method for manufacturing CNTs in the CNT manufacturing apparatus of FIG. 4 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using the inert supply means 6, and the inside is replaced with a nitrogen atmosphere. Thereafter, the strip-shaped iron plate 3 is rotated and moved, the heater control means 14 is turned on, and the temperature is raised until the CNT generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means 5 is started. It becomes gas. The gas reacts with a sufficiently heated iron catalyst on the surface of the iron plate to produce CNT2 in a reducing atmosphere and grow. The CNTs 3 grown on the surface of the belt-like iron plate 3 are scraped off by a CNT scraping plate 22 provided at the lower part of the driven roller 10 and collected in a lower CNT collection can 23. Most of the iron catalyst that functions as a catalyst is left during the scraping. Based on this, CNT2 is generated again.

第2の実施形態に係るCNT製造装置は、図4に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される無端状の帯状鉄板3と、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、CNT掻き取り回収手段7と、ガス排気手段9を備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、CNT掻き取り板22で掻き取る際、鉄触媒の殆どを残すため、この残った鉄触媒が元になり、CNT生成部で再度CNT3を生成することができる。更に、反応容器1内の不活性雰囲気化、昇温、帯状鉄板3表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 4, the CNT manufacturing apparatus according to the second embodiment includes a reaction vessel 1 that can maintain the inside in a reducing atmosphere, an endless strip-shaped iron plate 3 on which CNT 2 is generated, and a heater 4. The hydrocarbon supply means 5, the inert gas supply means 6, the CNT scraping and collecting means 7 and the gas exhaust means 9 are provided, so that a CNT having a small amount of catalyst and extremely high purity can be obtained. In addition, according to the present invention, when scraping with the CNT scraping plate 22, most of the iron catalyst remains, so that the remaining iron catalyst can be used as a base, and the CNT generating unit can generate CNT3 again. Furthermore, since an inert atmosphere in the reaction vessel 1, temperature rise, CNT generation on the surface of the strip-shaped iron plate 3, and scraping off of the CNT 2 can be automatically performed in sequence, a highly functional CNT 2 with high purity and stability can be obtained. It can be mass-produced efficiently at low cost.

(第3の実施形態)
図5は、本発明の第3の実施形態に係るCNT製造装置の概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
図5中の符番51は、CNTを生成し、CNT掻き取り後の帯状鉄板3aを巻き取る駆動巻取りローラである。また、符番52は、例えば塩酸等により表面処理した帯状鉄板3が巻回された従動ローラである。表面処理した帯状鉄板3aは、従動ローラ52から第1の支持ローラ53aを経てCNT生成部でCNTを生成し、CNT掻き取り後、第2の支持ローラ53bを経て巻取りローラ51で巻き取るようになっている。
(Third embodiment)
FIG. 5 is a schematic view of a CNT manufacturing apparatus according to the third embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
Reference numeral 51 in FIG. 5 denotes a drive take-up roller that generates CNTs and takes up the strip-shaped iron plate 3a after scraping off the CNTs. Reference numeral 52 is a driven roller around which a belt-like iron plate 3 surface-treated with hydrochloric acid or the like is wound. The surface-treated strip-shaped iron plate 3a generates CNT from the driven roller 52 through the first support roller 53a at the CNT generation unit, scrapes the CNT, and then winds up with the take-up roller 51 through the second support roller 53b. It has become.

次に、図5のナノカーボン製造装置でのCNTの製造方法について説明する。
まず、装置内部を不活性雰囲気にするために、不活性ガス供給手段6を使って例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、ヒータ制御手段14の電源を入れ、カーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、表面処理した帯状鉄板3aを回転移動させ、炭素原料供給手段5を起動し、例えばエタノールBを炭素原料供給ルズル16から供給し、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。その気体と十分に暖められた鉄板表面の鉄触媒と反応してCNT2を還元雰囲気で生成して生長する。帯状鉄板3aの表面に生長したCNT2は、駆動巻き取りローラ51の下部に設けられたCNT掻き取り板22で掻き落とされ、下部のCNT回収缶23に回収される。
Next, a method for producing CNTs in the nanocarbon production apparatus of FIG. 5 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using the inert gas supply means 6, and the inside is replaced with a nitrogen atmosphere. Next, the heater control means 14 is turned on and heated up until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the surface-treated strip-shaped iron plate 3a is rotated and moved, the carbon raw material supply means 5 is activated, and, for example, ethanol B is supplied from the carbon raw material supply luz 16 and the temperature of the atmosphere It instantly evaporates and becomes a gas containing hydrocarbons. The gas reacts with a sufficiently heated iron catalyst on the surface of the iron plate to produce CNT2 in a reducing atmosphere and grow. The CNTs 2 grown on the surface of the strip-shaped iron plate 3a are scraped off by the CNT scraping plate 22 provided at the lower part of the drive take-up roller 51 and are collected in the lower CNT collecting can 23.

