JP3996119B2 - Leakage current measuring device - Google Patents

Leakage current measuring device Download PDF

Info

Publication number
JP3996119B2
JP3996119B2 JP2003413105A JP2003413105A JP3996119B2 JP 3996119 B2 JP3996119 B2 JP 3996119B2 JP 2003413105 A JP2003413105 A JP 2003413105A JP 2003413105 A JP2003413105 A JP 2003413105A JP 3996119 B2 JP3996119 B2 JP 3996119B2
Authority
JP
Japan
Prior art keywords
phase
leakage current
zero
effective
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003413105A
Other languages
Japanese (ja)
Other versions
JP2005172617A (en
Inventor
直大 ▲高▼鴨
邦義 阪井
信行 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2003413105A priority Critical patent/JP3996119B2/en
Publication of JP2005172617A publication Critical patent/JP2005172617A/en
Priority to US11/179,705 priority patent/US7353123B2/en
Application granted granted Critical
Publication of JP3996119B2 publication Critical patent/JP3996119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、漏れ電流測定装置であり、特に配電系統の漏れ電流を測定する技術に関する。   The present invention relates to a leakage current measuring device, and more particularly to a technique for measuring a leakage current of a distribution system.

配電系統では漏電火災防止のために絶縁状態を定期的に測定しているが、従来は停電させてケーブルや設備のメガリング(絶縁抵抗測定)を行っていた。また、停電させない場合は、リークテスタ等により漏れ電流を測定していた。これらの問題点は、メガリング方法は被測定回路を停電しなければならず頻繁にできず、また、リークテスタでの測定方法は一般的に漏れ電流測定であるため、絶縁抵抗と等価な抵抗分に流れる抵抗分漏れ電流測定ができないという問題点があった。これらを解決する手段を提案するものとして、下記特許文献1、2があげられる。
特開2001−215247号公報 特開平10−78462号公報
In the distribution system, the insulation state is regularly measured to prevent leakage fires, but in the past, cables and facilities were mega-ringed (insulation resistance measurement) after a power failure. Further, when the power failure was not caused, the leakage current was measured with a leak tester or the like. These problems are that the mega ring method cannot be performed frequently because the circuit under test must be interrupted, and the measurement method using a leak tester is generally a leakage current measurement. There is a problem that it is not possible to measure the resistance leakage current flowing through the. The following Patent Documents 1 and 2 are proposed as means for solving these problems.
JP 2001-215247 A Japanese Patent Laid-Open No. 10-78462

上記した公知例では、漏れ電流中の有効成分即ち抵抗分電流を測定できるが、被測定回路の電圧の大きさを測定する必要があり、このためのコンポーネントが必要となり複雑化している、コスト的にも高価になる、という問題がある。また、零相変流器は製品により種々の位相特性を有し、精度が悪くなり汎用的に組み合わせ使用できないという問題点がある。本発明は、これらの問題点を解決することにある。   In the above-described known example, the effective component in the leakage current, that is, the resistance current can be measured. However, it is necessary to measure the magnitude of the voltage of the circuit to be measured. There is also a problem that it becomes expensive. In addition, the zero-phase current transformer has various phase characteristics depending on the product, and there is a problem that the accuracy is deteriorated and cannot be used in a general purpose combination. The present invention is to solve these problems.

本発明は、被測定回路に設置して漏れ電流を検出する零相変流器(ZCT)からの出力信号を増幅する増幅部と、該増幅部の出力信号であるアナログ信号をディジタル信号に変換するA/D変換部と、前記被測定回路の電圧ゼロクロス点を検出しサンプリング開始信号を出力するゼロクロス検出回路と、その実効値1の正弦波データを記憶する記憶部と、演算を主体としたCPUとを具備し、前記サンプリング開始信号により前記漏れ電流をサンプリングし、サンプリングした出力信号値と前記記憶した実効値1の正弦波波形のディジタルデータとを同期させて乗算値の平均をとり、漏れ電流の有効分電流を得る漏れ電流測定装置である。   The present invention is an amplifier that amplifies an output signal from a zero-phase current transformer (ZCT) that is installed in a circuit under test to detect a leakage current, and converts an analog signal that is an output signal of the amplifier into a digital signal. An A / D conversion unit, a zero-cross detection circuit that detects a voltage zero-cross point of the circuit under test and outputs a sampling start signal, a storage unit that stores sine wave data having an effective value of 1, and a calculation as a main component A CPU that samples the leakage current by the sampling start signal, synchronizes the sampled output signal value with the stored digital data of the sine wave waveform of effective value 1, and calculates the average of the multiplication value This is a leakage current measuring device that obtains an effective current component.

また、本発明は、上記記憶部は、その実効値が1となる正弦波波形のディジタルデータを細分割して記憶しており、零相変流器の出力信号の位相の進み又は遅れと同じ量の遅れた又は進んだディジタルデータを用いて乗算を行う漏れ電流測定装置である。   Further, according to the present invention, the storage unit subdivides and stores digital data having a sine wave waveform whose effective value is 1, which is the same as the phase advance or delay of the output signal of the zero-phase current transformer. This is a leakage current measuring device which performs multiplication using digital data whose amount is delayed or advanced.

そして、本発明は、上記記憶部にその実効値1の正弦波波形データを30度進めたディジタルデータとして記憶しておき、サンプリングした零相変流器の出力信号値との乗算を行い、三相デルタ回路の漏れ電流の有効分を算出する漏れ電流測定装置である。   In the present invention, the sine wave waveform data having an effective value of 1 is stored as 30-degree digital data in the storage unit, multiplied by the sampled output signal value of the zero-phase current transformer, This is a leakage current measuring device for calculating an effective amount of leakage current of a phase delta circuit.

本発明によれば、被測定回路の電圧の大きさを測定する必要が無くなり、このためのコンポーネントが不用となり簡単となるので、コスト的に安価になる。また、調達が容易である汎用的な零相変流器であってもより正確な有効分電流を得ることができる。   According to the present invention, it is not necessary to measure the magnitude of the voltage of the circuit under test, and the components for this are unnecessary and simplified, so that the cost is reduced. Further, even a general-purpose zero-phase current transformer that can be easily procured can obtain a more accurate effective divided current.

すなわち、配電系統の漏れ電流の有効分電流を測定することにより、絶縁状態の良否を把握することができ、漏れ電流による漏電火災を未然に防止することができ、その効果は大である。   That is, by measuring the effective component current of the leakage current of the distribution system, it is possible to grasp the quality of the insulation state, prevent the leakage fire due to the leakage current, and the effect is great.

本発明を実施するための最良の形態を説明する。
以下本発明の漏れ電流測定装置の実施例について、図1〜図7を用いて説明する。図1は、実施例1の漏れ電流測定装置のアルゴリズムを説明する図である。図2は、実施例1の漏れ電流測定装置の構成図である。図3は、実施例1における漏れ電流の有効分電流を算出する具体的な事例を示す図である。図4は、実施例1の漏れ電流測定装置のアルゴリズムを説明する波形図である。図5は、実施例1における零相変流器の位相特性を考慮した有効分電流の計測方法の事例を示す図である。図6は、零相変流器の位相特性の一例を示す図である。図7は、三相デルタ回路の漏れ電流位相を示すベクトル図である。
The best mode for carrying out the present invention will be described.
Embodiments of the leakage current measuring apparatus according to the present invention will be described below with reference to FIGS. FIG. 1 is a diagram for explaining an algorithm of the leakage current measuring apparatus according to the first embodiment. FIG. 2 is a configuration diagram of the leakage current measuring apparatus according to the first embodiment. FIG. 3 is a diagram illustrating a specific example of calculating the effective current of the leakage current in the first embodiment. FIG. 4 is a waveform diagram illustrating an algorithm of the leakage current measuring apparatus according to the first embodiment. FIG. 5 is a diagram illustrating an example of an effective current measuring method in consideration of the phase characteristics of the zero-phase current transformer in the first embodiment. FIG. 6 is a diagram illustrating an example of phase characteristics of the zero-phase current transformer. FIG. 7 is a vector diagram showing the leakage current phase of the three-phase delta circuit.

図1は、実施例1のアルゴリズムを図にしたものであり、1は被測定回路、2は零相変流器(ZCT)、3は漏れ電流測定装置である。5は上記被測定回路の電圧波形のゼロクロス点を検出し、後述するサンプリング開始信号を発生するゼロクロス検出回路、6は該ゼロクロス検出回路の出力信号でサンプリング開始信号、7は零相検出器2で検出された漏れ電流の出力信号を増幅する増幅回路、12はCPUで前記増幅された漏れ電流信号波形を121でディジタルサンプリングし、ディジタル波形を記憶部13に記憶するとともに、記憶部14に記憶した実効値1の正弦波波形データとの電力演算を主体として行うものである。   FIG. 1 is a diagram illustrating an algorithm of the first embodiment, where 1 is a circuit to be measured, 2 is a zero-phase current transformer (ZCT), and 3 is a leakage current measuring device. Reference numeral 5 denotes a zero-cross detection circuit that detects a zero-cross point of the voltage waveform of the circuit under test and generates a sampling start signal, which will be described later. Reference numeral 6 denotes an output signal of the zero-cross detection circuit, and a sampling start signal. An amplifying circuit for amplifying the output signal of the detected leakage current, 12 digitally samples the amplified leakage current signal waveform at 121 by the CPU and stores the digital waveform in the storage unit 13 and also in the storage unit 14 The power calculation with sine wave waveform data having an effective value of 1 is mainly performed.

即ち、漏れ電流電力Pは電圧Vと電流I及び位相角Φの乗算(力率)であり、算出式はP=VIcosΦで表される。一方、この漏れ電流電力Pから電圧Vを除したものが有効分電流になることは前記した算出式で容易にわかる。   That is, the leakage current power P is a multiplication (power factor) of the voltage V, the current I, and the phase angle Φ, and the calculation formula is represented by P = VI cos Φ. On the other hand, it can be easily understood from the above calculation formula that the effective current is obtained by dividing the leakage current power P by the voltage V.

また、サンプリング方式における漏れ電流電力pは、電圧vと電流(漏れ電流)iとの瞬時値の積(p=vi)の平均であり(図の122)、この平均した漏れ電流電力pを電圧vで除すると有効分電流が得られる(図の123)。 In addition, the leakage current power p in the sampling method is an average of products (p = vi ) of instantaneous values of the voltage v and the current (leakage current) i (122 in the figure). When divided by v, an effective current is obtained (123 in the figure).

ここで、本実施例では電圧を測定せずに実効値1の正弦波波形データを用いることに特徴がある。即ち、電圧波形のゼロクロス点をサンプリングの開始点にしており、電圧波形と同期した実効値1の正弦波波形のデータに置換えたものである。上記した漏れ電流電力は漏れ電流に電圧を乗じ、さらに電力を電圧で除するので、実効値1のデータ波形であれば、漏れ電流電力が有効分電流となる。なお、後述する増幅部7他の要素があるので電流係数を結果に乗じて漏れ電流値とするものである。   Here, the present embodiment is characterized in that sinusoidal waveform data having an effective value of 1 is used without measuring the voltage. That is, the zero-cross point of the voltage waveform is set as the sampling start point, and is replaced with data of a sine wave waveform having an effective value of 1 synchronized with the voltage waveform. Since the leakage current power described above multiplies the leakage current by a voltage and further divides the power by the voltage, if the data waveform has an effective value of 1, the leakage current power becomes an effective current. In addition, since there are other elements such as the amplification unit 7 described later, the leakage coefficient is obtained by multiplying the result by the current coefficient.

ところで被測定回路の電圧の不平衡率は、一般に±2%以下であり、電圧不平衡による漏れ電流電力に及ぼす影響は極めて小さいので、上記実効値1の正弦波波形のデータに置換えることができるものである。   By the way, the voltage imbalance rate of the circuit under test is generally ± 2% or less, and the influence on the leakage current power due to the voltage imbalance is very small. It can be done.

以上のアルゴリズムにより漏れ電流の有効分を計測するものであるが、図2は前記内容を具現化した漏れ電流測定装置3のブロック図を示すものである。なお、前記で説明した構成部分については説明を省略する。4は漏れ電流測定装置内部に安定した電圧を供給する電源回路、7は前記した増幅回路で零相変流器(ZCT)の検出信号(電流信号)を電圧信号に変換するとともに適正な大きさに増幅するものである。8は前記変換された電圧信号が刻々と変化するのでCPU12からの指示により信号線9を介して一次的にホールドするためのサンプルホールド回路(S/H回路)、10は該S/H回路の出力信号をCPU12からの指示により信号線11を介してアナログ/ディジタル変換するA/D変換回路であり、この変換されたデータが漏れ電流のサンプリングデータとなる。   The effective amount of the leakage current is measured by the above algorithm. FIG. 2 is a block diagram of the leakage current measuring apparatus 3 that embodies the above contents. In addition, description is abbreviate | omitted about the component demonstrated above. 4 is a power supply circuit that supplies a stable voltage to the leakage current measuring device, and 7 is an amplifier circuit that converts the detection signal (current signal) of the zero-phase current transformer (ZCT) into a voltage signal and has an appropriate size. It amplifies. 8 is a sample-and-hold circuit (S / H circuit) for temporarily holding via the signal line 9 in accordance with an instruction from the CPU 12 because the converted voltage signal changes every moment. This is an A / D conversion circuit that performs analog / digital conversion of the output signal via the signal line 11 in accordance with an instruction from the CPU 12, and the converted data becomes sampling data of leakage current.

CPU12は、実効値1の正弦波波形のデータを記憶する不揮発性記憶部14と、前記サンプリングしたデータを記憶する揮発性記憶部13とを有し、演算結果は揮発性の記憶部13に記憶される。   The CPU 12 includes a non-volatile storage unit 14 that stores data of a sine wave waveform having an effective value 1 and a volatile storage unit 13 that stores the sampled data, and the calculation result is stored in the volatile storage unit 13. Is done.

15は表示回路で上記した有効分電流や漏れ電流の値を表示するための表示回路、17は表示内容を選択し零相変流器の種類を選択設定する設定回路で、16は表示内容と同じ内容を、図示しない上位装置に伝送するための通信回路である。通信回路16を経由して上位装置は遠隔で有効分電流や漏れ電流を計測することができると共に、記録として残すことができるので、有効分電流のトレンドグラフを表示することができる。従って、有効分電流即ち絶縁状態を常時表示できるので劣化状態を把握することができる。   Reference numeral 15 is a display circuit for displaying the above-mentioned effective current and leakage current values, 17 is a setting circuit for selecting the display contents and selecting and setting the type of the zero-phase current transformer, and 16 is the display contents. This is a communication circuit for transmitting the same content to a host device (not shown). The host device can remotely measure the effective current and leakage current via the communication circuit 16 and can record them as a record, so that a trend graph of the effective current can be displayed. Accordingly, since the effective current, that is, the insulation state can be always displayed, the deterioration state can be grasped.

図3、図4は上記したアルゴリズムによる有効分電流計測における演算動作を、より具体的に示す図例であり、サンプリングタイミングは、前記したサンプリング開始信号を起点として、図4のように交流1周期を32分割して漏れ電流波形をサンプリングし、得られたディジタル値を記憶部13に順次記憶すると共に、該ディジタル値と記憶部14に記憶された実効値1の正弦波波形データを乗じ、結果を記憶部13に記憶する様子を示している。32サンプリングが終了すると前記乗じた各値の平均をとり、32サンプリングのため32で除した値に、図示してない係数を乗じれば有効分電流が得られる。前記係数は、零相変流器の変流比、電流・電圧変換時の負担抵抗、増幅回路の増幅率、A/D変換回路の分解能により一義的に決まる。   FIG. 3 and FIG. 4 are diagrams showing more concretely the calculation operation in the effective current measurement by the above-described algorithm, and the sampling timing starts from the sampling start signal as described above and is one AC period as shown in FIG. Is divided into 32, the leakage current waveform is sampled, the obtained digital value is sequentially stored in the storage unit 13, and the digital value is multiplied by the sine wave waveform data of the effective value 1 stored in the storage unit 14 to obtain a result. Is stored in the storage unit 13. When 32 sampling is completed, an average of the multiplied values is taken, and an effective current can be obtained by multiplying the value divided by 32 for 32 sampling by a coefficient not shown. The coefficient is uniquely determined by the current transformation ratio of the zero-phase current transformer, the burden resistance during current / voltage conversion, the amplification factor of the amplification circuit, and the resolution of the A / D conversion circuit.

ここで、図3の記憶部14の内容について説明すると、交流1周期を32サンプリングの各角度に対応して実効値1の正弦波波形データを記憶した様子を示しており、理解しやすいように括弧で角度を示し、その右に実際のデータを示したものである。即ちサンプリングタイミング1の時の角度は0度でありその実効値1のデータは0であり、サンプリングタイミング2の時の角度は11.25度(360度を32で除した角度)で、その実効値1のデータは0.276(小数点4位桁を四捨五入)である。これらの値は、√2を波高値とする正弦波形の各サンプリングタイミングの角度に対するsin関数である。   Here, the contents of the storage unit 14 in FIG. 3 will be described. FIG. 3 shows a state in which sinusoidal waveform data having an effective value 1 is stored corresponding to each angle of 32 samplings per AC cycle, so that it can be easily understood. The angle is shown in parentheses, and the actual data is shown on the right. That is, the angle at the sampling timing 1 is 0 degree, the data of the effective value 1 is 0, the angle at the sampling timing 2 is 11.25 degrees (an angle obtained by dividing 360 degrees by 32), and the effective The data of value 1 is 0.276 (rounded off to the fourth decimal place). These values are sine functions with respect to the angle of each sampling timing of a sine waveform having a peak value of √2.

以上のようにして被測定回路の電圧値を測定しなくても漏れ電流電力を計算、有効分電流を計測できるものである。なお、図4の電力は漏れ電流電力を示す。   As described above, the leakage current power can be calculated and the effective current can be measured without measuring the voltage value of the circuit under test. In addition, the electric power of FIG. 4 shows leakage current electric power.

次に図5、図6について説明する。零相変流器(ZCT)は高精度のものであれば位相特性も良いが、汎用的なものは、周波数によって位相特性が異なり、また計測する漏れ電流の大きさによっても位相が変化する。図6はこの周波数・電流位相特性例を示したものである。さらに零相変流器の種類によっても位相特性が異なり、被測定回路と零相変流器の出力信号の位相がずれて正しい有効分電流を得ることができなくなる。これを解決するための方法を図5に示したもので、前記した図3の各サンプリングタイミングの各点の前後の角度に対応したsin関数の値を配置したものである。図5では1サンプリングタイミングの間(11.25度)を10分割した1.125度のsin関数の値を配置した例であり、この1サンプリングタイミングの間全てにsin関数の値を配置すれば各種の位相ずれに対応できることは明白である。また、前記例は10分割の例であるが、分割数を多くすればより正確な有効分電流を計測演算することができる。図5では、漏れ電流の位相が被測定回路での位相より零相変流器の出力位相が約1度進んでいる場合を示し、この場合は実効値1の正弦波波形データの1度遅れたデータ値と乗算を行うわけである。即ち零相変流器の出力位相を遅らせ(被測定回路の位相と同じにすることに相当)漏れ電流電力を演算したことになる。よって有効分電流は正しく測定されたことになり精度が向上する。なお、図6のような位相特性の場合、50Hzでは約23度くらい位相を遅らせて演算する必要があるが、周波数の検出はゼロクロス検出回路で出力されるサンプリング開始信号の周期を測定すれば周波数情報を得ることができ、また、電流の大きさはサンプリングした漏れ電流の実効値を算出することにより知ることができるので何度位相を遅らせればよいかが判断できる。   Next, FIGS. 5 and 6 will be described. A zero-phase current transformer (ZCT) has good phase characteristics as long as it is highly accurate, but a general-purpose type has different phase characteristics depending on the frequency, and the phase changes depending on the magnitude of leakage current to be measured. FIG. 6 shows an example of the frequency / current phase characteristics. Further, the phase characteristics differ depending on the type of the zero-phase current transformer, and the phases of the output signals of the circuit under test and the zero-phase current transformer are shifted, making it impossible to obtain a correct effective current. A method for solving this is shown in FIG. 5 in which values of sin functions corresponding to angles before and after each point of each sampling timing in FIG. 3 are arranged. FIG. 5 shows an example in which the value of the sin function of 1.125 degrees obtained by dividing 10 times during one sampling timing (11.25 degrees) is arranged, and if the value of the sin function is arranged at all during this one sampling timing. Obviously, various phase shifts can be accommodated. Moreover, although the said example is an example of 10 division | segmentation, if the division | segmentation number is increased, more accurate effective component current can be measured and calculated. FIG. 5 shows a case where the phase of the leakage current is about one degree ahead of the phase of the zero phase current transformer in comparison with the phase in the circuit under test. In this case, the sine wave waveform data having an effective value of 1 is delayed by one degree. The data value is multiplied. That is, the leakage current power is calculated by delaying the output phase of the zero-phase current transformer (equivalent to making it the same as the phase of the circuit under test). Therefore, the effective component current is correctly measured and the accuracy is improved. In the case of the phase characteristics as shown in FIG. 6, it is necessary to calculate by delaying the phase by about 23 degrees at 50 Hz, but the frequency can be detected by measuring the period of the sampling start signal output by the zero cross detection circuit. Information can be obtained, and the magnitude of the current can be known by calculating the effective value of the sampled leakage current, so it can be determined how many times the phase should be delayed.

以上の説明は被測定回路が単相回路又は単相三線回路の場合を示すが、三相デルタ回路について図7により説明する。低圧回路の三相デルタ回路では第2相(S相)が接地されるため、図7に示すように相電圧位相において、第1相(R相)電圧と第3層(T相)電圧の間には60度第3相が進んでいることは公知である。ここで第1相(R相)の漏れ電流(Izr)と、第3相(T相)の漏れ電流(Izt)が図7のように発生している場合、上記した零相変流器(ZCT)の検出する漏れ電流(Iz)位相はこのIzrとIztの合成漏れ電流(Iz)である。また第1相(R相)の有効分はIzr・cosΦ1、第3相(T相)の有効分はIzr・cosΦ2であり、この有効分の合成分(Ir)は図7のように第1相(R相)の30度進んだ位置に現れる。ここでcosΦ1はR相電圧位相とIzr間の位相角、cosΦ2はT相電圧位相とIzr間の位相角である。即ち漏れ電流(Iz)の有効分と同じである。ところで、有効分は電圧相と同相でなければならず、このため実効値1の正弦波波形データを30度進ませて計算するものであり、このことにより有効分電流を得ることができる。
なお、上記図5、図6により説明した零相変流器の位相特性を考慮した補正方法は同様に適用することができ、漏れ電流の正確な有効分電流を得ることができる。
Although the above description shows a case where the circuit under test is a single-phase circuit or a single-phase three-wire circuit, the three-phase delta circuit will be described with reference to FIG. In the three-phase delta circuit of the low voltage circuit, the second phase (S phase) is grounded. Therefore, in the phase voltage phase, as shown in FIG. 7, the first phase (R phase) voltage and the third layer (T phase) voltage It is known that the third phase is advanced by 60 degrees. Here, when the leakage current (Izr) of the first phase (R phase) and the leakage current (Izt) of the third phase (T phase) are generated as shown in FIG. 7, the above-described zero-phase current transformer ( The leakage current (Iz) phase detected by ZCT is the combined leakage current (Iz) of Izr and Izt. The effective component of the first phase (R phase) is Izr · cos Φ1, and the effective component of the third phase (T phase) is Izr · cos Φ2, and the effective component (Ir) is the first component as shown in FIG. Appears at a position 30 degrees ahead of the phase (R phase). Here, cos Φ1 is a phase angle between the R phase voltage phase and Izr, and cos Φ2 is a phase angle between the T phase voltage phase and Izr. That is, it is the same as the effective amount of the leakage current (Iz). By the way, the effective component must be in phase with the voltage phase, and therefore, the sine wave waveform data having an effective value of 1 is calculated by being advanced by 30 degrees, whereby an effective component current can be obtained.
The correction method considering the phase characteristics of the zero-phase current transformer described with reference to FIGS. 5 and 6 can be applied in the same manner, and an accurate effective component current of the leakage current can be obtained.

また、漏れ電流には高調波を含む場合が多く、この高調波を除去するためにフィルタ回路(ローパスフィルタ)を設けることもあり、この場合フィルタ回路による位相遅れが生じるので逆に位相を進めなければならないケースもあるが、フィルタの特性は把握することができるので容易に対応できることは明白である。   In addition, the leakage current often includes harmonics, and a filter circuit (low-pass filter) may be provided to remove these harmonics. In this case, a phase delay is caused by the filter circuit, so the phase must be advanced. In some cases, it is obvious that the characteristics of the filter can be grasped, so that it can be easily handled.

さらに零相変流器の種類によっても位相特性が異なるが、予め特性を把握しておけば、前記した設定部17から位相補正を行う角度を設定しておけば対応ができる。   Furthermore, although the phase characteristics differ depending on the type of the zero-phase current transformer, if the characteristics are known in advance, it can be dealt with by setting the angle for phase correction from the setting unit 17 described above.

実施例1の漏れ電流測定装置のアルゴリズムを説明する図。The figure explaining the algorithm of the leakage current measuring apparatus of Example 1. FIG. 実施例1の漏れ電流測定装置の構成図。The block diagram of the leakage current measuring apparatus of Example 1. FIG. 実施例1における漏れ電流の有効分電流を算出する具体的な事例を示す図。FIG. 6 is a diagram illustrating a specific example of calculating an effective current component of a leakage current in the first embodiment. 実施例1の漏れ電流測定装置のアルゴリズムを説明する波形図。The wave form diagram explaining the algorithm of the leakage current measuring apparatus of Example 1. FIG. 実施例1における零相変流器の位相特性を考慮した有効分電流の計測方法の事例を示す図。The figure which shows the example of the measuring method of the effective current which considered the phase characteristic of the zero phase current transformer in Example 1. FIG. 零相変流器の位相特性の一例を示す図。The figure which shows an example of the phase characteristic of a zero phase current transformer. 三相デルタ回路の漏れ電流位相を示すベクトル図。The vector diagram which shows the leakage current phase of a three-phase delta circuit.

符号の説明Explanation of symbols

1 被測定回路
2 零相変流器(ZCT)
3 漏れ電流測定装置
4 電源回路
5 ゼロクロス検出回路
6 サンプリング開始信号線
7 増幅器
8 S/H回路
9 信号線
10 A/D変換回路
11 信号線
12 CPU
13 揮発性記憶部
14 不揮発性記憶部
15 表示回路
16 通信回路
17 設定回路
121 ディジタルサンプリング処理
122 電力演算処理
123 漏れ電流有効分演算処理
1 Circuit under test 2 Zero-phase current transformer (ZCT)
DESCRIPTION OF SYMBOLS 3 Leakage current measuring apparatus 4 Power supply circuit 5 Zero cross detection circuit 6 Sampling start signal line 7 Amplifier 8 S / H circuit 9 Signal line 10 A / D conversion circuit 11 Signal line 12 CPU
DESCRIPTION OF SYMBOLS 13 Volatile memory | storage part 14 Non-volatile memory | storage part 15 Display circuit 16 Communication circuit 17 Setting circuit 121 Digital sampling process 122 Power calculation process 123 Leakage current effective part calculation process

Claims (3)

被測定回路に設置して漏れ電流を検出する零相変流器の出力信号を増幅する増幅部と、該増幅部の出力信号であるアナログ信号をディジタル信号に変換するA/D変換部と、前記被測定回路の電圧ゼロクロス点を検出しサンプリング開始信号を出力するゼロクロス検出回路と、その実効値が1となる正弦波波形のディジタルデータを記憶する記憶部と、演算を主体としたCPUとを具備し、前記サンプリング開始信号により前記零相変流器の出力信号をサンプリングし、サンプリングした出力信号値と前記記憶した実効値1の正弦波波形のディジタルデータとを同期させて乗算値の平均をとり、漏れ電流の有効分電流を得ることを特徴とする漏れ電流測定装置。   An amplifier for amplifying an output signal of a zero-phase current transformer that is installed in a circuit under test to detect leakage current; an A / D converter for converting an analog signal that is an output signal of the amplifier to a digital signal; A zero-cross detection circuit that detects a voltage zero-cross point of the circuit under test and outputs a sampling start signal, a storage unit that stores digital data of a sine wave waveform whose effective value is 1, and a CPU that mainly performs computations And sampling the output signal of the zero-phase current transformer by the sampling start signal, synchronizing the sampled output signal value with the stored digital data of the sine wave waveform of the effective value 1, and averaging the multiplication values A leakage current measuring device characterized by obtaining an effective divided current of the leakage current. 請求項1記載の漏れ電流測定装置において、
上記記憶部は、その実効値が1となる正弦波波形のディジタルデータを細分割して記憶しており、零相変流器の出力信号の位相の進み又は遅れと同じ量の遅れた又は進んだディジタルデータを用いて乗算を行うことを特徴とする漏れ電流測定装置。
In the leakage current measuring device according to claim 1,
The storage unit subdivides and stores digital data having a sine wave waveform whose effective value is 1, and is delayed or advanced by the same amount as the phase advance or delay of the output signal of the zero-phase current transformer. Leakage current measuring device characterized by performing multiplication using digital data.
請求項1又は2に記載の漏れ電流測定装置において、
実効値1の正弦波波形データを30度進めたディジタルデータと、サンプリングした零相変流器の出力信号値との乗算値の平均を取り、三相デルタ回路の漏れ電流の有効分電流を得ることを特徴とする漏れ電流測定装置。
In the leakage current measuring device according to claim 1 or 2,
The digital product obtained by advancing the sinusoidal waveform data of effective value 1 by 30 degrees and the sampled output signal value of the zero-phase current transformer are averaged to obtain an effective current of the leakage current of the three-phase delta circuit Leakage current measuring device characterized by that.
JP2003413105A 2001-10-04 2003-12-11 Leakage current measuring device Expired - Lifetime JP3996119B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003413105A JP3996119B2 (en) 2003-12-11 2003-12-11 Leakage current measuring device
US11/179,705 US7353123B2 (en) 2001-10-04 2005-07-11 Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413105A JP3996119B2 (en) 2003-12-11 2003-12-11 Leakage current measuring device

Publications (2)

Publication Number Publication Date
JP2005172617A JP2005172617A (en) 2005-06-30
JP3996119B2 true JP3996119B2 (en) 2007-10-24

Family

ID=34733325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003413105A Expired - Lifetime JP3996119B2 (en) 2001-10-04 2003-12-11 Leakage current measuring device

Country Status (1)

Country Link
JP (1) JP3996119B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7353123B2 (en) 2001-10-04 2008-04-01 Hitachi, Ltd. Leakage current or resistance measurement method, and monitoring apparatus and monitoring system of the same
JP5183035B2 (en) * 2006-04-26 2013-04-17 株式会社日立産機システム Insulation monitoring device
JP4835286B2 (en) * 2006-06-30 2011-12-14 株式会社明電舎 Insulation monitoring system and method for low voltage electrical equipment
JP2008157838A (en) * 2006-12-26 2008-07-10 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
JP2010190645A (en) * 2009-02-17 2010-09-02 Fuji Electric Fa Components & Systems Co Ltd Method for detecting leakage current, leakage current detector, and system monitor
JP2011149959A (en) * 2011-04-25 2011-08-04 Hitachi Industrial Equipment Systems Co Ltd Insulation monitoring device
KR101699404B1 (en) * 2015-09-25 2017-01-24 주식회사 레티그리드 Current measurement device of electric power supply using the plural of hall sensor
JP7193939B2 (en) * 2018-07-10 2022-12-21 株式会社日立産機システム Insulation monitor
KR102124554B1 (en) * 2019-01-25 2020-06-18 한국전기안전공사 Real-time remote three-phase electrical equipment live-wire leakage monitoring apparatus and method

Also Published As

Publication number Publication date
JP2005172617A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
JP2006343109A (en) Electric power measuring apparatus
JP4727514B2 (en) Electricity meter
KR100896091B1 (en) Measuring instrument for a resistive electric leakage current
JP3996119B2 (en) Leakage current measuring device
JP2010066055A (en) Method for detecting connection state of electric power measuring instrument
JP4564863B2 (en) Power line measuring device
KR100824515B1 (en) Apparatus and method for computing digital electricpower system
US20130046663A1 (en) Apparatus and method for measuring active/reactive powers
JP5228128B1 (en) Signal generation device, measurement device, leakage detection device, and signal generation method
JP2008058114A (en) Power meter
JP3312504B2 (en) Position detection device
JPH08262073A (en) Method and device for measuring power factor
JP5396675B2 (en) Insulation monitoring device
JP5183035B2 (en) Insulation monitoring device
JP2008309681A (en) Insulation deterioration monitoring device and its method
EP3118636A1 (en) Electric power measuring system
JP2982612B2 (en) PQ calculation correction method
JP2007114190A (en) Leakage current resistance fraction detection method and device for it
JP5238358B2 (en) AC power measuring device, AC power measuring method, and single-phase AC / DC converter
KR100860711B1 (en) Method for measuring line to line voltage using an interpolation
JP2020141490A (en) Connection phase estimation device, connection phase estimation program, and connection phase estimation method
JPH0817552A (en) Deterioration detecting device for lightning arrester
JP3481719B2 (en) Method and apparatus for correcting phase of measured values of distribution line
JP2020012721A (en) Impedance measuring device and impedance measuring method
JP2005148028A (en) Device and method for measuring voltage, current, active power, reactive power, and frequency in power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3996119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

EXPY Cancellation because of completion of term