JP4178588B2 - Induction motor braking method - Google Patents

Induction motor braking method Download PDF

Info

Publication number
JP4178588B2
JP4178588B2 JP12855898A JP12855898A JP4178588B2 JP 4178588 B2 JP4178588 B2 JP 4178588B2 JP 12855898 A JP12855898 A JP 12855898A JP 12855898 A JP12855898 A JP 12855898A JP 4178588 B2 JP4178588 B2 JP 4178588B2
Authority
JP
Japan
Prior art keywords
winding
auxiliary winding
induction motor
rotor
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12855898A
Other languages
Japanese (ja)
Other versions
JPH11332270A (en
Inventor
敏輔 酒井
英稔 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12855898A priority Critical patent/JP4178588B2/en
Publication of JPH11332270A publication Critical patent/JPH11332270A/en
Application granted granted Critical
Publication of JP4178588B2 publication Critical patent/JP4178588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Stopping Of Electric Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気的に制動を行なう誘導電動機の制動方法に関するものである。
【0002】
【従来の技術】
従来から、誘導電動機では端子間に直流電圧をかけることで回転を停止させる方法が、ダイナミックブレーキとしてよく知られている。これは、回転している回転子が固定磁界中に置かれると、回転子内に渦電流が発生し、この電流により新たに回転子に発生する磁束が、回転子の回転とは逆方向にトルクを発生することを利用している。実用上は、直流電圧回路を別に設けることなく、誘導電動機の制御用トライアックを開閉することで、誘導電動機に半波整流した直流電圧をかける場合が多い。
【0003】
図5は従来の誘導電動機の制動方法を示す回路図であって、半波整流した直流電圧をかける誘導電動機の制動方法として、特開平3−212181号に記載された回路を示している。主巻線2と補助巻線3とで固定子巻線を形成する単相誘導電動機1のうち、主巻線2に交流電源7をトライアック6により整流した脈動電圧を供給する。その結果、主巻線2から発生する磁束が回転子4に作用して、回転子4の回転を拘束して制動をかけるようにしたものである。しかし、誘導電動機に半波整流電圧をかけて制動を行う場合、停止せずに継続して回転することがある。それは、つぎのような理由による。
【0004】
一般に誘導電動機では、90度方向が違う主巻線と補助巻線によって回転磁界を作り、起動を行う。このとき回転子には渦電流が発生するので磁極も形成される。この影響により、回転子は回転磁界の回転方向にトルクを発生する。回転が始まった後は起動用の補助巻線を切り離して、主巻線だけで発生する180度ごとの交番磁界によって駆動する。
【0005】
ここで、図5の様な構成の回路において、すでに回転中でありリレー5により補助巻線3を切り離した後の誘導電動機1における主巻線2の端子電圧を測定しながら、交流電源7をトライアック6で切断すると、図6の様な波形が得られる。図6は従来の誘導電動機において交流電源を切断した時の主巻線端子間の電圧波形図であって、波形のaの時点で電源は切断されて回路電流iはゼロとなっているが、主巻線2の端子には電圧vが発生しており、時間と共に減衰している。これは、回転子中に残留していた渦電流によりできた回転子4の磁極と、回転子4のはずみの回転の作用で、誘導電動機が発電を行っていたからである。よって、交流電源7により回転している状態の回転子4では、磁極を保たれていることがわかる。
【0006】
この電源を切断したばかりの状態で半波整流電圧を固定子巻線にかけると、回転子中に残留していた渦電流によりできた回転子の磁極と、360度ごとに発生する固定子巻線の磁界との相互作用が働く。さらに、回転速度を保ちつづけるだけのトルクが回転子に与えられれば、磁界の方向自体は回転しなくとも、回転子は回り続けることができる。
【0007】
このように、誘導電動機に半波整流した直流電圧をかける従来の制動方法では、逆に回転子の回転を誘発する可能性があり、確実に制動を行えない。
【0008】
そこで、この制動方法を改善したものとして、従来つぎのような技術が提案されている。すなわちこの技術は、固定子巻線から電源を切り放したのち、回転子に残留した渦電流が所定の値にまで減衰する所定の時間後に、半波整流電圧を印加するように構成することで、確実に制動を行おうとするものである。
【0009】
【発明の解決しようとする課題】
しかしながら上記従来の制動方法は、確実に制動を行えるものの固定子巻線から電源を切り放したのち、回転子に残留した渦電流が所定の値にまで減衰するまでの間、惰性で回転させて置かなければならず、例えば、ディスポーザ等で安全装置として短時間で急制動が必要な場合、回転子に残留した渦電流が減衰しきらずに停止させることが出来ないという問題点があった。
【0010】
そこで本発明は、前記従来の問題点を解決するもので、半波整流電圧による制動において、回転子の回転の継続がなく、確実に制動トルクを発生させて急制動させることができる誘導電動機の制動方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、回転子と、主巻線及び補助巻線からなる固定子巻線と、回転方向を切替えるために前記補助巻線に接続されたリレーと、前記固定子巻線への電源供給及び前記リレーを制御する制御回路からなる誘導電動機において、前記主巻線から電源を切り放したのち、前記補助巻線を短絡してから所定の時間後に、前記主巻線に半波整流電圧を印加して前記回転子を制動する誘導電動機の制動方法であって、前記補助巻線を短絡してからの所定の時間及び前記主巻線に半波整流電圧を印加する時間の少なくとも1方を、補助巻線の一端に接続され補助巻線に流れる誘導電流の電流値に応じた信号を出力する電流検出手段が出力する信号、又は、前記補助巻線に流れる誘導電流値が予め設定された電流値以上となったときに点灯するLEDを有するフォトカプラを用いて判断することを特徴とする誘導電動機の制動方法である。
【0012】
この構成において、回転子に残留した渦電流による回転エネルギーを補助巻線への誘導電流として積極的に消費させてから、半波整流電圧を印加する。これにより、惰性回転時間を大幅に短縮でき、確実に制動トルクを発生させることにより制動時間を短縮することができる。
【0013】
【発明の実施の形態】
請求項1に記載の発明は、回転子と、主巻線及び補助巻線からなる固定子巻線と、回転方向を切替えるために前記補助巻線に接続されたリレーと、前記固定子巻線への電源供給及び前記リレーを制御する制御回路からなる誘導電動機において、前記主巻線から電源を切り放したのち、前記補助巻線を短絡してから所定の時間後に、前記主巻線に半波整流電圧を印加して前記回転子を制動する誘導電動機の制動方法であって、前記補助巻線を短絡してからの所定の時間及び前記主巻線に半波整流電圧を印加する時間の少なくとも1方を、補助巻線の一端に接続され補助巻線に流れる誘導電流の電流値に応じた信号を出力する電流検出手段が出力する信号から判断するようにした。また、請求項2に記載の発明は、回転子と、主巻線及び補助巻線からなる固定子巻線と、回転方向を切替えるために前記補助巻線に接続されたリレーと、前記固定子巻線への電源供給及び前記リレーを制御する制御回路からなる誘導電動機において、前記主巻線から電源を切り放したのち、前記補助巻線を短絡してから所定の時間後に、前記主巻線に半波整流電圧を印加して前記回転子を制動する誘導電動機の制動方法であって、前記補助巻線を短絡してからの所定の時間及び前記主巻線に半波整流電圧を印加する時間の少なくとも1方を、前記補助巻線に流れる誘導電流値が予め設定された電流値以上となったときに点灯するLEDを有するフォトカプラを用いて判断するようにした。
【0014】
この構成により、確実に制動ができ、制動時間を短縮することができる。
請求項に記載の発明は、請求項1または2に記載の発明において、前記補助巻線と前記切替リレーを接続した時に、閉回路となるように配置された抵抗器により、前記補助巻線に過大電流が流れるのを防止するようにしたものである。
【0016】
参考例1)
図1は、本発明に関連した参考例1の誘導電動機の制動方法を示す回路図、図2は同制動時の主巻線端子間の電圧波形図である。
【0017】
図1において、誘導電動機1は、回転子4と、主巻線2及び補助巻線3からなる固定子巻線により構成され、リレー5a,5bと、制御素子であるトライアック6a及び6bを介して交流電源7に接続されている。
【0018】
リレー5a,5bは、補助巻線3及び主巻線2に対して90°補助巻線の位相を変えるためのコンデンサー8に接続されており、どちらかをONさせることで補助巻線3に印加する交流電圧の位相を180°反転させることにより、回転子4の回転方向を切り替える。また、両方ともOFFの状態では、補助巻線3は短絡状態となる。
【0019】
9は制御回路であり、交流電源7のゼロ電位を検出して、リレー5a,5bとトライアック6a,6bを制御する。回転起動時には、まず、リレー5aもしくは5bをONして回転方向を決定し、主巻線駆動用トライアック6a及び補助巻線駆動用トライアック6bをONすることで、90度方向が違う主巻線と補助巻線によって回転磁界を作り起動する。このとき回転子4は、渦電流によって発生する回転磁界の回転方向にトルクを発生する。従って、回転が始まった後は補助巻線駆動用トライアック6bをOFFして補助巻線3を切り離し、主巻線2だけで発生する180度ごとの交番磁界によって駆動する。
【0020】
以上のように構成された誘導電動機の制動方法について、以下、その動作を図1に基づいて説明する。回転中の誘導電動機1から交流電源7を切り離すと、回転子4に渦電流による磁束が発生しており、この回転する磁束による発電作用で、固定子巻線の端子間に誘導起電力が生ずる。この時点で、リレー5a,5bを両方ともOFFすると、補助巻線3は短絡状態となり、補助巻線3に誘起した起電力は、誘導電流として補助巻線3内を流れて、補助巻線3の抵抗成分により熱エネルギーとなって急激に減衰してゆく。この補助巻線3の誘導電流が半分以下に減衰する時間をT1とする。
【0021】
減衰時間T1経過した後に、図2に示すとおり、制御回路9により交流電源7のゼロ電位を検出して、正または負の片側の周期においてだけ、トライアック6aをONする。すると誘導電動機1の主巻線2の端子には、半波整流電圧が印加される。誘導電動機1の回転が停止した時間T2後に、トライアック6aをOFFにする。以上のように回転子に残留した渦電流による回転エネルギーを、補助巻線への誘導電流として積極的に消費させることによって、短時間で急制動することが出来る。
【0022】
参考例2)
図3は本発明に関連した参考例2の誘導電動機の制動方法を示す回路図である。図3において図1と同一符号を付したものは、参考例1と基本的に同一の作用を奏するから、詳細な説明は省略する。10は抵抗器であり、補助巻線3と抵抗器の接続用リレー11を接続した時に閉回路となるように配置されている。
【0023】
以上の構成にすることにより、回転中の誘導電動機1から交流電源7を切り離した時に、補助巻線3に流れる誘導電流が過大に流れるのを防ぎ、リレー素子の破壊を防止し補助巻線3の異常発熱を押さえることができる。
【0024】
(実施の形
図4は本発明の実施の形の誘導電動機の制動方法を示す回路図である。図4において図1と同一符号を付したものは、上記と基本的に同一の作用を奏するから、詳細な説明は省略する。図4(a)では誘導電動機1の補助巻線3の端子の一端には、電流検出手段12が接続され、電流検出手段12からは補助巻線3の電流値に応じた信号が出力される。
【0025】
なお、電流検出手段12は、図4(b)のような抵抗器10の両端に発生する電圧を高抵抗等で構成されている分圧回路13で分圧して、平滑化回路14により整流して平滑化することによりその電位を検出する方法でもよい。また、図4(c)のような、フォトカプラ15を使った回路で、補助巻線3に設定した電流値以上が流れたとき、フォトカプラ15のLEDが点灯し、出力がONするのを捉えてもよい。
【0026】
以上のように構成された誘導電動機の制動方法について、以下、その動作を図4(a)に基づいて説明する。回転中の誘導電動機1から交流電源7を切り離した後、リレー5a,5bを両方ともOFFすると、補助巻線3は短絡状態となり誘導電流として補助巻線3内を流れて、急激に減衰してゆく。この補助巻線3の誘導電流を、電流検出手段12により検出して、電流値に応じた信号へと変換する。この信号が、所定の値以下に減衰した時点で、制御回路9は回転子4の渦電流が減衰したと判断し、交流電源7のゼロ電位を検出して、正または負の片側の周期においてだけトライアック6aをONする。すると誘導電動機1の主巻線2の端子には、半波整流電圧が印加される。その結果、主巻線2から発生する磁束が回転子4の回転を拘束して制動できる。この時、補助巻線3には再度誘導電流が流れて回転子4の回転が遅くなるにつれて徐々に減衰して行く。この誘導電流を、電流検出手段12により検出して、電流検出手段12より出力される信号が所定の値以下に減衰した時点で、制御回路9は誘導電動機1の回転が停止したと判断し、トライアック6aをOFFにする。
【0027】
以上のように補助巻線3を短絡してからの所定の時間及び主巻線2に半波整流電圧を印加する時間の少なくとも1方を、補助巻線3に流れる誘導電流値から判断することによって、短時間で急制動することが出来る。
【0028】
【発明の効果】
以上の説明から明らかなように本発明の誘導電動機の制動方法によれば、回転子に残留した渦電流による回転エネルギーを補助巻線への誘導電流として積極的に消費させるので、短時間で急制動することが出来る。
【図面の簡単な説明】
【図1】 本発明の参考例1の誘導電動機の制動方法を示す回路図
【図2】 本発明の参考例1の制動時の主巻線端子間の電圧波形図
【図3】 本発明の参考例2の誘導電動機の制動方法を示す回路図
【図4】 本発明の実施の形態の誘導電動機の制動方法を示す回路図
【図5】 従来の誘導電動機の制動方法を示す回路図
【図6】 従来の誘導電動機において交流電源を切断した時の主巻線端子間の電圧波形図
【符号の説明】
1 誘導電動機
2 主巻線
3 補助巻線
4 回転子
5a,5b リレー
6a,6b トライアック
7 交流電源
8 コンデンサー
9 制御回路
10 抵抗器
11 接続用リレー
12 電流検出手段
13 分圧回路
14 平滑化回路
15 フォトカプラ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a braking method for an induction motor that performs braking electrically.
[0002]
[Prior art]
Conventionally, in an induction motor, a method of stopping rotation by applying a DC voltage between terminals is well known as a dynamic brake. This is because when the rotating rotor is placed in a fixed magnetic field, an eddy current is generated in the rotor, and the magnetic flux newly generated in the rotor by this current is in a direction opposite to the rotation of the rotor. It uses the generation of torque. In practice, a half-wave rectified DC voltage is often applied to the induction motor by opening and closing the control triac for the induction motor without providing a separate DC voltage circuit.
[0003]
FIG. 5 is a circuit diagram showing a conventional induction motor braking method. FIG. 5 shows a circuit described in Japanese Patent Laid-Open No. 3-212181 as a braking method for an induction motor that applies a half-wave rectified DC voltage. Of the single-phase induction motor 1 in which the main winding 2 and the auxiliary winding 3 form a stator winding, a pulsating voltage obtained by rectifying an AC power supply 7 using a triac 6 is supplied to the main winding 2. As a result, the magnetic flux generated from the main winding 2 acts on the rotor 4 to restrain the rotation of the rotor 4 and apply braking. However, when braking is performed by applying a half-wave rectified voltage to the induction motor, the induction motor may continue to rotate without stopping. The reason is as follows.
[0004]
In general, induction motors are started by creating a rotating magnetic field with a main winding and an auxiliary winding whose directions are different by 90 degrees. At this time, since an eddy current is generated in the rotor, a magnetic pole is also formed. Due to this influence, the rotor generates torque in the rotating direction of the rotating magnetic field. After the rotation starts, the auxiliary winding for starting is disconnected and driven by an alternating magnetic field generated every 180 degrees generated only by the main winding.
[0005]
Here, in the circuit having the configuration as shown in FIG. 5, the AC power supply 7 is turned on while measuring the terminal voltage of the main winding 2 in the induction motor 1 after it is already rotating and the auxiliary winding 3 is disconnected by the relay 5. When the triac 6 is cut, a waveform as shown in FIG. 6 is obtained. FIG. 6 is a voltage waveform diagram between the main winding terminals when the AC power supply is cut off in the conventional induction motor. The power supply is cut off at the time point of waveform a, and the circuit current i is zero. A voltage v is generated at the terminal of the main winding 2 and decays with time. This is because the induction motor is generating power by the action of the magnetic poles of the rotor 4 formed by the eddy current remaining in the rotor and the rotation of the fly of the rotor 4. Therefore, it can be seen that the magnetic pole is maintained in the rotor 4 rotated by the AC power source 7.
[0006]
When a half-wave rectified voltage is applied to the stator winding in a state where the power supply has just been cut off, the rotor magnetic pole formed by the eddy current remaining in the rotor and the stator winding generated every 360 degrees Interaction with the magnetic field of the wire works. Furthermore, if a torque sufficient to keep the rotation speed is applied to the rotor, the rotor can continue to rotate even if the direction of the magnetic field does not rotate.
[0007]
As described above, in the conventional braking method in which a half-wave rectified DC voltage is applied to the induction motor, there is a possibility that the rotation of the rotor is reversed, and the braking cannot be reliably performed.
[0008]
Therefore, the following technique has been proposed as an improvement of this braking method. That is, this technology is configured to apply a half-wave rectified voltage after a predetermined time after the eddy current remaining in the rotor is attenuated to a predetermined value after the power source is disconnected from the stator winding. The brake is surely performed.
[0009]
[Problem to be Solved by the Invention]
However, although the above-described conventional braking method can reliably perform braking, after the power is cut off from the stator winding, the eddy current remaining in the rotor is attenuated to a predetermined value and is rotated by inertia. For example, when a quick braking is required as a safety device with a disposer or the like in a short time, there is a problem that the eddy current remaining in the rotor cannot be stopped without being attenuated.
[0010]
Therefore, the present invention solves the above-mentioned conventional problems, and in an induction motor that can reliably generate sudden braking by generating braking torque without continuation of rotor rotation in braking by half-wave rectified voltage. An object is to provide a braking method.
[0011]
[Means for Solving the Problems]
The present invention includes a rotor, a stator winding composed of a main winding and an auxiliary winding, a relay connected to the auxiliary winding for switching the rotation direction, power supply to the stator winding, and In an induction motor including a control circuit for controlling the relay, after a power source is cut off from the main winding, a half-wave rectified voltage is applied to the main winding after a predetermined time after the auxiliary winding is short-circuited. A method of braking an induction motor that brakes the rotor, wherein at least one of a predetermined time after the auxiliary winding is short-circuited and a time during which a half-wave rectified voltage is applied to the main winding is supplemented. A signal output from a current detecting means for outputting a signal corresponding to the current value of the induced current flowing through the auxiliary winding connected to one end of the winding, or a current value in which the induced current value flowing through the auxiliary winding is set in advance Has an LED that lights up when A braking method for an induction motor, characterized by determining using a photocoupler that.
[0012]
In this configuration, the rotational energy due to the eddy current remaining in the rotor is actively consumed as the induced current to the auxiliary winding, and then the half-wave rectified voltage is applied. As a result, the inertial rotation time can be significantly shortened, and the braking time can be shortened by reliably generating the braking torque.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a rotor, a stator winding composed of a main winding and an auxiliary winding, a relay connected to the auxiliary winding for switching the rotation direction, and the stator winding. In an induction motor comprising a control circuit for controlling the power supply to the relay and the relay, after cutting off the power from the main winding and short-circuiting the auxiliary winding, a half wave is applied to the main winding after a predetermined time. A method of braking an induction motor that brakes the rotor by applying a rectified voltage, wherein at least a predetermined time after the auxiliary winding is short-circuited and a time during which a half-wave rectified voltage is applied to the main winding One side is determined from the signal output from the current detection means that outputs a signal corresponding to the value of the induced current flowing through the auxiliary winding connected to one end of the auxiliary winding. According to a second aspect of the present invention, there is provided a rotor, a stator winding composed of a main winding and an auxiliary winding, a relay connected to the auxiliary winding for switching the rotation direction, and the stator In an induction motor comprising a power supply to a winding and a control circuit for controlling the relay, after disconnecting the power from the main winding, a short time after the auxiliary winding is short-circuited, the main winding A method of braking an induction motor that brakes the rotor by applying a half-wave rectified voltage, wherein a predetermined time after the auxiliary winding is short-circuited and a time during which the half-wave rectified voltage is applied to the main winding At least one of the above is determined using a photocoupler having an LED that lights up when the value of the induced current flowing in the auxiliary winding becomes equal to or greater than a preset current value.
[0014]
With this configuration, braking can be performed reliably and braking time can be shortened.
According to a third aspect of the present invention, in the first or second aspect of the present invention, when the auxiliary winding and the switching relay are connected, the auxiliary winding is provided by a resistor arranged to be a closed circuit. In this way, an excessive current is prevented from flowing through.
[0016]
( Reference Example 1)
FIG. 1 is a circuit diagram showing a braking method for an induction motor according to Reference Example 1 related to the present invention , and FIG. 2 is a voltage waveform diagram between main winding terminals during the braking.
[0017]
In FIG. 1, an induction motor 1 is composed of a rotor 4, a stator winding composed of a main winding 2 and an auxiliary winding 3, and via relays 5a and 5b and triacs 6a and 6b as control elements. It is connected to an AC power source 7.
[0018]
The relays 5a and 5b are connected to a capacitor 8 for changing the phase of the 90 ° auxiliary winding with respect to the auxiliary winding 3 and the main winding 2, and are applied to the auxiliary winding 3 by turning on one of them. The direction of rotation of the rotor 4 is switched by reversing the phase of the AC voltage to be rotated by 180 °. When both are OFF, the auxiliary winding 3 is short-circuited.
[0019]
A control circuit 9 detects the zero potential of the AC power supply 7 and controls the relays 5a and 5b and the triacs 6a and 6b. When starting rotation, first, the relay 5a or 5b is turned on to determine the rotation direction, and the main winding driving triac 6a and the auxiliary winding driving triac 6b are turned on, so that the main winding is 90 degrees different in direction. The auxiliary winding creates a rotating magnetic field and starts up. At this time, the rotor 4 generates torque in the rotating direction of the rotating magnetic field generated by the eddy current. Therefore, after the rotation starts, the auxiliary winding driving triac 6b is turned off to disconnect the auxiliary winding 3, and the auxiliary winding 3 is driven by an alternating magnetic field generated by only 180 degrees.
[0020]
The operation of the induction motor braking method configured as described above will be described below with reference to FIG. When the AC power supply 7 is disconnected from the rotating induction motor 1, a magnetic flux is generated in the rotor 4 due to an eddy current, and an induced electromotive force is generated between the terminals of the stator winding due to the power generation action by the rotating magnetic flux. . At this time, when both the relays 5a and 5b are turned OFF, the auxiliary winding 3 is short-circuited, and the electromotive force induced in the auxiliary winding 3 flows in the auxiliary winding 3 as an induced current, and the auxiliary winding 3 It becomes a heat energy by the resistance component of and decays rapidly. The time for which the induced current of the auxiliary winding 3 decays to half or less is T1.
[0021]
After the decay time T1 has elapsed, as shown in FIG. 2, the control circuit 9 detects the zero potential of the AC power supply 7, and turns on the triac 6a only in one cycle of positive or negative. Then, a half-wave rectified voltage is applied to the terminal of the main winding 2 of the induction motor 1. After the time T2 when the rotation of the induction motor 1 is stopped, the triac 6a is turned off. As described above, the rotational energy due to the eddy current remaining in the rotor is actively consumed as the induced current to the auxiliary winding, so that rapid braking can be performed in a short time.
[0022]
( Reference Example 2)
FIG. 3 is a circuit diagram showing a braking method for an induction motor according to Reference Example 2 related to the present invention. 3 having the same reference numerals as those in FIG. 1 have basically the same functions as those of the reference example 1, and thus detailed description thereof will be omitted. Reference numeral 10 denotes a resistor, which is arranged so as to be a closed circuit when the auxiliary winding 3 and the resistor connection relay 11 are connected.
[0023]
With the above configuration, when the AC power supply 7 is disconnected from the rotating induction motor 1, the induction current flowing in the auxiliary winding 3 is prevented from flowing excessively, the relay element is prevented from being destroyed, and the auxiliary winding 3 The abnormal heat generation can be suppressed.
[0024]
(In the form state of implementation)
Figure 4 is a circuit diagram showing a braking method for an induction motor in the form status of the present invention. 4 having the same reference numerals as those in FIG. 1 have basically the same operations as those described above, and thus detailed description thereof will be omitted. In FIG. 4A, the current detection means 12 is connected to one end of the terminal of the auxiliary winding 3 of the induction motor 1, and a signal corresponding to the current value of the auxiliary winding 3 is output from the current detection means 12. .
[0025]
The current detecting means 12 divides the voltage generated at both ends of the resistor 10 as shown in FIG. 4B by a voltage dividing circuit 13 composed of a high resistance and the like and rectifies it by the smoothing circuit 14. Alternatively, the potential may be detected by smoothing. Further, in a circuit using the photocoupler 15 as shown in FIG. 4C, when the current more than the current value set in the auxiliary winding 3 flows, the LED of the photocoupler 15 is turned on and the output is turned on. You may catch it.
[0026]
Hereinafter, the operation of the induction motor braking method configured as described above will be described with reference to FIG. After the AC power supply 7 is disconnected from the rotating induction motor 1, when both the relays 5a and 5b are turned off, the auxiliary winding 3 is short-circuited and flows in the auxiliary winding 3 as an induced current, which is rapidly attenuated. go. The induced current of the auxiliary winding 3 is detected by the current detection means 12 and converted into a signal corresponding to the current value. When this signal is attenuated to a predetermined value or less, the control circuit 9 determines that the eddy current of the rotor 4 has attenuated, detects the zero potential of the AC power supply 7, and in a positive or negative cycle. Only turn on the triac 6a. Then, a half-wave rectified voltage is applied to the terminal of the main winding 2 of the induction motor 1. As a result, the magnetic flux generated from the main winding 2 can restrain the rotation of the rotor 4 and brake it. At this time, an induced current flows through the auxiliary winding 3 again and gradually attenuates as the rotation of the rotor 4 slows down. When this induction current is detected by the current detection means 12 and the signal output from the current detection means 12 is attenuated to a predetermined value or less, the control circuit 9 determines that the rotation of the induction motor 1 has stopped, Turn off the triac 6a.
[0027]
As described above, at least one of the predetermined time after the auxiliary winding 3 is short-circuited and the time during which the half-wave rectified voltage is applied to the main winding 2 is determined from the induced current value flowing through the auxiliary winding 3. Therefore, it is possible to brake suddenly in a short time.
[0028]
【The invention's effect】
As apparent from the above description, according to the braking method of the induction motor of the present invention, the rotational energy due to the eddy current remaining in the rotor is actively consumed as the induced current to the auxiliary winding, so that the rapid You can brake.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a braking method for an induction motor of Reference Example 1 of the present invention. FIG. 2 is a voltage waveform diagram between main winding terminals during braking of Reference Example 1 of the present invention. circuit diagram showing a braking method of the circuit diagram FIG. 5 conventional induction motor showing a braking method for an induction motor in the form status of implementation of the induction motor in the circuit diagram of a braking process [4] the present invention of example 2 [ Fig. 6 Voltage waveform diagram between main winding terminals when AC power is cut off in a conventional induction motor
DESCRIPTION OF SYMBOLS 1 Induction motor 2 Main winding 3 Auxiliary winding 4 Rotor 5a, 5b Relay 6a, 6b Triac 7 AC power supply 8 Capacitor 9 Control circuit 10 Resistor 11 Connection relay 12 Current detection means 13 Voltage dividing circuit 14 Smoothing circuit 15 Photo coupler

Claims (3)

回転子と、主巻線及び補助巻線からなる固定子巻線と、回転方向を切替えるために前記補助巻線に接続されたリレーと、前記固定子巻線への電源供給及び前記リレーを制御する制御回路からなる誘導電動機において、前記主巻線から電源を切り放したのち、前記補助巻線を短絡してから所定の時間後に、前記主巻線に半波整流電圧を印加して前記回転子を制動する誘導電動機の制動方法であって、前記補助巻線を短絡してからの所定の時間及び前記主巻線に半波整流電圧を印加する時間の少なくとも1方を、補助巻線の一端に接続され補助巻線に流れる誘導電流の電流値に応じた信号を出力する電流検出手段が出力する信号から判断することを特徴とする誘導電動機の制動方法。A rotor, a stator winding composed of a main winding and an auxiliary winding, a relay connected to the auxiliary winding to switch the rotation direction, power supply to the stator winding and control of the relay In the induction motor comprising a control circuit, the rotor is configured to apply a half-wave rectified voltage to the main winding after a predetermined time after the auxiliary winding is short-circuited after the power source is disconnected from the main winding. A method of braking an induction motor that brakes at least one of a predetermined time after the auxiliary winding is short-circuited and a time during which a half-wave rectified voltage is applied to the main winding is set at one end of the auxiliary winding. A method for braking an induction motor, comprising: judging from a signal output by a current detecting means for outputting a signal corresponding to a current value of an induced current flowing through an auxiliary winding connected to the auxiliary winding. 回転子と、主巻線及び補助巻線からなる固定子巻線と、回転方向を切替えるために前記補助巻線に接続されたリレーと、前記固定子巻線への電源供給及び前記リレーを制御する制御回路からなる誘導電動機において、前記主巻線から電源を切り放したのち、前記補助巻線を短絡してから所定の時間後に、前記主巻線に半波整流電圧を印加して前記回転子を制動する誘導電動機の制動方法であって、前記補助巻線を短絡してからの所定の時間及び前記主巻線に半波整流電圧を印加する時間の少なくとも1方を、前記補助巻線に流れる誘導電流値が予め設定された電流値以上となったときに点灯するLEDを有するフォトカプラを用いて判断することを特徴とする誘導電動機の制動方法。 A rotor, a stator winding composed of a main winding and an auxiliary winding, a relay connected to the auxiliary winding to switch the rotation direction, power supply to the stator winding and control of the relay In the induction motor comprising a control circuit, the rotor is configured to apply a half-wave rectified voltage to the main winding after a predetermined time after the auxiliary winding is short-circuited after the power source is disconnected from the main winding. A method of braking an induction motor that brakes at least one of a predetermined time after the auxiliary winding is short-circuited and a time during which a half-wave rectified voltage is applied to the main winding is applied to the auxiliary winding. induction motor method of braking you characterized by determining using a photocoupler having a LED that lights up when the induced current value becomes a preset current value or more flows. 前記補助巻線と前記切替リレーを接続した時に、閉回路となるように配置された抵抗器により、前記補助巻線に過大電流が流れるのを防止することを特徴とする請求項1または2記載の誘導電動機の制動方法。3. An overcurrent is prevented from flowing through the auxiliary winding by a resistor arranged to be a closed circuit when the auxiliary winding and the switching relay are connected. Braking method for induction motors.
JP12855898A 1998-05-12 1998-05-12 Induction motor braking method Expired - Fee Related JP4178588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12855898A JP4178588B2 (en) 1998-05-12 1998-05-12 Induction motor braking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12855898A JP4178588B2 (en) 1998-05-12 1998-05-12 Induction motor braking method

Publications (2)

Publication Number Publication Date
JPH11332270A JPH11332270A (en) 1999-11-30
JP4178588B2 true JP4178588B2 (en) 2008-11-12

Family

ID=14987740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12855898A Expired - Fee Related JP4178588B2 (en) 1998-05-12 1998-05-12 Induction motor braking method

Country Status (1)

Country Link
JP (1) JP4178588B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011590A (en) * 2019-04-29 2019-07-12 青岛中加特变频电机有限公司 Single-phase asynchronous motor and its braking system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4354880B2 (en) * 2004-06-21 2009-10-28 文化シヤッター株式会社 Switchgear
CN104555764B (en) * 2015-01-05 2017-08-29 深圳市英威腾电气股份有限公司 Rotary braking system and tower crane control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011590A (en) * 2019-04-29 2019-07-12 青岛中加特变频电机有限公司 Single-phase asynchronous motor and its braking system

Also Published As

Publication number Publication date
JPH11332270A (en) 1999-11-30

Similar Documents

Publication Publication Date Title
RU2543617C2 (en) Electrodynamic brake for general-purpose electric motor
JP3863529B2 (en) Motor control device and control method thereof
JP4133054B2 (en) Braking control method and circuit for electronic commutator electric motor
JP2000125584A (en) Brushless motor drive for outdoor fan of air conditioner
JP2000125584A5 (en)
JPH0638565A (en) Controlled brake device for electric motor and for portable tool
JP5792394B2 (en) System and method for controlling a synchronous motor
EP1774644B1 (en) Drive circuit for a synchronous electric motor
US7804270B2 (en) Motor start circuit with capacitive discharge protection
JP4178588B2 (en) Induction motor braking method
JPH07112358B2 (en) Half-wave rectifying brushless synchronous motor
US4754211A (en) Method of and a device for braking an asynchronous motor
JPH07118939B2 (en) Half-wave rectifying brushless synchronous motor with permanent magnet
JP2000245191A (en) Driving device for brushless direct-current motor
WO2022074361A1 (en) A method of controlling a brushless permanent-magnet motor
JP4736155B2 (en) Inverter device
JP3849131B2 (en) Inverter device
KR20210019077A (en) How to control a brushless permanent magnet motor
JPH07203695A (en) Star-delta starter for main motor
KR19980076947A (en) Drive control circuit of brushless DC motor
JPH10146088A (en) Driver of polisher
JP2550841Y2 (en) Electric brake device for synchronous machine
JP3767645B2 (en) Electric motor control device
JP3013113U (en) High-speed signal detection circuit for simultaneous open / close type power module of DC non-excitation actuated electromagnetic brake
JPS5814151B2 (en) Museiliyuushidendoukinoshidohouhou

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees