JP4835286B2 - Insulation monitoring system and method for low voltage electrical equipment - Google Patents

Insulation monitoring system and method for low voltage electrical equipment Download PDF

Info

Publication number
JP4835286B2
JP4835286B2 JP2006181119A JP2006181119A JP4835286B2 JP 4835286 B2 JP4835286 B2 JP 4835286B2 JP 2006181119 A JP2006181119 A JP 2006181119A JP 2006181119 A JP2006181119 A JP 2006181119A JP 4835286 B2 JP4835286 B2 JP 4835286B2
Authority
JP
Japan
Prior art keywords
current
phase
voltage
low
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006181119A
Other languages
Japanese (ja)
Other versions
JP2008008823A (en
Inventor
和生 露木
敏朗 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2006181119A priority Critical patent/JP4835286B2/en
Publication of JP2008008823A publication Critical patent/JP2008008823A/en
Application granted granted Critical
Publication of JP4835286B2 publication Critical patent/JP4835286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、監視対象となる低圧電路の対地電圧に対する接地線電流の有効分電流の大きさで低圧電路の絶縁劣化(漏電)を監視する低圧電気設備の絶縁監視方式および方法に係り、特に低圧電路の対地電圧と低圧電路から取り込む制御電源の電圧との位相差を絶縁監視装置内に予め設定し、絶縁監視装置は制御電源電圧の位相を設定位相差でシフトして低圧電路の対地電圧位相を求め、この電圧位相を基準にして低圧電路の接地線電流の有効分電流を抽出するための電圧位相差設定方式および方法に関する。   The present invention relates to an insulation monitoring method and method for low-voltage electrical equipment that monitors insulation degradation (leakage) of a low piezoelectric path with a magnitude of an effective current of a ground line current with respect to a ground voltage of the low piezoelectric path to be monitored, and particularly, a low voltage The phase difference between the ground voltage of the electric circuit and the voltage of the control power supply taken from the low piezoelectric path is preset in the insulation monitoring device, and the insulation monitoring device shifts the phase of the control power supply voltage by the set phase difference and the ground voltage phase of the low piezoelectric circuit And a voltage phase difference setting method and method for extracting an effective current component of a ground line current of a low piezoelectric path with reference to this voltage phase.

100V,200V電灯回路、200V,400V動力回路などの「低圧電気設備」の絶縁監視には、I0(アイゼロ)方式、Igr(アイジーアール)方式、I0r(アイゼロアール)方式の3方式がある。なお、この3方式の呼称は、業界で一般的に普及している方式名称であるが、文献などで正式に定められたものでは無い。 For insulation monitoring of “low-voltage electrical equipment” such as 100V, 200V lamp circuit, 200V, 400V power circuit, etc., there are three methods: I 0 (Izero) method, Igr (IZR) method, and I 0 r (IZR) method There is. The names of these three methods are generally used in the industry, but are not officially defined in the literature.

(1)I0方式
低圧供給用バンク(6.6KV/100Vや6.6KV/200Vなどのバンク)の二次側(100V回路や200V回路)の接地線に流れる電流(零相電流)の大きさを検出する事で、低圧電路の絶縁劣化を検出する方式。この方式は、後述の他の2方式に比べ、方式が非常に簡単であり、設備も簡素ですむ。但し、電路の対地静電容量が大きい場合には、絶縁が低下していない常時でも接地線に大きな充電電流が流れ、高抵抗の漏電時の微小な漏電電流の検出がこの大きな漏電電流に打ち消されて、高感度の検出が困難となる事がある。
(1) I 0 method Large current (zero-phase current) flowing in the ground line on the secondary side (100V circuit or 200V circuit) of the bank for low voltage supply (bank such as 6.6KV / 100V and 6.6KV / 200V) This method detects the deterioration of insulation in the low piezoelectric path by detecting the length. This method is much simpler and requires less equipment than the other two methods described later. However, if the capacitance of the circuit to ground is large, a large charging current flows through the ground wire even when insulation is not reduced, and the detection of minute leakage current at the time of high-resistance leakage cancels this large leakage current. Therefore, high-sensitivity detection may be difficult.

(2)Igr(アイジーアール)方式
低圧供給用バンクの二次側の接地線に、商用周波とは異なる微小な交流電圧(1〜2V)を注入する。接地線に流れる電流の内で、この注入した電圧に対する有効分電流のみを検出する方式である。この方式は、電路の対地容量の影響を受けずに高感度に絶縁劣化を検出する事が出来るが、電圧を注入するための設備が必要であったり、接地線に電圧注入用の変圧器を付けるための工事が複雑となったり、といったデメリットもある。この方式の、他の2方式に対する大きな優位性は、接地相の絶縁劣化も検出できる点である。
(2) Igr (IGR) system A small alternating voltage (1 to 2 V) different from the commercial frequency is injected into the secondary ground wire of the low-voltage supply bank. In this method, only the effective current corresponding to the injected voltage is detected from the current flowing through the ground line. This method can detect insulation deterioration with high sensitivity without being affected by the earth capacity of the circuit, but it requires equipment for injecting voltage, or a voltage injection transformer is installed on the ground line. There is also a demerit that the installation work is complicated. A great advantage of this method over the other two methods is that it is possible to detect insulation deterioration of the ground phase.

(3)l0r(アイゼロアール)方式
上記I0方式における対地充電電流の影響を低減し、かつ、Igr方式における装置の複雑さ、施工の複雑さを解決するために考案された方式である。この方式は、監視対象となる低圧電路の対地電圧と、そのバンクの接地線電流を絶縁監視装置に入力し、装置内部で、ベクトル演算を行って、低圧電路の対地電圧に対する接地線電流の内の有効分電流成分を抽出して、これの大きさで絶縁劣化(漏電)を判定するものである。有効分電流成分を精度良く抽出出来れば対地容量の大きさに影響されない高感度の絶縁劣化検出が可能となる(例えば、特許文献1参照)。
(3) l 0 r (eye zero are) method This method was devised to reduce the influence of the ground charging current in the I 0 method and to solve the complexity of the equipment and construction in the Igr method. is there. In this method, the ground voltage of the low piezoelectric path to be monitored and the ground line current of the bank are input to the insulation monitoring device, and vector calculation is performed inside the device to determine the ground line current with respect to the ground voltage of the low piezoelectric path. The effective component current component is extracted, and the insulation deterioration (leakage) is determined by the magnitude of this component. If the effective current component can be extracted with high accuracy, it is possible to detect insulation deterioration with high sensitivity without being affected by the size of the ground capacity (see, for example, Patent Document 1).

このI0r方式の装置を実現しようとした場合、(a)接地線電流を取り込むためのCT(ZCT)回路と、(b)電路の対地電圧を取り込むためのVT回路とが必要となる。したがって、I0方式は、(a)のCT回路のみで済むのに対し、I0r方式では、VT回路も必要とし、装置の入力回路数で言えば2倍の複雑さになる。 In order to realize this I 0 r system device, (a) a CT (ZCT) circuit for capturing a ground line current and (b) a VT circuit for capturing a ground voltage of an electric circuit are required. Therefore, the I 0 method requires only the CT circuit of (a), whereas the I 0 r method requires a VT circuit, which is twice as complex in terms of the number of input circuits of the device.

この入力回路の複雑さを低減するための方策として、常時状態での低圧電路の対地電圧の取り込みを不要にした、以下の方式がある。   As a measure for reducing the complexity of the input circuit, there is the following method that eliminates the need to take in the ground voltage of the low piezoelectric path in the normal state.

(3a)電圧位相差設定方式
この方式は、絶縁監視装置の制御電源電圧と監視対象となる電路の対地電圧との電圧位相差を予め設定する。つまり、絶縁監視装置の制御電源が供給されている変圧器と監視対象となる電路の変圧器の巻線結線関係から、両回路の位相差を人が計算し、この値を予め設定しておく。そして、絶縁監視装置内で監視対象電路の接地線に流れる有効分電流を計算する際には、制御電源電圧を上記で設定された位相差分だけシフト(移相)し、このシフトされた電圧に対する接地線電流に含まれる有効電流成分を求める。
(3a) Voltage phase difference setting method In this method, the voltage phase difference between the control power supply voltage of the insulation monitoring device and the ground voltage of the electric circuit to be monitored is set in advance. In other words, the person calculates the phase difference between the two circuits based on the winding connection relationship between the transformer to which the control power of the insulation monitoring device is supplied and the transformer of the electric circuit to be monitored, and sets this value in advance. . Then, when calculating the effective current flowing in the ground line of the monitoring target circuit in the insulation monitoring device, the control power supply voltage is shifted (phase-shifted) by the phase difference set as described above, and with respect to the shifted voltage. The effective current component included in the ground line current is obtained.

(3b)電圧位相差設定方式
上記(3a)方式は、装置制御電源電圧と監視対象の電路の対地電圧との位相差を、予め設備図面などから計算する必要がある。これは、煩雑であると共に、人間系のミスを引き起こし、誤って設定してしまうという事も考えられる。
(3b) Voltage phase difference setting method In the above method (3a), it is necessary to calculate in advance the phase difference between the device control power supply voltage and the ground voltage of the monitoring target electric circuit from the equipment drawing or the like. This is not only complicated but also causes human errors and may be set incorrectly.

そこで、計算せずに電圧位相差を設定する方式として、監視対象となる低圧電路の対地電圧位相を取り込む為の設定専用の入力回路を1回路設ける。電圧位相差を設定する際には、この設定専用入力回路に監視対象となる当該回路の対地電圧を入力し、この対地電圧と制御電源電圧との位相差を装置内部で演算し、その位相差情報を(3a)方式と同様に設定値として自動記憶しておく。   Therefore, as a method for setting the voltage phase difference without calculating, one setting-dedicated input circuit for taking in the ground voltage phase of the low piezoelectric path to be monitored is provided. When setting the voltage phase difference, the ground voltage of the circuit to be monitored is input to this dedicated input circuit, the phase difference between this ground voltage and the control power supply voltage is calculated internally, and the phase difference is calculated. Information is automatically stored as set values in the same manner as in the method (3a).

この(3b)電圧位相差設定方式を図3〜図5で説明する。図3に示すように、絶縁監視装置1は、低圧供給用バンク(6.6KV/100Vのバンク)の二次側(100V単相3線式)の接地線に流れる電流をバンク別の電流入力CH1、CH2として取り込み、1つのバンク(変圧器TR1)の二次側から装置制御電源を取り込み、さらに位相差設定用の1つの電圧入力回路を設ける。   This (3b) voltage phase difference setting method will be described with reference to FIGS. As shown in FIG. 3, the insulation monitoring apparatus 1 is configured to input current flowing through the ground line on the secondary side (100V single-phase three-wire system) of the low-voltage supply bank (6.6KV / 100V bank) to each bank. Taking in as CH1 and CH2, taking in the device control power supply from the secondary side of one bank (transformer TR1), and further providing one voltage input circuit for phase difference setting.

なお、変圧器TR1,TR2の低圧側対地電圧のベクトル関係は、図4に示すように、変圧器TR2の対地電圧V2は変圧器TR1の対地電圧V1に比べて120°遅れとなっている。   As shown in FIG. 4, the vector relationship of the low-voltage side ground voltage of the transformers TR1 and TR2 is that the ground voltage V2 of the transformer TR2 is delayed by 120 ° compared to the ground voltage V1 of the transformer TR1.

この装置構成において、図5に電圧位相差の初期設定時の結線を示す。絶縁監視装置1は、変圧器TR2の二次側へ位相差設定用電圧入力回路を人が結線してその対地電圧を取り込み、この対地電圧位相と制御電源電圧位相との位相差を絶縁監視装置内で演算によりで求める手段と、変圧器TR2側の対地電圧が位相差設定用電圧入力回路に取り込まれていることを設定する手段とを備えることで、この位相差情報を電流CH2用の設定値として自動記憶しておく。同様に、位相差設定用電圧入力回路には変圧器TR1の対地電圧も取り込み、制御電源電圧位相に対する変圧器TR1の対地電圧の位相差を演算で求め、このときには、変圧器TR1側の対地電圧が位相差設定用電圧入力回路に取り込まれていることを設定する手段により、この位相差情報を電流CH1用の設定値として自動記憶しておく。   In this device configuration, FIG. 5 shows the connection when the voltage phase difference is initially set. The insulation monitoring apparatus 1 is a person who connects a voltage input circuit for setting a phase difference to the secondary side of the transformer TR2 and takes in the ground voltage. The insulation monitoring apparatus detects the phase difference between the ground voltage phase and the control power supply voltage phase. Means for obtaining the phase difference information for the current CH2 by providing means for calculating by calculation and means for setting that the ground voltage on the transformer TR2 side is taken in the phase difference setting voltage input circuit. Automatically stored as a value. Similarly, the ground voltage of the transformer TR1 is also taken into the voltage input circuit for setting the phase difference, and the phase difference of the ground voltage of the transformer TR1 with respect to the control power supply voltage phase is obtained by calculation. At this time, the ground voltage on the transformer TR1 side is obtained. This phase difference information is automatically stored as a set value for the current CH1 by means for setting that is stored in the phase difference setting voltage input circuit.

以上の手段を用いることで、位相差設定用電圧入力回路に位相誤差が無く、各変圧器の二次側電圧位相が負荷電流によって影響を受けないもしくはその影響を無視できると仮定すれば、図4のベクトル関係から、電流CH1に対する位相差設定は0°、電流CH2に対する位相差設定は遅れの120°となる。   By using the above means, it is assumed that there is no phase error in the phase difference setting voltage input circuit, and that the secondary voltage phase of each transformer is not affected by the load current or can be ignored. From the vector relationship of 4, the phase difference setting for the current CH1 is 0 °, and the phase difference setting for the current CH2 is 120 ° with a delay.

絶縁監視装置1では、これら設定値で制御電源電圧の位相をシフトし、これを各バンクの基準電圧位相として、CH1,CH2の電流入力になる監視対象電路の接地線電流の有効分電流を求め、この有効分電流から絶縁劣化の有無を判定する。   In the insulation monitoring device 1, the phase of the control power supply voltage is shifted by these set values, and this is used as the reference voltage phase of each bank to obtain the effective component of the ground line current of the monitoring target circuit that becomes the current input of CH1 and CH2. The presence / absence of insulation deterioration is determined from the effective current.

なお、絶縁監視装置1としては、一般のディジタル式保護継電装置に見られるように、各零相変流器の検出電流をチャンネル別のアナログ入力回路の入力とし、これらをマルチプレクサで順次A/D変換器の入力として順次ディジタル信号に変換し、コンピュータによるディジタル演算処理によって所期の監視機能を確立したものがあり、これを絶縁劣化監視のための処理装置として利用することができる(例えば、特許文献2参照)。
特開2006−71341号公報 特開2004−362510号公報
The insulation monitoring device 1 uses a detection current of each zero-phase current transformer as an input to an analog input circuit for each channel, as seen in a general digital protection relay device, and these signals are sequentially converted into A / A by a multiplexer. Some digital signals are sequentially converted into digital signals as an input to the D converter, and a desired monitoring function is established by digital arithmetic processing by a computer. This can be used as a processing device for monitoring insulation deterioration (for example, Patent Document 2).
JP 2006-71341 A JP 2004-362510 A

前記の電圧位相差設定方式(3b方式)は、前記の(3a)方式と比較した場合のデメリットとしては、電圧位相設定用の専用入力回路が必要となる事である。1つの絶縁監視装置で、多数の低圧電路を監視する際には、1回路程度の専用入力回路の増加は無視できるが、監視対象回路が少ない場合には、回路削減効果は少なくなる。   The voltage phase difference setting method (3b method) has a demerit compared to the method (3a) in that a dedicated input circuit for voltage phase setting is required. When a large number of low piezoelectric paths are monitored by a single insulation monitoring device, an increase in the number of dedicated input circuits of about one circuit can be ignored.

図6は電圧位相差設定方式(3b方式)による絶縁監視装置の例を示す。同図は、6バンクの絶縁監視を行う場合であり、絶縁監視装置1は各変圧器Tr1〜Tr6の接地線電流をそれぞれ取り込むための6チャンネル分と、制御電源電圧から基準電圧を取り込むための1チャンネル分と、初期設定用電圧を取り込むための1チャンネル分、計8チャンネル分の入力回路を設ける。初期設定用電圧は、各変圧器Tr1〜Tr6の対地電圧を人が切り替えて取り込む。   FIG. 6 shows an example of an insulation monitoring device using a voltage phase difference setting method (3b method). The figure shows a case where 6 banks of insulation are monitored. The insulation monitoring device 1 is for 6 channels for taking in the ground line currents of the respective transformers Tr1 to Tr6 and for taking in the reference voltage from the control power supply voltage. An input circuit for a total of eight channels is provided for one channel and one channel for taking in the initial setting voltage. As the initial setting voltage, a person switches and takes in the ground voltage of each of the transformers Tr1 to Tr6.

この例のように、電圧位相差設定方式(3b方式)は、以下の問題がある。   As in this example, the voltage phase difference setting method (3b method) has the following problems.

・変圧器二次側の対地電圧と制御電源電圧との電圧位相差を計測によって求めるには、制御電源電圧と対地電圧の2つの電圧入力回路が必要となり、特に変圧器の対地電圧入力回路は位相差設定時のみ必要となるもので、その利用効率が低い。   ・ To determine the voltage phase difference between the voltage on the secondary side of the transformer and the control power supply voltage by measurement, two voltage input circuits, the control power supply voltage and the ground voltage, are required. This is only necessary when setting the phase difference, and its utilization efficiency is low.

・絶縁監視装置の実装可能入力回路の内、2回路を前記電圧入力用に必要とし、この分だけ利用可能な絶縁劣化監視チャンネル数が少なくなる。   Of the input circuits that can be mounted with an insulation monitoring device, two circuits are required for the voltage input, and the number of insulation deterioration monitoring channels that can be used is reduced accordingly.

・初期設定用電圧を取り込むチャンネルは、入力電圧のレベルを変換する為の変成器や入力用フィルタなどの電子回路で構成され、これらは当然の事ながら位相誤差を持ち、これは、漏電電流を検出する時の誤差になる。これをε1とする。また、接地線電流を取り込むための零相変流器や各監視用の入力チャンネルの電子回路で発生する位相誤差をε2とする。この時、両者の位相誤差が加算される方向に発生すると、当該チャンネルの位相誤差としては、ε1+ε2の誤差が発生することとなるので、両者の位相誤差を精度良く管理する事が必要となってくる。   -The channel that takes in the initial setting voltage is composed of an electronic circuit such as a transformer for converting the level of the input voltage and an input filter, which naturally have a phase error. It becomes an error when detecting. Let this be ε1. Also, let ε2 be the phase error that occurs in the zero-phase current transformer for taking in the ground line current and the electronic circuit of each monitoring input channel. At this time, if the two phase errors occur in the direction in which they are added, an error of ε1 + ε2 is generated as the phase error of the relevant channel. Therefore, it is necessary to manage both phase errors with high accuracy. come.

本発明の目的は、絶縁監視装置には低圧電路の対地電圧を計測するための初期設定専用の電圧入力回路を不要にして高い精度で位相差設定ができ、絶縁劣化監視チャンネル数を増やすこともできる絶縁監視方式および方法を提供することにある。   The object of the present invention is to eliminate the need for an initial setting voltage input circuit for measuring the ground voltage of a low piezoelectric path in the insulation monitoring device, and to set the phase difference with high accuracy and to increase the number of insulation deterioration monitoring channels. It is an object of the present invention to provide an insulation monitoring method and method that can be used.

本発明は、前記の課題を解決するため、監視対象となる低圧電路の対地電圧を抵抗またはコンデンサに印加し、この抵抗またはコンデンサに流れる電流を接地線電流検出用の零相変流器を利用して絶縁監視装置の電流入力回路で取り込む。この検出電流の位相は、抵抗を用いた場合には低圧電路の対地電圧と同相になり、コンデンサを用いた場合には低圧電路の対地電圧に対し進みの90°となることから、抵抗を用いるかコンデンサを用いるかを予め定めておき、検出電流の位相差と制御電源電圧との位相差を、絶縁装置内部で求めて自動設定するようにしたもので、以下の方式および方法を特徴とする。   In order to solve the above-mentioned problems, the present invention applies a ground voltage of a low piezoelectric path to be monitored to a resistor or a capacitor, and uses a zero-phase current transformer for detecting a current flowing through the resistor or the capacitor as a ground line current. The current is input by the current input circuit of the insulation monitoring device. The phase of the detection current is in phase with the ground voltage of the low piezoelectric path when a resistor is used, and is 90 ° ahead of the ground voltage of the low piezoelectric path when a capacitor is used. The phase difference between the detected current phase and the control power supply voltage is automatically determined by determining the phase difference between the detected current and the control power supply voltage, and is characterized by the following methods and methods: .

(1)監視対象となる低圧電路の接地線電流を検出する零相変流器と、前記零相変流器が検出した接地線電流を取り込む電流入力回路および低圧電路から制御電源を取り込む制御電源入力回路を有する絶縁監視装置とを備え、
前記絶縁監視装置は、前記低圧電路の対地電圧と前記制御電源の電圧との位相差φで前記制御電源の電圧の位相をシフトして前記低圧電路の対地電圧位相を求め、この対地電圧位相を基準にして前記零相変流器で検出する低圧電路の接地線電流の有効分電流を抽出し、この有効分電流の大きさで前記低圧電路の絶縁劣化(漏電)を監視する低圧電気設備の絶縁監視方式であって、
前記絶縁監視装置は、
絶縁監視前に、抵抗またはコンデンサに前記低圧電路の対地電圧をプローブ接続によって印加し、該抵抗またはコンデンサに流れる電流を、前記低圧電路の接地線から一旦取り外した前記零相変流器の一次側に前記プローブを貫通させた回路構成で該零相変流器の二次電流として検出し、前記電流入力回路に入力する手段と、
前記電流入力回路に入力される前記抵抗またはコンデンサに流れる電流から前記低圧電路の対地電圧位相を求め、この対地電圧位相と前記制御電源の電圧位相から前記位相差φを求めておく演算手段を備えたことを特徴とする。
(1) A zero-phase current transformer that detects a ground line current of a low-piezoelectric path to be monitored, a current input circuit that takes in the ground-line current detected by the zero-phase current transformer, and a control power supply that takes in a control power from the low piezoelectric path An insulation monitoring device having an input circuit,
The insulation monitoring device obtains the ground voltage phase of the low piezoelectric path by shifting the phase of the voltage of the control power supply by the phase difference φ between the ground voltage of the low piezoelectric path and the voltage of the control power supply, and calculates the ground voltage phase. Extraction of the effective component current of the ground line current of the low piezoelectric path detected by the zero-phase current transformer as a reference, and monitoring the insulation degradation (leakage) of the low piezoelectric circuit with the magnitude of this effective component current An insulation monitoring method,
The insulation monitoring device includes:
Prior to insulation monitoring, the ground voltage of the low piezoelectric path is applied to the resistor or capacitor by a probe connection, and the current flowing through the resistor or capacitor is temporarily removed from the ground line of the low piezoelectric path. Means for detecting as a secondary current of the zero-phase current transformer in a circuit configuration in which the probe is passed through, and inputting to the current input circuit;
Computation means for obtaining a ground voltage phase of the low piezoelectric path from a current flowing through the resistor or capacitor input to the current input circuit, and obtaining the phase difference φ from the ground voltage phase and the voltage phase of the control power supply. It is characterized by that.

(2)監視対象となる低圧電路が複数存在し、電流入力チャンネルと零相変流器も監視対象電路の数N分設け、電流入力チャンネル毎に対地電圧と制御電源の位相差φN求めておく場合、前記プローブを低圧電路Nに接続し、これを当該電路を監視するための零相変流器Nの一次側に貫通させ、この時の電流位相から低圧電路の電圧位相を求め、これと制御電源電圧の位相差φNを当該チャンネル(CH−N)の前記位相差φとして設定する手段を備えたことを特徴とする。 (2) There are multiple low piezoelectric paths to be monitored, and current input channels and zero-phase current transformers are also provided for the number N of monitored circuits, and the phase difference φ N between the ground voltage and the control power supply is obtained for each current input channel. If advance, connecting the probe to the low pressure path N, which is passed through the primary side of the ZCT N for monitoring the path, obtains a voltage phase of the low-pressure path from the time of the current phase, A means for setting the phase difference φ N between this and the control power supply voltage as the phase difference φ of the channel (CH-N) is provided.

(3)前記零相変流器は、前記絶縁監視装置の代表の1つの電流入力チャンネルに接続した状態で、プローブのみを複数の低圧電路Nに切り替えて前記位相差φを求め、かつ、切り替えた時に当該低圧電路を監視する電流入力チャンネルとの関連を示す手段を備えることでチャンネル毎の位相差φNを設定することを特徴とする。 (3) The zero-phase current transformer obtains the phase difference φ by switching only a probe to a plurality of low piezoelectric paths N in a state where the zero-phase current transformer is connected to a representative current input channel of the insulation monitoring device. The phase difference φ N for each channel is set by providing means for indicating the relationship with the current input channel for monitoring the low piezoelectric path.

(4)前記絶縁監視装置は、前記制御電源電圧Vsと、低圧電路の接地線電流I0と、前記電圧Vsと接地線電流I0の位相差θと、制御電源電圧と低圧電路の対地電圧との位相差φから、以下の演算、
0r=cosφ・|I 0 |cosθ+sinφ・|I0|sinθ
=|I0|cos(θ−φ)
によって、前記有効分電流I0rを求める演算手段を備えたことを特徴とする。
(4) The insulation monitoring device includes the control power supply voltage Vs, the ground line current I 0 of the low piezoelectric path, the phase difference θ between the voltage Vs and the ground line current I 0 , the control power supply voltage and the ground voltage of the low piezoelectric path. From the phase difference φ with
I 0 r = cosφ · | I 0 | cosθ + sinφ · | I 0 | sinθ
= | I 0 | cos (θ−φ)
Accordingly, characterized by comprising a calculating means for determining the active current I 0 r.

(5)監視対象となる低圧電路の接地線電流を検出する零相変流器と、前記零相変流器が検出した接地線電流を取り込む電流入力回路および低圧電路から制御電源を取り込む制御電源入力回路を有する絶縁監視装置とを備え、
前記絶縁監視装置は、前記低圧電路の対地電圧と前記制御電源の電圧との位相差φで前記制御電源の電圧の位相をシフトして前記低圧電路の対地電圧位相を求め、この対地電圧位相を基準にして前記零相変流器で検出する低圧電路の接地線電流の有効分電流を抽出し、この有効分電流の大きさで前記低圧電路の絶縁劣化(漏電)を監視する低圧電気設備の絶縁監視方法であって、
前記絶縁監視装置は、
前記零相変流器を前記低圧電路の接地線から一旦取り外し、抵抗またはコンデンサに前記低圧電路の対地電圧をプローブ接続によって印加し、該抵抗またはコンデンサに流れる電流を、前記低圧電路の接地線から一旦取り外した前記零相変流器の一次側に前記プローブを貫通させた回路構成で該零相変流器の二次電流として検出し、前記電流入力回路に入力し、
前記電流入力回路に入力される前記抵抗またはコンデンサに流れる電流から前記低圧電路の対地電圧位相を求め、この対地電圧位相と前記制御電源の電圧位相から前記位相差φを求めておくことを特徴とする。
(5) A zero-phase current transformer for detecting the ground line current of the low piezoelectric path to be monitored, a current input circuit for taking in the ground line current detected by the zero phase current transformer, and a control power supply for taking in the control power from the low piezoelectric path An insulation monitoring device having an input circuit,
The insulation monitoring device determines a ground voltage phase of the low-pressure path by shifting the phase of the voltage of the control power in the phase difference φ between the ground voltage and the voltage of the control power of the low-pressure path, the ground voltage phase Extraction of the effective component current of the ground line current of the low piezoelectric path detected by the zero-phase current transformer as a reference, and monitoring the insulation degradation (leakage) of the low piezoelectric circuit with the magnitude of this effective component current An insulation monitoring method comprising:
The insulation monitoring device includes:
The zero-phase current transformer is temporarily removed from the ground line of the low piezoelectric path, a ground voltage of the low piezoelectric path is applied to a resistor or a capacitor by a probe connection, and the current flowing through the resistor or capacitor is supplied from the ground line of the low piezoelectric path. Detected as a secondary current of the zero-phase current transformer in a circuit configuration in which the probe is passed through the primary side of the zero-phase current transformer once removed, and input to the current input circuit,
The ground voltage phase of the low piezoelectric path is obtained from the current flowing through the resistor or capacitor input to the current input circuit, and the phase difference φ is obtained from the ground voltage phase and the voltage phase of the control power supply. To do.

(6)監視対象となる低圧電路が複数存在し、電流入力チャンネルと零相変流器も監視対象電路の数N分設け、電流入力チャンネル毎に対地電圧と制御電源の位相差φN求めておく場合、前記プローブを低圧電路Nに接続し、これを当該電路を監視するための零相変流器Nの一次側に貫通させ、この時の電流位相から低圧電路の電圧位相を求め、これと制御電源電圧の位相差φNを当該チャンネル(CH−N)の前記位相差φとして設定することを特徴とする。 (6) There are multiple low-voltage paths to be monitored, and current input channels and zero-phase current transformers are also provided for the number N of monitored circuits, and the phase difference φ N between the ground voltage and the control power supply is obtained for each current input channel. If advance, connecting the probe to the low pressure path N, which is passed through the primary side of the ZCT N for monitoring the path, obtains a voltage phase of the low-pressure path from the time of the current phase, The phase difference φ N between this and the control power supply voltage is set as the phase difference φ of the channel (CH−N).

(7)前記零相変流器は、前記絶縁監視装置の代表の1つの電流入力チャンネルに接続した状態で、プローブを複数の低圧電路Nに切り替えて前記位相差φを求め、かつ、切り替えた時に当該低圧電路を監視する電流入力チャンネルとの関連を示す情報を付加してチャンネル毎の位相差φNを設定することを特徴とする。 (7) In the state where the zero-phase current transformer is connected to one representative current input channel of the insulation monitoring device, the probe is switched to a plurality of low piezoelectric paths N to obtain the phase difference φ and switched. In some cases, the phase difference φ N for each channel is set by adding information indicating the relationship with the current input channel for monitoring the low piezoelectric path.

以上のとおり、本発明によれば、監視対象となる低圧電路の対地電圧を抵抗またはコンデンサに印加し、この抵抗またはコンデンサに流れる電流を接地線電流検出用の零相変流器を利用して絶縁監視装置の電流入力回路で取り込み、この検出電流から絶縁監視装置側で対地電圧の位相を求め、この対地電圧と制御電源電圧との位相差を求めて設定するようにしたため、絶縁監視装置には低圧電路の対地電圧を計測するための専用の電圧入力回路を不要にして高い精度で位相差設定ができ、絶縁劣化監視チャンネル数を増やすこともできる。   As described above, according to the present invention, a ground voltage of a low piezoelectric path to be monitored is applied to a resistor or a capacitor, and a current flowing through the resistor or the capacitor is utilized using a zero-phase current transformer for detecting a ground line current. Since the insulation monitoring device side uses the current input circuit of the insulation monitoring device to determine the phase of the ground voltage from the detected current, the phase difference between the ground voltage and the control power supply voltage is determined and set. Eliminates the need for a dedicated voltage input circuit for measuring the ground voltage of the low piezoelectric path, allows the phase difference to be set with high accuracy, and increases the number of insulation deterioration monitoring channels.

具体的には、各回線の線路電圧を電流に変換することにより、初期設定用の電圧入力回路が不要になる。   Specifically, by converting the line voltage of each line into a current, a voltage input circuit for initial setting becomes unnecessary.

また、変換した電流入力は監視回路の零相変流器を利用するため、対地電圧と制御電源電圧との位相差の検出には変流器を貫通させるだけの簡単なプローブを用意することで済む。   Also, since the converted current input uses a zero-phase current transformer in the monitoring circuit, a simple probe that only penetrates the current transformer can be used to detect the phase difference between the ground voltage and the control power supply voltage. That's it.

また、初期設定用の電圧回路を電流監視回路に切り替えて利用できるため、電流監視を1チャンネル分だけ多くした機能拡張ができる。   In addition, since the voltage circuit for initial setting can be switched to the current monitoring circuit, the function can be expanded by increasing the current monitoring by one channel.

また、有効分電流の算出のための位相差は零相変流器がもつ誤差分も含まれることから、同じ零相変流器ZCTを利用した位相差設定により零相変流器の誤差分を相殺して絶縁劣化判定精度を高めることが可能である。   In addition, since the phase difference for calculating the effective component current includes the error component of the zero phase current transformer, the error component of the zero phase current transformer can be set by setting the phase difference using the same zero phase current transformer ZCT. It is possible to increase the insulation deterioration determination accuracy by offsetting.

また、当該低圧電路に実際に取り付ける零相変流器に、当該電路の対地電圧を電流に変換してプローブで貫通させるので、チャンネルを取り違えることなく設定できる。   Moreover, since the ground voltage of the electric circuit is converted into a current and penetrated by a probe in a zero-phase current transformer actually attached to the low piezoelectric circuit, the channel can be set without making a mistake.

図1は、本発明の実施形態を示す絶縁監視方式の基本構成図である。同図は、変圧器TR1,TR2による2バンク構成の低圧電気設備の場合を示す。絶縁監視装置1は、2チャンネルの電流入力回路と制御電源用入力回路によって、前記の(3b)方式による電圧位相差設定と絶縁監視を可能とするものであり、以下、電圧位相差設定と絶縁劣化の監視について詳細に説明する。   FIG. 1 is a basic configuration diagram of an insulation monitoring system showing an embodiment of the present invention. This figure shows a case of a low-voltage electric facility having a two-bank configuration with transformers TR1 and TR2. The insulation monitoring device 1 enables voltage phase difference setting and insulation monitoring by the above-described (3b) method by using a 2-channel current input circuit and a control power supply input circuit. Deterioration monitoring will be described in detail.

(1)電圧位相差設定
図1に示すように、絶縁監視装置1は位相差設定用の電圧入力回路を設けることなく、電圧位相差設定時に1つの電流入力回路を活用する。従来方式では監視対象の低圧電路の対地電圧の位相情報を電圧入力回路で取り込むのに対し、本実施形態では接地線電流を取り込むための零相変流器(ZCT)を利用して対地電圧位相を電流位相として取り込むものであり、以下の手順により対地電圧の位相情報を得、絶縁監視装置内に位相差情報として設定する。
(1) Voltage Phase Difference Setting As shown in FIG. 1, the insulation monitoring device 1 uses one current input circuit when setting the voltage phase difference without providing a voltage input circuit for setting the phase difference. In the conventional method, the phase information of the ground voltage of the low piezoelectric path to be monitored is captured by the voltage input circuit, whereas in this embodiment, the ground voltage phase is obtained by using a zero-phase current transformer (ZCT) for capturing the ground line current. Is obtained as the current phase, and the phase information of the ground voltage is obtained by the following procedure and set as the phase difference information in the insulation monitoring device.

(S1)位相差設定に際して、零相変流器ZCT2を変圧器TR2の接地線から一旦取り外す。   (S1) When setting the phase difference, the zero-phase current transformer ZCT2 is once removed from the ground line of the transformer TR2.

(S2)抵抗2の両端にリード線3を接続したプローブを用意し、このリード線を上記の零相変流器ZCT2の一次導体としてそれに貫通させ、または零相変流器ZCT2が一次導体を把持する機構のものではリード線を把持させる。   (S2) A probe having lead wires 3 connected to both ends of the resistor 2 is prepared, and this lead wire is passed through as a primary conductor of the above-described zero-phase current transformer ZCT2, or the zero-phase current transformer ZCT2 serves as a primary conductor. In the case of the gripping mechanism, the lead wire is gripped.

(S3)監視対象電路の対地電圧が印加されるポイントにプローブを接触させ、抵抗2に変圧器TR2の対地電圧を印加させる。このとき、抵抗2に流れる電流の位相は、低圧電路の対地電圧の位相と同相になる。   (S3) The probe is brought into contact with the point where the ground voltage of the monitoring target circuit is applied, and the ground voltage of the transformer TR2 is applied to the resistor 2. At this time, the phase of the current flowing through the resistor 2 is in phase with the phase of the ground voltage of the low piezoelectric path.

(S4)抵抗2に流れる電流を零相変流器ZCT2の二次電流として検出し、絶縁監視装置1の電流入力回路(CH2)で取り込み、この電流入力回路に対地電圧と同一の位相情報を得る。   (S4) The current flowing through the resistor 2 is detected as the secondary current of the zero-phase current transformer ZCT2, and is captured by the current input circuit (CH2) of the insulation monitoring device 1, and the same phase information as the ground voltage is input to this current input circuit. obtain.

(S5)絶縁監視装置1では、制御電源電圧の位相と取り込んだ電流の位相差を演算し、位相差設定値として記憶する。   (S5) In the insulation monitoring device 1, the phase difference between the phase of the control power supply voltage and the captured current is calculated and stored as a phase difference setting value.

以上までの操作(S2〜S5)は、変圧器TR1の対地電圧についても行い、変圧器TR1の対地電圧と制御電源の電圧位相差を演算し、位相差設定値として記憶する。すなわち、プローブおよび零相変流器の組は、絶縁監視装置1の1つの電流入力チャンネルに接続した状態で、プローブを複数の低圧電路に切り替えて各低圧電路の対地電圧に対応した位相をもつ電流を検出する。この切り替えに際して、当該低圧電路を監視する電流入力チャンネルとの関連を示す情報も付属させておく。   The above operations (S2 to S5) are also performed for the ground voltage of the transformer TR1, and the voltage phase difference between the ground voltage of the transformer TR1 and the control power supply is calculated and stored as a phase difference set value. That is, the probe and the zero-phase current transformer set have a phase corresponding to the ground voltage of each low piezoelectric path by switching the probe to a plurality of low piezoelectric paths in a state where the probe is connected to one current input channel of the insulation monitoring device 1. Detect current. At the time of this switching, information indicating the relationship with the current input channel for monitoring the low piezoelectric path is also attached.

したがって、電圧位相差設定には、抵抗2にリード線3を接続したプローブを用意し、接地線電流を検出するための1つの零相変流器(ZCT)を接地線から取り外し、この零相変流器(ZCT)にプローブのリード線を一次導体として結合させ、零相変流器(ZCT)に得る抵抗の電流を絶縁監視装置1の電流入力回路で取り込み、絶縁監視装置内で対地電圧と同相の電圧信号として抽出し、制御電源電圧との位相差を求め、位相差として設定する。   Therefore, for setting the voltage phase difference, a probe in which the lead wire 3 is connected to the resistor 2 is prepared, and one zero-phase current transformer (ZCT) for detecting the ground wire current is removed from the ground wire. The lead wire of the probe is coupled to the current transformer (ZCT) as a primary conductor, the resistance current obtained in the zero-phase current transformer (ZCT) is taken in by the current input circuit of the insulation monitoring device 1, and the ground voltage in the insulation monitoring device Is extracted as a voltage signal in phase with the control power supply voltage, and a phase difference from the control power supply voltage is obtained and set as a phase difference.

この設定方式によれば、位相差設定用の電圧入力回路が不要になる。また、変換した電流入力は接地線電流検出用の零相変流器ZCTを利用することができ、簡単なプローブを用意することで済む。また、位相差設定用の電圧入力回路を電流監視回路に利用できるため、監視対象を1チャンネル多くした機能拡張ができる。また、位相差設定分には零相変流器ZCTがもつ誤差分も含まれることから、同じ零相変流器ZCTを利用した位相差設定により零相変流器の誤差分を相殺して絶縁劣化判定精度を高めることが可能である。また、零相変流器に結合したプローブは他のチャンネルの対地電圧を測定することができ、複数チャンネルを順次設定が容易になる。   According to this setting method, the voltage input circuit for setting the phase difference becomes unnecessary. Further, the converted current input can use a zero-phase current transformer ZCT for detecting the ground line current, and a simple probe can be prepared. Further, since the voltage input circuit for setting the phase difference can be used for the current monitoring circuit, the function can be expanded by increasing the number of monitoring targets by one channel. In addition, since the phase difference setting includes the error of the zero-phase current transformer ZCT, the error of the zero-phase current transformer is canceled by the phase difference setting using the same zero-phase current transformer ZCT. It is possible to improve the insulation deterioration judgment accuracy. In addition, the probe coupled to the zero-phase current transformer can measure the ground voltage of other channels, and it becomes easy to set a plurality of channels sequentially.

なお、絶縁監視装置1では、変圧器の対地電圧を抵抗2で電流に変換する際に、この抵抗2の電力容量について配慮する必要がある。抵抗に流す電流にもよるが、抵抗が発熱しないように有る程度大きな容量が必要となる。例えば、200V回路で100mA流そうとすると、抵抗の定格電力は20W以上必要で、これにマージンを含めると、40W程度の大きな抵抗器が必要となる。この抵抗2の代わりに、発熱に対する配慮が不要なコンデンサを用いる方式とすることもできる。コンデンサを用いた場合には、電流位相が電圧に対して、進み90°になるため、位相差設定時の演算結果に対してこの分を補正する。   In the insulation monitoring device 1, it is necessary to consider the power capacity of the resistor 2 when the ground voltage of the transformer is converted into a current by the resistor 2. Although depending on the current flowing through the resistor, a certain amount of capacitance is required so that the resistor does not generate heat. For example, if a 200 mA circuit is used to flow 100 mA, the rated power of the resistor is required to be 20 W or more, and if a margin is included in this, a large resistor of about 40 W is required. Instead of the resistor 2, a system using a capacitor that does not require consideration for heat generation may be used. When a capacitor is used, the current phase advances 90 ° with respect to the voltage, so this is corrected for the calculation result when the phase difference is set.

(2)設定位相差を使用した絶縁劣化監視の例
絶縁監視装置1は、接地線の零相電流と制御電源電圧の有効分と無効分を算出し、これに対し上記で求められた位相差により定まる位相差補正係数を掛ける事で、当該電路の対地電圧を基準とした有効分電流の大きさを求め、絶縁劣化の判定を行う。この例を以下に示す。
(2) Example of insulation deterioration monitoring using set phase difference The insulation monitoring apparatus 1 calculates the effective and ineffective portions of the zero-phase current and the control power supply voltage of the grounding wire, and the phase difference calculated above for this By multiplying the phase difference correction coefficient determined by the above, the magnitude of the effective current with reference to the ground voltage of the electric circuit is obtained, and the insulation deterioration is determined. An example of this is shown below.

図2の(a)に示すように、制御電源電圧Vsに対する接地線の零相電流I0の有効分と無効分は、その間の位相差θから、有効分=|I0|cosθ、無効分=|I0|sinθとして求められる。 As shown in FIG. 2A, the effective part and the ineffective part of the zero-phase current I 0 of the ground line with respect to the control power supply voltage Vs are the effective part = | I 0 | cos θ, the ineffective part from the phase difference θ therebetween. = | I 0 | sin θ.

制御電源電圧Vsと監視対象電路の対地電圧の位相差が、前記の(1)電圧位相差設定で求められており、この位相差をφとすれば、図2の(b)に位相差φと位相差θとの関係を示すように、零相電流の有効分I0rは以下の演算によって求められる。
[数]
0r=cosφ・|I 0 |cosθ+sinφ・|I0|sinθ
=|I0|cos(θ−φ)
0 :各変圧器の接地線の零相電流、|I 0 |:接地線の零相電流I 0 の実効値、cosφ、sinφ:位相差補正係数(φは位相差)
絶縁劣化の判定には、図2の(c)に示すように、上記で求められた、零相電流の有効分I0rの大きさが予め設定された値を超えているか否かによって判定することができる。
The phase difference between the control power supply voltage Vs and the ground voltage of the monitoring target circuit is obtained by the above (1) voltage phase difference setting. If this phase difference is φ, the phase difference φ in FIG. And the phase difference θ, the effective component I 0 r of the zero-phase current is obtained by the following calculation.
[number]
I 0 r = cosφ · | I 0 | cosθ + sinφ · | I 0 | sinθ
= | I 0 | cos (θ−φ)
I 0 : Zero phase current of ground wire of each transformer, | I 0 |: Effective value of zero phase current I 0 of ground wire , cosφ, sinφ: Phase difference correction coefficient (φ is phase difference)
As shown in FIG. 2 (c), the insulation deterioration is determined based on whether or not the magnitude of the effective component I 0 r of the zero-phase current obtained above exceeds a preset value. can do.

なお、実施形態では、零相変流器は、絶縁監視装置の代表の1つの電流入力チャンネルに接続した状態で、プローブのみを複数の低圧電路Nに切り替えて、位相差φを求め、かつ、切り替えた時に当該低圧電路を監視する電流入力チャンネルとの関連を示す手段を備えることでチャンネル毎の位相差φNを設定する場合である。この場合には各チャンネルの零相変流器と入力チャンネルの位相誤差のキャンセル効果は期待できない。 In the embodiment, the zero-phase current transformer is connected to one current input channel representative of the insulation monitoring device, and only the probe is switched to the plurality of low piezoelectric paths N to obtain the phase difference φ, and This is a case where the phase difference φ N for each channel is set by providing means for indicating the relationship with the current input channel for monitoring the low piezoelectric path when switching. In this case, the effect of canceling the phase error between the zero-phase current transformer and the input channel of each channel cannot be expected.

このキャンセル効果を得るには、各チャンネルN毎にその零相変流器を使って位相差φNを設定することでもよい。すなわち、監視対象となる低圧電路が複数存在し、電流入力チャンネルと零相変流器も監視対象電路の数N分設け、電流入力チャンネル毎に対地電圧と制御電源の位相差φNを設定する場合、プローブを低圧電路Nに接続し、これを当該の電路を監視するための零相変流器Nの一次側に貫通させ、この時の電流位相から低圧電路の電圧位相を求め、これと制御電源電圧の位相差φNを当該チャンネル(CH−N)の前記位相差φとして設定することで、監視用の零相変流器と入力チャンネルとに位相誤差ε2が存在しても、初期設定時にこの位相誤差を含めて設定されることから高精度の設定が可能となる。 In order to obtain this canceling effect, the phase difference φ N may be set for each channel N using the zero-phase current transformer. That is, there are a plurality of low-voltage paths to be monitored, and current input channels and zero-phase current transformers are provided for the number N of monitored circuits, and the ground voltage and control power supply phase difference φ N are set for each current input channel. In this case, the probe is connected to the low piezoelectric path N, and this is passed through the primary side of the zero-phase current transformer N for monitoring the current circuit, and the voltage phase of the low piezoelectric path is obtained from the current phase at this time. By setting the phase difference φ N of the control power supply voltage as the phase difference φ of the channel (CH−N), even if a phase error ε 2 exists between the monitoring zero-phase current transformer and the input channel, the initial phase difference φ N Since this phase error is set at the time of setting, a highly accurate setting is possible.

詳細には、監視対象の低圧電路を電流に変換するプローブで、例えば、抵抗を用いた場合には、監視対象電路の電圧とプローブに流れる電流の位相差は0°となる。これを、零相変流器の位相誤差と当該回路の入力チャンネルの位相誤差との和ε2を持つ回路で取り込むと、0°+ε2となる。制御電源電圧位相と監視対象電路の真の位相差をθとすると、絶縁監視装置内部で演算された初期設定用の位相差にも前記誤差が加算されるのでθ+ε2となる。ここで、実際に漏電が発生した時に当該電路の接地線に流れる電流の絶縁監視装置の制御電源電圧に対する真の位相をδとすると、絶縁監視装置では、誤差を含んだδ+ε2の位相差を持った電流として検出され、制御電源電圧を初期設定値(θ+ε2)だけシフトした位相を基準に電流の位相を判定するので、この両者の差分は、δ−θとなり、誤差がキャンセルされ、高精度化が図れる。   More specifically, in a probe that converts a low piezoelectric path to be monitored into a current, for example, when a resistor is used, the phase difference between the voltage of the monitored circuit and the current flowing through the probe is 0 °. If this is taken in by a circuit having a sum ε2 of the phase error of the zero-phase current transformer and the phase error of the input channel of the circuit, 0 ° + ε2. If the true phase difference between the control power supply voltage phase and the monitoring target circuit is θ, the error is added to the initial setting phase difference calculated in the insulation monitoring device, and θ + ε2. Here, when the true phase of the current flowing through the ground line of the circuit when the leakage actually occurs with respect to the control power supply voltage of the insulation monitoring device is δ, the insulation monitoring device has a phase difference of δ + ε2 including an error. Current phase is determined based on the phase of the control power supply voltage shifted by the initial setting value (θ + ε2), so the difference between the two becomes δ-θ, and the error is canceled, resulting in higher accuracy. Can be planned.

本発明の実施形態を示す絶縁監視方式の基本構成図。The basic block diagram of the insulation monitoring system which shows embodiment of this invention. 実施形態における位相差φとθの関係図。FIG. 6 is a relationship diagram of phase differences φ and θ in the embodiment. 0r絶縁監視方式の構成図。Diagram of I 0 r insulation monitoring system. 変圧器TR1,TR2の低圧側電圧のベクトル関係図。The vector relationship figure of the low voltage side voltage of transformer TR1, TR2. 電圧位相差設定時の結線図。Connection diagram when setting the voltage phase difference. 3b方式による絶縁監視装置の例。The example of the insulation monitoring apparatus by 3b system.

符号の説明Explanation of symbols

1 絶縁監視装置
2 抵抗
3 リード線
TR1、TR2 変圧器
ZCT1、ZCT2 零相変流器
DESCRIPTION OF SYMBOLS 1 Insulation monitoring apparatus 2 Resistance 3 Lead wire TR1, TR2 Transformer ZCT1, ZCT2 Zero phase current transformer

Claims (7)

監視対象となる低圧電路の接地線電流を検出する零相変流器と、前記零相変流器が検出した接地線電流を取り込む電流入力回路および低圧電路から制御電源を取り込む制御電源入力回路を有する絶縁監視装置とを備え、
前記絶縁監視装置は、前記低圧電路の対地電圧と前記制御電源の電圧との位相差φで前記制御電源の電圧の位相をシフトして前記低圧電路の対地電圧位相を求め、この対地電圧位相を基準にして前記零相変流器で検出する低圧電路の接地線電流の有効分電流を抽出し、この有効分電流の大きさで前記低圧電路の絶縁劣化(漏電)を監視する低圧電気設備の絶縁監視方式であって、
前記絶縁監視装置は、
絶縁監視前に、抵抗またはコンデンサに前記低圧電路の対地電圧をプローブ接続によって印加し、該抵抗またはコンデンサに流れる電流を、前記低圧電路の接地線から一旦取り外した前記零相変流器の一次側に前記プローブを貫通させた回路構成で該零相変流器の二次電流として検出し、前記電流入力回路に入力する手段と、
前記電流入力回路に入力される前記抵抗またはコンデンサに流れる電流から前記低圧電路の対地電圧位相を求め、この対地電圧位相と前記制御電源の電圧位相から前記位相差φを求めておく演算手段を備えたことを特徴とする低圧電気設備の絶縁監視方式。
A zero-phase current transformer that detects a ground line current of a low piezoelectric path to be monitored, a current input circuit that captures a ground line current detected by the zero phase current transformer, and a control power input circuit that captures a control power from the low piezoelectric path An insulation monitoring device having
The insulation monitoring device obtains the ground voltage phase of the low piezoelectric path by shifting the phase of the voltage of the control power supply by the phase difference φ between the ground voltage of the low piezoelectric path and the voltage of the control power supply, and calculates the ground voltage phase. Extraction of the effective component current of the ground line current of the low piezoelectric path detected by the zero-phase current transformer as a reference, and monitoring the insulation degradation (leakage) of the low piezoelectric circuit with the magnitude of this effective component current An insulation monitoring method,
The insulation monitoring device includes:
Prior to insulation monitoring, the ground voltage of the low piezoelectric path is applied to the resistor or capacitor by a probe connection, and the current flowing through the resistor or capacitor is temporarily removed from the ground line of the low piezoelectric path. Means for detecting as a secondary current of the zero-phase current transformer in a circuit configuration in which the probe is passed through, and inputting to the current input circuit;
Computation means for obtaining a ground voltage phase of the low piezoelectric path from a current flowing through the resistor or capacitor input to the current input circuit, and obtaining the phase difference φ from the ground voltage phase and the voltage phase of the control power supply. Insulation monitoring system for low voltage electrical equipment.
監視対象となる低圧電路が複数存在し、電流入力チャンネルと零相変流器も監視対象電路の数N分設け、電流入力チャンネル毎に対地電圧と制御電源の位相差φNを求めておく場合、前記プローブを低圧電路Nに接続し、これを当該電路を監視するための零相変流器Nの一次側に貫通させ、この時の電流位相から低圧電路の電圧位相を求め、これと制御電源電圧の位相差φNを当該チャンネル(CH−N)の前記位相差φとして設定する手段を備えたことを特徴とする請求項1に記載の低圧電気設備の絶縁監視方式。 When there are multiple low-voltage paths to be monitored, current input channels and zero-phase current transformers are provided for the number N of monitored circuits, and the phase difference φ N between the ground voltage and the control power supply is obtained for each current input channel The probe is connected to the low piezoelectric path N, and this probe is passed through the primary side of the zero-phase current transformer N for monitoring the current path, and the voltage phase of the low piezoelectric path is obtained from the current phase at this time and controlled. insulation monitoring system of the low-pressure electrical equipment according to claim 1, a phase difference phi N is characterized by having a means for setting as said phase difference phi in the channel (CH-N) of the power supply voltage. 前記零相変流器は、前記絶縁監視装置の代表の1つの電流入力チャンネルに接続した状態で、プローブのみを複数の低圧電路Nに切り替えて前記位相差φを求め、かつ、切り替えた時に当該低圧電路を監視する電流入力チャンネルとの関連を示す手段を備えることでチャンネル毎の位相差φNを設定することを特徴とする請求項1に記載の低圧電気設備の絶縁監視方式。 The zero-phase current transformer is connected to one current input channel representative of the insulation monitoring device, and only the probe is switched to a plurality of low piezoelectric paths N to obtain the phase difference φ. 2. The insulation monitoring system for low-voltage electrical equipment according to claim 1, wherein a phase difference φ N for each channel is set by providing means for indicating a relationship with a current input channel for monitoring a low piezoelectric path. 前記絶縁監視装置は、前記制御電源電圧Vsと、低圧電路の接地線電流I0と、前記電圧Vsと接地線電流I0の位相差θと、制御電源電圧と低圧電路の対地電圧との位相差φから、以下の演算、
0r=cosφ・|I0|cosθ+sinφ・|I0|sinθ
=|I0|cos(θ−φ)
によって、前記有効分電流I0rを求める演算手段を備えたことを特徴とする請求項1〜3のいずれか1項に記載の低圧電気設備の絶縁監視方式。
The insulation monitoring device includes the control power supply voltage Vs, the ground line current I 0 of the low piezoelectric path, the phase difference θ between the voltage Vs and the ground line current I 0 , and the levels of the control power supply voltage and the ground voltage of the low piezoelectric path. From the phase difference φ, the following calculation:
I 0 r = cosφ · | I 0 | cosθ + sinφ · | I 0 | sinθ
= | I 0 | cos (θ−φ)
Accordingly, the insulation monitoring system of the low-pressure electrical equipment according to any one of claims 1 to 3, further comprising a calculating means for determining the active current I 0 r.
監視対象となる低圧電路の接地線電流を検出する零相変流器と、前記零相変流器が検出した接地線電流を取り込む電流入力回路および低圧電路から制御電源を取り込む制御電源入力回路を有する絶縁監視装置とを備え、
前記絶縁監視装置は、前記低圧電路の対地電圧と前記制御電源の電圧との位相差φで前記制御電源の電圧の位相をシフトして前記低圧電路の対地電圧位相を求め、この対地電圧位相を基準にして前記零相変流器で検出する低圧電路の接地線電流の有効分電流を抽出し、この有効分電流の大きさで前記低圧電路の絶縁劣化(漏電)を監視する低圧電気設備の絶縁監視方法であって、
前記絶縁監視装置は、
前記零相変流器を前記低圧電路の接地線から一旦取り外し、抵抗またはコンデンサに前記低圧電路の対地電圧をプローブ接続によって印加し、該抵抗またはコンデンサに流れる電流を、前記低圧電路の接地線から一旦取り外した前記零相変流器の一次側に前記プローブを貫通させた回路構成で該零相変流器の二次電流として検出し、前記電流入力回路に入力し、
前記電流入力回路に入力される前記抵抗またはコンデンサに流れる電流から前記低圧電路の対地電圧位相を求め、この対地電圧位相と前記制御電源の電圧位相から前記位相差φを求めておくことを特徴とする低圧電気設備の絶縁監視方法。
A zero-phase current transformer that detects a ground line current of a low piezoelectric path to be monitored, a current input circuit that captures a ground line current detected by the zero phase current transformer, and a control power input circuit that captures a control power from the low piezoelectric path An insulation monitoring device having
The insulation monitoring device determines a ground voltage phase of the low-pressure path by shifting the phase of the voltage of the control power in the phase difference φ between the ground voltage and the voltage of the control power of the low-pressure path, the ground voltage phase Extraction of the effective component current of the ground line current of the low piezoelectric path detected by the zero-phase current transformer as a reference, and monitoring the insulation degradation (leakage) of the low piezoelectric circuit with the magnitude of this effective component current An insulation monitoring method comprising:
The insulation monitoring device includes:
The zero-phase current transformer is temporarily removed from the ground line of the low piezoelectric path, a ground voltage of the low piezoelectric path is applied to a resistor or a capacitor by a probe connection, and the current flowing through the resistor or capacitor is supplied from the ground line of the low piezoelectric path. Detected as a secondary current of the zero-phase current transformer in a circuit configuration in which the probe is passed through the primary side of the zero-phase current transformer once removed, and input to the current input circuit,
The ground voltage phase of the low piezoelectric path is obtained from the current flowing through the resistor or capacitor input to the current input circuit, and the phase difference φ is obtained from the ground voltage phase and the voltage phase of the control power supply. Insulation monitoring method for low voltage electrical equipment.
監視対象となる低圧電路が複数存在し、電流入力チャンネルと零相変流器も監視対象電路の数N分設け、電流入力チャンネル毎に対地電圧と制御電源の位相差φNを求めておく場合、前記プローブを低圧電路Nに接続し、これを当該電路を監視するための零相変流器Nの一次側に貫通させ、この時の電流位相から低圧電路の電圧位相を求め、これと制御電源電圧の位相差φNを当該チャンネル(CH−N)の前記位相差φとして設定することを特徴とする請求項5に記載の低圧電気設備の絶縁監視方法。 When there are multiple low-voltage paths to be monitored, current input channels and zero-phase current transformers are provided for the number N of monitored circuits, and the phase difference φ N between the ground voltage and the control power supply is obtained for each current input channel The probe is connected to the low piezoelectric path N, and this probe is passed through the primary side of the zero-phase current transformer N for monitoring the current path, and the voltage phase of the low piezoelectric path is obtained from the current phase at this time and controlled. insulation monitoring method for a low pressure electrical equipment according to claim 5, a phase difference phi N of the power supply voltage and sets as the phase difference phi in the channel (CH-N). 前記零相変流器は、前記絶縁監視装置の代表の1つの電流入力チャンネルに接続した状態で、プローブを複数の低圧電路Nに切り替えて前記位相差φを求め、かつ、切り替えた時に当該低圧電路を監視する電流入力チャンネルとの関連を示す情報を付加してチャンネル毎の位相差φNを設定することを特徴とする請求項5に記載の低圧電気設備の絶縁監視方法。 The zero-phase current transformer is connected to one representative current input channel of the insulation monitoring device, and the probe is switched to a plurality of low piezoelectric paths N to obtain the phase difference φ and 6. The insulation monitoring method for low-voltage electrical equipment according to claim 5, wherein information indicating a relationship with a current input channel for monitoring an electric circuit is added to set a phase difference φ N for each channel.
JP2006181119A 2006-06-30 2006-06-30 Insulation monitoring system and method for low voltage electrical equipment Active JP4835286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006181119A JP4835286B2 (en) 2006-06-30 2006-06-30 Insulation monitoring system and method for low voltage electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006181119A JP4835286B2 (en) 2006-06-30 2006-06-30 Insulation monitoring system and method for low voltage electrical equipment

Publications (2)

Publication Number Publication Date
JP2008008823A JP2008008823A (en) 2008-01-17
JP4835286B2 true JP4835286B2 (en) 2011-12-14

Family

ID=39067157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006181119A Active JP4835286B2 (en) 2006-06-30 2006-06-30 Insulation monitoring system and method for low voltage electrical equipment

Country Status (1)

Country Link
JP (1) JP4835286B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200445255Y1 (en) 2007-08-30 2009-07-14 대우조선해양 주식회사 Shore power earth detector
CN103048630A (en) * 2012-12-11 2013-04-17 上海市电力公司 Analysis model for mixing condition of doubling direct-current power supplies and judging method
CN116400136B (en) * 2023-03-24 2023-10-20 浙江伊控动力系统有限公司 Method for calculating phase shift of current sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186765A (en) * 1984-03-05 1985-09-24 Toyo Commun Equip Co Ltd Compensating method of measuring device for insulation resistance
JPH06105276B2 (en) * 1988-02-15 1994-12-21 明星電気株式会社 Effective leakage current detector
JP3996119B2 (en) * 2003-12-11 2007-10-24 株式会社日立産機システム Leakage current measuring device
JP2004325302A (en) * 2003-04-25 2004-11-18 Chubu Electric Power Co Inc Device and method for diagnosing hot line insulation capable of allowing measurement over wide area
JP4599120B2 (en) * 2004-08-31 2010-12-15 株式会社東芝 Electrical installation insulation monitoring device and method

Also Published As

Publication number Publication date
JP2008008823A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
CN103852691B (en) The oriented detection of failure in the network of compensation or the earthed system for the neutral point that insulate
CN104364988B (en) Method for identifying fault by current differential protection and device thereof
US20120062239A1 (en) Directional fault sectionalizing system
KR20080093169A (en) Method of leakage current break and measurement leakage current use phase calculation
US20160349311A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP5494929B2 (en) Ground fault current detection method and detection apparatus
JP2013036884A (en) Insulation monitoring method and insulation monitor
US11757282B2 (en) Method and device for controlling at least one circuit breaker of a power system
JP4835286B2 (en) Insulation monitoring system and method for low voltage electrical equipment
US9897647B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP2007071774A (en) Insulation measuring method and apparatus therefor
JP4599120B2 (en) Electrical installation insulation monitoring device and method
JP2008157838A (en) Insulation monitoring device
JP4738274B2 (en) Insulation monitoring apparatus and method for electrical equipment
JP2004012147A (en) Insulation monitoring device and insulation monitoring method
JP2011149959A (en) Insulation monitoring device
JP2007159318A (en) Ground direction detector
JP2020038068A (en) Insulation monitoring device and insulation monitoring system
JP2008309681A (en) Insulation deterioration monitoring device and its method
JP4921246B2 (en) Ground fault distance relay
NO334166B1 (en) Method and device for fault current monitoring in an electric AC network
JP2007292622A (en) Insulation monitoring device
KR101472439B1 (en) Zero-phase harmonic reduction device
Abd Allah Busbar protection scheme based on alienation coefficients for current signals
JP2021004855A (en) Ground fault detection method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150