第3の実施形態に係るCNT製造装置は、図5に示すように、内部を還元雰囲気に保持しうる反応容器1と、表面にCNT2が生成される表面処理された帯状鉄板3aと、ヒータ4と、炭化水素供給手段5と、不活性ガス供給手段6と、CNT掻き取り回収手段7と、ガス排気手段9と、表面処理された帯状鉄板3を巻回する従動ローラ52と、CNTを生成し掻き取った後の帯状鉄板3を巻き取る駆動巻取りローラ51を備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、昇温、帯状鉄板3表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 5, the CNT manufacturing apparatus according to the third embodiment includes a reaction vessel 1 capable of maintaining the inside in a reducing atmosphere, a surface-treated strip-shaped iron plate 3 a on which CNT 2 is generated, and a heater 4. A hydrocarbon supply means 5, an inert gas supply means 6, a CNT scraping and collecting means 7, a gas exhaust means 9, a driven roller 52 around which the surface-treated strip-shaped iron plate 3 is wound, and a CNT is generated. Since the drive take-up roller 51 is provided to take up the strip-shaped iron plate 3 after scraping off, CNTs with little catalyst and extremely high purity can be obtained. In addition, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise, the CNT generation on the surface of the strip-shaped iron plate 3, and the scraping off of the CNT 2 can be automatically performed sequentially, so that purity and stability can be improved. High-function CNT2 can be mass-produced efficiently at low cost.

(第4の実施形態)
図6は、本発明の第4の実施形態に係るCNT製造装置の要部のみを示す概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
同製造装置は、内部を還元雰囲気に保持しうる反応容器(図示せず)と、表面にCNT2が生成される円板形状の鉄板60と、加熱手段としてのヒータ4と、炭化水素供給手段5を構成する炭素原料供給ノズル16と、不活性ガス供給手段(図示せず)と、CNT掻き取り回収手段を構成するCNT掻き取り板22と、鉄板活性化手段8を構成する酸液供給ノズル35と、ガス排気手段(図示せず)と、鉄板60をゆっくり回転させる回転手段61を備えている。
(Fourth embodiment)
FIG. 6 is a schematic view showing only main parts of a CNT manufacturing apparatus according to the fourth embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
The manufacturing apparatus includes a reaction vessel (not shown) capable of maintaining the inside in a reducing atmosphere, a disk-shaped iron plate 60 on the surface of which CNT2 is generated, a heater 4 as a heating unit, and a hydrocarbon supply unit 5. The carbon raw material supply nozzle 16 constituting the above, the inert gas supply means (not shown), the CNT scraping plate 22 constituting the CNT scraping recovery means, and the acid solution supply nozzle 35 constituting the iron plate activation means 8. And a gas exhaust means (not shown) and a rotating means 61 for slowly rotating the iron plate 60.

回転手段61は、一端が複数のスポーク62を介して鉄板3bの内側端部に連結する主軸63と、この主軸63を矢印Fのように回転させる駆動モータ64とから構成されている。図中の符番65a,65bは断熱材(図示せず)を貼った仕切り板であり、鉄板60の上部を領域A,Aに区切っている。一方の領域Aには炭素原料供給ノズル16が配置され、例えばエタノールが鉄板60上に供給される。他方の領域Aの鉄板60の上部には研磨ブラシ66が設けられている。また、領域Aでは、研磨後の鉄板60の表面に例えば塩酸Dを供給するように酸液供給ノズル35が配置され、これにより鉄板表面が活性化面Sとなる。なお、図中の符番67はCNT生成部を示す。また、周辺部品である研磨ブラシ66,酸液供給ノズル35,炭素原料供給ノズル16及びCNT掻き取り板22等は全て筐体18に囲まれ、外気と遮断して還元雰囲気を維持できるように構成されている。 The rotating means 61 includes a main shaft 63 whose one end is connected to the inner end of the iron plate 3b via a plurality of spokes 62, and a drive motor 64 that rotates the main shaft 63 as indicated by an arrow F. Reference numerals 65a and 65b in the figure are partition plates to which a heat insulating material (not shown) is attached, and the upper part of the iron plate 60 is divided into regions A 1 and A 2 . The one area A 1 is arranged a carbon raw material supply nozzle 16, such as ethanol is fed onto the iron plate 60. Abrasive brush 66 is provided in an upper portion of the other region A 2 of the iron plate 60. Further, in the region A 2, is arranged acid solution supply nozzle 35 to supply the surface, for example, hydrochloric acid D of the iron plate 60 after polishing, is thereby iron surface becomes activated surface S. Note that reference numeral 67 in the figure indicates a CNT generator. Further, the peripheral parts such as the polishing brush 66, the acid solution supply nozzle 35, the carbon raw material supply nozzle 16, the CNT scraping plate 22 and the like are all surrounded by the casing 18 so that the reducing atmosphere can be maintained by blocking the outside air. Has been.

次に、図6のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、筐体18内に窒素供給手段を用いて例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、駆動モータ64を矢印Fの方向に回転させる。次に、ヒータ4の電源を入れ、鉄板60がカーボンナノチューブ生成雰囲気が500〜1000℃の生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段を起動し、例えばエタノールBを炭素原料供給ルズル16から供給する。エタノール16は、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。その気体と十分に暖められた鉄板60表面の鉄触媒と反応してCNT2を還元雰囲気で生成して生長する。鉄板60の表面に生長したCNT2は、CNT掻き取り板22で掻き落とされ、下部のCNT回収缶24に回収される。鉄板60は仕切り板65aを通り過ぎ、冷却された後に研磨ブラシ66で磨き、さらに、酸液塗付ノズル35で例えば塩酸Dを鉄板50表面に噴霧して表面を活性化(活性化面S)し、触媒効果を向上させる。その後、鉄板60は、仕切り板65bを通過し再度CNT2の生成を繰り返す。
Next, a manufacturing method using the CNT manufacturing apparatus of FIG. 6 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied into the housing 18 using a nitrogen supply means, and the inside is replaced with a nitrogen atmosphere. Next, the drive motor 64 is rotated in the direction of arrow F. Next, the heater 4 is turned on, and the temperature of the iron plate 60 is increased until the carbon nanotube generation atmosphere reaches a generation temperature of 500 to 1000 ° C. When the generation temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means is started, and, for example, ethanol B is supplied from the carbon raw material supply luz 16. The ethanol 16 is instantly evaporated at the temperature of the atmosphere and becomes a gas containing hydrocarbons. The gas reacts with the iron catalyst on the surface of the sufficiently heated iron plate 60 to generate and grow CNT2 in a reducing atmosphere. The CNT 2 grown on the surface of the iron plate 60 is scraped off by the CNT scraping plate 22 and collected in the lower CNT collection can 24. The iron plate 60 passes through the partition plate 65a, and after being cooled, is polished with a polishing brush 66, and further, for example, hydrochloric acid D is sprayed onto the surface of the iron plate 50 with the acid solution coating nozzle 35 to activate the surface (activation surface S). , Improve the catalytic effect. Thereafter, the iron plate 60 passes through the partition plate 65b and repeats the generation of CNT2 again.

第4の実施形態に係るナノカーボン製造装置は、図6に示すように、内部を還元雰囲気に保持しうる反応容器と、表面にCNT2が生成される円形状の鉄板60と、ヒータ4と、炭化水素供給手段と、不活性ガス供給手段と、CNT掻き取り回収手段と、ガス排気手段と、鉄板60を回転駆動する回転手段61とを備えた構成となっているので、触媒が少なく純度が極めて高いCNTが得られる。また、本発明によれば、反応容器1内の不活性雰囲気化、昇温、鉄板60表面へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 6, the nanocarbon production apparatus according to the fourth embodiment includes a reaction vessel capable of maintaining the inside in a reducing atmosphere, a circular iron plate 60 in which CNT2 is generated on the surface, the heater 4, Since it is configured to include a hydrocarbon supply means, an inert gas supply means, a CNT scraping and recovery means, a gas exhaust means, and a rotating means 61 that rotationally drives the iron plate 60, the purity is low with little catalyst. Very high CNTs are obtained. Further, according to the present invention, the inert atmosphere in the reaction vessel 1, the temperature rise, the CNT generation on the surface of the iron plate 60, and the CNT 2 scraping can be automatically performed in sequence, so that the purity and stability are high. High-performance CNT2 can be mass-produced efficiently at low cost.

なお、第4の実施形態では、1枚の円形の鉄板を用いてCNTの生成を行う場合について述べたが、これに限らない。例えば、複数枚の円形の鉄板を一定の間隔をおいて主軸の軸方向に平行に配置して主軸により回転可能にするとともに、各鉄板毎に研磨ブラシ,酸液供給手段,炭素原料供給手段,加熱手段等を配置することにより、1枚の鉄板を用いる場合に比べてよりCNTの量産化が可能となる。   In the fourth embodiment, the case where CNT is generated using one circular iron plate has been described. However, the present invention is not limited to this. For example, a plurality of circular iron plates are arranged parallel to the axial direction of the main shaft at regular intervals so as to be rotatable by the main shaft, and for each iron plate, a polishing brush, an acid solution supply means, a carbon raw material supply means, By arranging the heating means and the like, it is possible to mass-produce CNTs more than when using a single iron plate.

(第5の実施形態)
図7は、本発明の第5の実施形態に係るCNT製造装置の要部のみを示す概略図である。但し、図1,図6と同部材は同符番を付して説明を省略し、要部のみを説明する。 第5の実施形態に係るナノカーボン製造装置は、図6の場合と比べ、円形の鉄板60を縦型にし、酸液供給ノズル35から鉄板60に横方向から塩酸Dを噴霧するようにした点が異なり、他は図6の場合と同様である。また、CNT2の製造の仕方も第4の実施形態で述べたとおりである。
(Fifth embodiment)
FIG. 7 is a schematic view showing only main parts of a CNT manufacturing apparatus according to the fifth embodiment of the present invention. However, the same members as those in FIGS. 1 and 6 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described. Compared with the case of FIG. 6, the nanocarbon manufacturing apparatus which concerns on 5th Embodiment made the circular iron plate 60 vertical, and sprayed hydrochloric acid D from the acid solution supply nozzle 35 to the iron plate 60 from the horizontal direction. Are the same as in the case of FIG. The method of manufacturing CNT2 is also as described in the fourth embodiment.

第5の実施形態に係るCNT製造装置によれば、第4の実施形態と同様な効果が得られる。また、第5の実施形態の場合も、第4の実施形態と同様に、複数枚の円形の鉄板を一定の間隔をおいて主軸の軸方向に平行に配置して主軸により回転可能にするとともに、各鉄板毎に研磨ブラシ,酸液供給手段,炭素原料供給手段,加熱手段等を配置することにより、1枚の鉄板を用いる場合に比べてよりCNTの量産化が可能となる。   According to the CNT manufacturing apparatus according to the fifth embodiment, the same effect as in the fourth embodiment can be obtained. Also in the case of the fifth embodiment, as in the fourth embodiment, a plurality of circular iron plates are arranged in parallel to the axial direction of the main shaft at regular intervals so as to be rotatable by the main shaft. By arranging a polishing brush, an acid solution supply means, a carbon raw material supply means, a heating means, etc. for each iron plate, it becomes possible to mass-produce CNT as compared with the case of using a single iron plate.

(第6の実施形態)
図8は、本発明の第6の実施形態に係るCNT製造装置の概略図である。但し、図1と同部材は同符番を付して説明を省略し、要部のみを説明する。
(Sixth embodiment)
FIG. 8 is a schematic view of a CNT manufacturing apparatus according to the sixth embodiment of the present invention. However, the same members as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.

図中の符番71は、回転しないステンレス製の円筒状縦型反応容器である。この反応容器71の内側には、鉄製の円筒72が反応容器71と同軸状に固定して配置されている。円筒72の内側には、回転軸73により回転する掻き取り羽根74が設けられている。この掻き取り羽根74は、回転軸73に連結した駆動源としての駆動モータ75により矢印Fの方向に回転し、円筒72の内壁に生成されるCNT2を掻き取るように配置されている。反応容器71の上部には回転軸73を通すための開口穴が設けられ、この開口穴部分の回転軸73と反応容器71間には反応容器内を外気と遮断して還元雰囲気を保持するためのリング状のシール材76が設けられている。   Reference numeral 71 in the figure is a non-rotating stainless steel cylindrical vertical reaction vessel. Inside the reaction vessel 71, an iron cylinder 72 is arranged coaxially with the reaction vessel 71. Inside the cylinder 72, a scraping blade 74 rotated by a rotating shaft 73 is provided. This scraping blade 74 is arranged to rotate in the direction of arrow F by a driving motor 75 as a driving source connected to the rotating shaft 73 and scrape off the CNT 2 generated on the inner wall of the cylinder 72. An opening hole for passing the rotation shaft 73 is provided in the upper part of the reaction vessel 71. Between the rotation shaft 73 and the reaction vessel 71 at the opening hole portion, the inside of the reaction vessel is blocked from the outside air to maintain a reducing atmosphere. The ring-shaped sealing material 76 is provided.

次に、図8のCNT製造装置での製造方法を説明する。
まず、装置内部を不活性雰囲気にするために、不活性供給手段を用いて例えば窒素を供給し、内部を窒素雰囲気に置換する。次に、ヒータ4の電源を入れ、円筒72が500〜1000℃のカーボンナノチューブ生成温度に達するまで昇温する。生成温度に達したら、窒素の供給を止めると同時に、炭素原料供給手段を起動し、例えばエタノールを炭素原料供給ルズルから供給する。エタノールは、雰囲気の温度で瞬間に蒸発して炭化水素を含んだ気体となる。その気体と十分に暖められた円筒72の内表面の鉄触媒と反応してCNT2を還元雰囲気で生成して生長する。
CNT2が十分成長したら駆動モータ75を矢印Fの方向に回転させ、円筒72の内面に生長したCNT2を掻き取り羽根74で掻き落とし、下部のCNT回収缶24に回収される。なお、カーボン製造装置内で発生するガスは、ガス排気手段8で水封を介してガスが逆流しないように排気される。
Next, a manufacturing method using the CNT manufacturing apparatus in FIG. 8 will be described.
First, in order to make the inside of the apparatus an inert atmosphere, for example, nitrogen is supplied using an inert supply means, and the inside is replaced with a nitrogen atmosphere. Next, the heater 4 is turned on and the temperature is raised until the cylinder 72 reaches a carbon nanotube generation temperature of 500 to 1000 ° C. When the production temperature is reached, the supply of nitrogen is stopped, and at the same time, the carbon raw material supply means is started to supply, for example, ethanol from the carbon raw material supply luz. Ethanol is instantly evaporated at ambient temperature to become a hydrocarbon-containing gas. The gas reacts with the iron catalyst on the inner surface of the sufficiently heated cylinder 72 to generate and grow CNT2 in a reducing atmosphere.
When the CNT2 is sufficiently grown, the drive motor 75 is rotated in the direction of arrow F, and the CNT2 grown on the inner surface of the cylinder 72 is scraped off by the blades 74 and collected in the lower CNT collection can 24. The gas generated in the carbon production apparatus is exhausted by the gas exhaust means 8 so that the gas does not flow back through the water seal.

第6の実施形態に係るCNT製造装置は、図8に示すように、内部を還元雰囲気に保持しうる円筒状縦型反応容器71と、この反応容器71内に配置された鉄製の円筒72と、この円筒72内に配置されて円筒内壁に生成されるCNT2を掻き取る掻き取り羽根74と、この掻き取り羽根74を駆動する駆動モータ75と、ヒータ4と、炭化水素供給手段と、不活性ガス供給手段と、ガス排気手段8とを備えた構成となっているので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。また、本発明によれば、反応容器71内の不活性雰囲気化、昇温、円筒72内壁へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。更に、CNT2の生成量が減少して生成能力が落ちた場合には、反応容器71内の円筒72のみを取り替えれば新たにCNT2を生成することができ、装置のメンテナンスを低コストに抑えることができる。   As shown in FIG. 8, the CNT manufacturing apparatus according to the sixth embodiment includes a cylindrical vertical reaction vessel 71 capable of maintaining the inside in a reducing atmosphere, and an iron cylinder 72 disposed in the reaction vessel 71. The scraper blade 74 disposed in the cylinder 72 and scraping off the CNT 2 produced on the inner wall of the cylinder 72, the drive motor 75 for driving the scraper blade 74, the heater 4, the hydrocarbon supply means, the inert Since it has a configuration including the gas supply means and the gas exhaust means 8, it is possible to efficiently mass-produce high-performance CNT2 having high purity and stability at low cost. Further, according to the present invention, the inert atmosphere in the reaction vessel 71, the temperature rise, the CNT generation on the inner wall of the cylinder 72, and the scraping off of the CNT2 can be automatically performed sequentially, so that the purity and stability are high. High-performance CNT2 can be mass-produced efficiently at low cost. Furthermore, when the production capacity decreases due to a decrease in the production amount of CNT2, it is possible to newly produce CNT2 by replacing only the cylinder 72 in the reaction vessel 71, and to keep the maintenance of the apparatus at low cost. Can do.

ところで、第6の実施形態において、前記円筒は筒状である場合について述べたが、これに限らず、例えば縦方向に2分割された断面形状が半円の半円筒部材を一体化して筒状とした円筒を用いてもよい。   By the way, in the sixth embodiment, the case where the cylinder has a cylindrical shape has been described. However, the present invention is not limited to this. A cylinder may be used.

(第7の実施形態)
図9は、本発明の第7の実施形態に係るCNT製造装置の概略図である。但し、図1,8と同部材は同符番を付して説明を省略し、要部のみを説明する。
図9のCNT製造装置は、図8と比べ、内部を還元雰囲気に保持しうる鉄製の円筒81のみを用いる点が異なり、この円筒81の内壁にCNTを生成することを特徴とする。その他の構成部材及び製造方法は、図8の場合と同様である。
(Seventh embodiment)
FIG. 9 is a schematic view of a CNT manufacturing apparatus according to the seventh embodiment of the present invention. However, the same members as those in FIGS. 1 and 8 are denoted by the same reference numerals and the description thereof will be omitted, and only the main parts will be described.
The CNT manufacturing apparatus of FIG. 9 differs from that of FIG. 8 in that only an iron cylinder 81 capable of maintaining the inside in a reducing atmosphere is used, and CNTs are generated on the inner wall of the cylinder 81. Other components and manufacturing methods are the same as in FIG.

第7の実施形態に係るCNT製造装置は、図9に示すように、内部を還元雰囲気に保持しうる鉄製の円筒81と、この円筒81内に配置されて円筒内壁に生成されるCNT2を掻き取る掻き取り羽根74と、この掻き取り羽根74を駆動する駆動モータ75と、ヒータ4と、炭化水素供給手段と、不活性ガス供給手段と、ガス排気手段8とを備えた構成となっているので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。また、本発明によれば、反応容器71内の不活性雰囲気化、昇温、円筒72内壁へのCNT生成、CNT2の掻き落としを順次自動的に行うことができるので、純度および安定性の高い高機能のCNT2を低コストで効率よく量産することができる。   As shown in FIG. 9, the CNT manufacturing apparatus according to the seventh embodiment scrapes the iron cylinder 81 capable of maintaining the inside in a reducing atmosphere and the CNT 2 disposed in the cylinder 81 and generated on the inner wall of the cylinder. The scraper blade 74 to be removed, the drive motor 75 for driving the scraper blade 74, the heater 4, the hydrocarbon supply means, the inert gas supply means, and the gas exhaust means 8 are provided. Therefore, it is possible to efficiently mass-produce highly functional CNT2 having high purity and stability at low cost. Further, according to the present invention, the inert atmosphere in the reaction vessel 71, the temperature rise, the CNT generation on the inner wall of the cylinder 72, and the scraping off of the CNT2 can be automatically performed sequentially, so that the purity and stability are high. High-performance CNT2 can be mass-produced efficiently at low cost.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。具体的には、上記実施形態では、CNTを生成する基板材質又は円筒を鉄、炭化水素原料をエタノールとした場合に多量のCNTを生成できた。しかし、基板又は円筒は鉄に限定するものではなく、炭素原料もエタノールに限定するものではなく、基板又は円筒と炭素原料の最適組み合わせで本発明の構造を用いることにより最適なカーボンナノチューブ製造装置を構成することができる。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にナノカーボンが生成される無端状の帯状鉄板と、帯状鉄板を加熱する加熱手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、帯状鉄板に生成されたナノカーボンを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とするナノカーボン製造装置。
[2] 帯状鉄板を活性化させる鉄板活性化手段を更に具備することを特徴とする[1]記載のナノカーボン製造装置。
[3] 内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にナノカーボンが生成される表面処理された帯状鉄板と、帯状鉄板を加熱する加熱手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、帯状鉄板に生成されたナノカーボンを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とするナノカーボン製造装置。
[4] 前記鉄板は、鉄の純度の高い鉄板もしくは鉄を含んだ炭素鋼からなる鉄板であることを特徴とする[1]もしくは[2]記載のナノカーボン製造装置。
[5] 内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,表面にナノカーボンが生成される円板形状の鉄板と、この鉄板を駆動する駆動手段と、前記鉄板を加熱する加熱手段と、反応容器内に炭化水素を供給する炭化水素供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、前記鉄板に生成されたナノカーボンを回収する掻き取り回収手段と、前記鉄板を活性化させる鉄板活性化手段と、反応容器内のガスを排気するガス排気手段とを具備することを特徴とするナノカーボン製造装置。
[6] 内部を還元雰囲気に保持しうるとともに,外気と遮断可能な円筒状縦型反応容器と、この縦型反応容器内に配置された鉄系材料からなる円筒と、この円筒の内壁に生成されるナノカーボンを掻き取る螺旋状の掻き取り羽根と、この掻き取り羽根を駆動する駆動源と、円筒を加熱する加熱手段と、縦型反応容器内に炭化水素を供給する炭化水素供給手段と、縦型反応容器内に不活性ガスを供給する不活性ガス供給手段と、鉄系材料からなる円筒鉄板に生成されたナノカーボンを回収する回収手段と、縦型反応容器内のガスを排気するガス排気手段とを具備することを特徴とするナノカーボン製造装置。
[7]前記炭化水素供給手段より反応容器内に供給される炭化水素は、エタノール(バイオエタノールを含む)であることを特徴とする[1]乃至[6]いずれか一記載のナノカーボン製造装置。
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment. Specifically, in the above embodiment, a large amount of CNT can be generated when the substrate material or cylinder for generating CNT is iron and the hydrocarbon raw material is ethanol. However, the substrate or cylinder is not limited to iron, the carbon raw material is not limited to ethanol, and an optimum carbon nanotube production apparatus can be obtained by using the structure of the present invention with the optimal combination of the substrate or cylinder and the carbon raw material. Can be configured.
Hereinafter, the invention described in the scope of claims of the present application will be appended.
[1] A reaction vessel capable of maintaining the inside in a reducing atmosphere, an endless belt-like iron plate provided in the reaction vessel, driven by a roller and generating nanocarbon on the surface, and heating means for heating the belt-like iron plate A hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, an inert gas supply means for supplying an inert gas into the reaction vessel, and a scraping and recovery means for recovering the nanocarbon produced in the belt-like iron plate An apparatus for producing nanocarbon, comprising: a gas exhaust means for exhausting the gas in the reaction vessel.
[2] The nanocarbon production apparatus according to [1], further comprising iron plate activation means for activating the belt-like iron plate.
[3] A reaction vessel capable of maintaining the inside in a reducing atmosphere, a surface-treated strip-like iron plate provided in the reaction vessel, driven by a roller and generating nanocarbon on the surface, and heating for heating the strip-like iron plate Means, hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, inert gas supply means for supplying inert gas into the reaction vessel, and scraping and recovery means for recovering nanocarbon generated in the strip-shaped iron plate And a gas exhaust means for exhausting the gas in the reaction vessel.
[4] The nanocarbon production apparatus according to [1] or [2], wherein the iron plate is an iron plate having high iron purity or an iron plate made of carbon steel containing iron.
[5] A reaction vessel capable of maintaining the inside in a reducing atmosphere, a disk-shaped iron plate provided in the reaction vessel, on which nanocarbon is generated, driving means for driving the iron plate, and the iron plate A heating means for heating, a hydrocarbon supply means for supplying hydrocarbons into the reaction vessel, an inert gas supply means for supplying an inert gas into the reaction vessel, and a scraper for recovering the nanocarbon produced on the iron plate An apparatus for producing nanocarbon, comprising: a collecting and collecting means; an iron plate activating means for activating the iron plate; and a gas exhausting means for exhausting the gas in the reaction vessel.
[6] A cylindrical vertical reaction vessel that can keep the inside in a reducing atmosphere and can be shut off from the outside air, a cylinder made of iron-based material placed in the vertical reaction vessel, and formed on the inner wall of this cylinder A spiral scraping blade for scraping off the nanocarbon, a driving source for driving the scraping blade, a heating means for heating the cylinder, and a hydrocarbon supply means for supplying hydrocarbons into the vertical reaction vessel, , An inert gas supply means for supplying an inert gas into the vertical reaction container, a recovery means for recovering nanocarbon generated on a cylindrical iron plate made of an iron-based material, and an exhaust gas in the vertical reaction container A nanocarbon production apparatus comprising a gas exhaust means.
[7] The nanocarbon production apparatus according to any one of [1] to [6], wherein the hydrocarbon supplied into the reaction vessel from the hydrocarbon supply means is ethanol (including bioethanol). .

本発明の第1の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るCNT製造装置において、CNTを生成する方法について検証した試験の概略的な工程図である。It is a schematic process drawing of the test verified about the method of producing | generating CNT in the CNT manufacturing apparatus which concerns on the 1st Embodiment of this invention. 図2の生成方法でCNTを生成した写真の外形を描いた図である。It is the figure on which the external shape of the photograph which produced | generated CNT with the production | generation method of FIG. 2 was drawn. 本発明の第2の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係るCNT製造装置の概略図である。It is the schematic of the CNT manufacturing apparatus which concerns on the 7th Embodiment of this invention.

符号の説明Explanation of symbols

1…反応容器、2,47…カーボンナノチューブ(CNT)、3,41…鉄板、4…ヒータ(加熱手段)、5…炭素原料供給手段、6…不活性ガス供給手段、7…CNT掻き取り回収手段、8…鉄板活性手段、9…ガス排気手段、10…駆動ローラ、11,52…従動ローラ、12…耐熱材、13…断熱材、14…ヒータ制御手段、16…炭化水素供給ノズル、17…炭素原料収容タンク、18…筐体、19…保温材、20…不活性ガス供給ノズル、21…不活性ガス収容タンク、22…CNT掻き取り板、23…CNT回収缶、24…排気ノズル、29…研磨ブラシ、30…酸液供給ノズル、35…酸液供給ノズル、37…酸液供給手段、38…覗き窓、51…駆動巻き取りローラ、53a,53b…支持ローラ、61…駆動手段、62…スポーク、63…主軸、64,75…駆動モータ、65a,65b…仕切り板、66…研磨ブラシ、67…CNT生成部、71…円筒状縦型反応容器、72,81…円筒、73…回転軸、74…掻き取り羽根、76…シール材。   DESCRIPTION OF SYMBOLS 1 ... Reaction container, 2,47 ... Carbon nanotube (CNT), 3,41 ... Iron plate, 4 ... Heater (heating means), 5 ... Carbon raw material supply means, 6 ... Inert gas supply means, 7 ... CNT scraping collection Means 8: Iron plate activating means 9 ... Gas exhaust means 10 ... Driving roller 11, 52 ... Driven roller, 12 ... Heat resistant material, 13 ... Heat insulating material, 14 ... Heater control means, 16 ... Hydrocarbon supply nozzle, 17 DESCRIPTION OF SYMBOLS ... Carbon raw material accommodation tank, 18 ... Housing | casing, 19 ... Insulation material, 20 ... Inert gas supply nozzle, 21 ... Inert gas accommodation tank, 22 ... CNT scraping plate, 23 ... CNT collection can, 24 ... Exhaust nozzle, DESCRIPTION OF SYMBOLS 29 ... Polishing brush, 30 ... Acid solution supply nozzle, 35 ... Acid solution supply nozzle, 37 ... Acid solution supply means, 38 ... Viewing window, 51 ... Drive-up roller, 53a, 53b ... Support roller, 61 ... Drive means, 62 ... Pork, 63 ... main shaft, 64, 75 ... drive motor, 65a, 65b ... partition plate, 66 ... polishing brush, 67 ... CNT generator, 71 ... cylindrical vertical reaction vessel, 72, 81 ... cylinder, 73 ... rotating shaft 74 ... scraping blades, 76 ... sealing material.

Claims (3)

内部を還元雰囲気に保持しうる反応容器と、この反応容器内に設けられ,ローラにより駆動するとともに表面にカーボンナノチューブが生成される無端状の帯状鉄板と、帯状鉄板を加熱する加熱手段と、反応容器内に炭素原料を供給する炭素原料供給手段と、反応容器内に不活性ガスを供給する不活性ガス供給手段と、帯状鉄板に生成されたカーボンナノチューブを回収する掻き取り回収手段と、反応容器内のガスを排気するガス排気手段と、前記帯状鉄板の表面に酸液を塗布する酸液塗布ブラシと、前記帯状鉄板に酸液を供給して帯状鉄板を活性化させる鉄板活性化手段とを具備し、前記鉄板活性化手段は、一端が前記酸液塗布ブラシまで延出する酸液供給ノズルと、酸液を収容する酸液収容タンクと、この酸液収容タンク内の酸液を、酸液供給ノズルを通して酸液塗布ブラシに送るポンプとを備えていることを特徴とするカーボンナノチューブ製造装置。 A reaction vessel capable of maintaining the inside in a reducing atmosphere, an endless strip-shaped iron plate which is provided in the reaction vessel and is driven by a roller and on which carbon nanotubes are generated, heating means for heating the strip-shaped iron plate, and reaction A carbon raw material supply means for supplying a carbon raw material into the container, an inert gas supply means for supplying an inert gas into the reaction container, a scraping recovery means for recovering the carbon nanotubes produced on the strip-shaped iron plate, and a reaction container Gas exhausting means for exhausting the gas inside, an acid solution applying brush for applying an acid solution to the surface of the strip-shaped iron plate, and an iron plate activating means for activating the strip-shaped iron plate by supplying an acid solution to the strip-shaped iron plate The iron plate activating means includes an acid solution supply nozzle having one end extending to the acid solution application brush, an acid solution storage tank that stores the acid solution, and an acid solution in the acid solution storage tank. Carbon nanotube production apparatus characterized by comprising a pump for sending to the acid solution application brush through feed nozzles. 前記鉄板は、鉄の純度の高い鉄板もしくは鉄を含んだ炭素鋼からなる鉄板であることを特徴とする請求項1記載のカーボンナノチューブ製造装置。 2. The carbon nanotube production apparatus according to claim 1 , wherein the iron plate is an iron plate having high iron purity or an iron plate made of carbon steel containing iron. 前記炭素原料供給手段より反応容器内に供給される炭素原料は、エタノール(バイオエタノールを含む)であることを特徴とする請求項1または2記載のカーボンナノチューブ製造装置。 The carbon raw material supplied into the reaction vessel from the carbon source means, ethanol carbon nanotube production apparatus according to claim 1 or 2, wherein the a (including bioethanol).
JP2008174928A 2008-07-03 2008-07-03 Carbon nanotube production equipment Expired - Fee Related JP4940190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174928A JP4940190B2 (en) 2008-07-03 2008-07-03 Carbon nanotube production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174928A JP4940190B2 (en) 2008-07-03 2008-07-03 Carbon nanotube production equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011265097A Division JP5323169B2 (en) 2011-12-02 2011-12-02 Nanocarbon production equipment

Publications (2)

Publication Number Publication Date
JP2010013318A JP2010013318A (en) 2010-01-21
JP4940190B2 true JP4940190B2 (en) 2012-05-30

Family

ID=41699797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174928A Expired - Fee Related JP4940190B2 (en) 2008-07-03 2008-07-03 Carbon nanotube production equipment

Country Status (1)

Country Link
JP (1) JP4940190B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5419955B2 (en) * 2011-12-12 2014-02-19 株式会社東芝 Transparent conductive material, dispersion liquid, transparent conductive film, and production method thereof
JP2014001140A (en) * 2013-09-30 2014-01-09 Toshiba Corp Graphite nano carbon fiber and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991157B2 (en) * 2003-08-28 2007-10-17 日立造船株式会社 Carbon nanotube production equipment
JP2005171443A (en) * 2003-12-12 2005-06-30 Nikon Corp Chemical vapor growth apparatus of carbon fiber and method for producing carbon fiber
JP5443756B2 (en) * 2005-06-28 2014-03-19 ザ ボード オブ リージェンツ オブ ザ ユニバーシティ オブ オクラホマ Method for growing and collecting carbon nanotubes

Also Published As

Publication number Publication date
JP2010013318A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP2010013319A (en) Apparatus for producing nanocarbon
US7431965B2 (en) Continuous growth of single-wall carbon nanotubes using chemical vapor deposition
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP4474409B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
CN104411629A (en) Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
JP3991157B2 (en) Carbon nanotube production equipment
CN104321274A (en) Methods for using metal catalysts in carbon oxide catalytic converters
RU2296827C1 (en) Method of preparing fibrous carbon structures using catalytic pyrolysis
JP5323169B2 (en) Nanocarbon production equipment
JP4940190B2 (en) Carbon nanotube production equipment
JP4608863B2 (en) Carbon nanotube production apparatus and method, and gas decomposer used therefor
JP5049912B2 (en) Nanocarbon generation furnace
JP5426643B2 (en) Nanocarbon production equipment
JP4869300B2 (en) Nanocarbon production equipment
JP2006027948A (en) Method of manufacturing monolayer carbon nanotube
Jeong et al. Vertically aligned carbon nanotubes synthesized by the thermal pyrolysis with an ultrasonic evaporator
JP5072887B2 (en) Nanocarbon generator
JP5605908B2 (en) Four-layer catalyst base for CNT production, CNT with substrate carbonized layer, CNT with carbonized layer, CNT production method, CNT recovery method, and CNT continuous production apparatus
JP5112044B2 (en) Carbon nanotube production equipment
JP2016088787A (en) Method for producing oriented carbon nanotube aggregates
JP2012172273A (en) Graphite nano-carbon fiber and method for producing the same
WO2004069744A1 (en) Apparatus and method for manufacturing nano carbon
WO2023145841A1 (en) Method and device for producing carbon nanotube aggregate
KR101349621B1 (en) Apparatus for synthesizing Carbon Nano Tube
JP2004244252A (en) Carbon nanotube assembly and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees