JP3817501B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP3817501B2
JP3817501B2 JP2002234295A JP2002234295A JP3817501B2 JP 3817501 B2 JP3817501 B2 JP 3817501B2 JP 2002234295 A JP2002234295 A JP 2002234295A JP 2002234295 A JP2002234295 A JP 2002234295A JP 3817501 B2 JP3817501 B2 JP 3817501B2
Authority
JP
Japan
Prior art keywords
electrode
power
composite element
magnetic body
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002234295A
Other languages
Japanese (ja)
Other versions
JP2003143873A (en
Inventor
欣也 中津
敏 井堀
雅之 広田
徹 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Ltd
Priority to JP2002234295A priority Critical patent/JP3817501B2/en
Publication of JP2003143873A publication Critical patent/JP2003143873A/en
Application granted granted Critical
Publication of JP3817501B2 publication Critical patent/JP3817501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ装置や蓄電装置などの電力変換装置に係り、特に、電力変換装置から漏れるノイズを低減するLC複合素子を用いた電力変換装置に関する。
【0002】
【従来の技術】
インバータ装置は、誘導電動機など交流電動機の運転に広く用いられ、近年では乗物の動力源のコントローラとしても用いられるようになり、インバータ装置による可変速運転の利点が充分に享受できるようになっている。
【0003】
図16で示す従来のインバータ装置の制御には、従来PWM(パルス・ワイド・モジュレーション:パルス幅変調)制御方式が採用され幅広く用いられ、ダイオード整流器からなるコンバータ部(順変換部)2と、このコンバータ部2から出力される直流電力が入力されるPWM制御方式のインバータ部(逆変換部)3、それにコンバータ部2とインバータ部3の間の直流部に接続された平滑用のコンデンサ(キャパシタ)4で構成された主回路を備えている。
【0004】
そして、コンバータ部2に、電力源となる商用交流電力1から交流電力が入力されると、コンデンサ4で平滑化された直流電力がインバータ部3に供給され、ここで、インバータ部3の半導体スイッチング素子40がPWM制御されることにより、直流電力が所定の電圧と所定の周波数の交流電力に変換され、この結果、誘導電動機などの負荷6に可変電圧可変周波数の電力が供給されることになる。
【0005】
このとき、インバータ部3にある半導体スイッチング素子40は、ドライバ回路43を介して、計算機(コンピュータ)28から送られるPWM信号に従いオン(導通),オフ(遮断)制御され、負荷6に対して矩形波の電圧と負荷電流を出力し、半導体スイッチング素子40が持つ導通抵抗と負荷電流できまる導通損失とオンオフ時の過渡的な電圧電流変異の際に生じるスイッチング損失が発生する。
【0006】
近年、前記したスイッチング損失を低減する為に半導体スイッチング素子40の過渡応答性能の改善が進み、高速なスイッチング特性を持つIGBT(インシュレーテッド,ゲート,バイポーラ,トランジスタ)が開発され損失の低減を実現し、装置の冷却器を小型化に貢献すると共にインバータに代表される電力変換装置の小形化を実現してきた。
【0007】
しかし、前記した矩形波の過渡的電圧変化が急峻となると、代表的な負荷6である交流電動機からインバータ装置間を接続する電力ケーブルの漏れ容量7(対地間容量)や、交流電動機の巻線の漏れ容量7(対地間容量)を漏れて流れる電流(以下、漏れ電流と呼ぶ)が増加し、特に時間に対する電圧の変化の割合に比例して漏れ電流8のピーク値が上昇し、さらに電力配線の寄生インダクタンス50等と高周波で共振し、前記漏れ電流8がインバータ部3やコンバータ部2を通り抜け商用交流電力1にまで流れ込み、他の機器に誤動作などの悪影響を与えたり、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波が他の機器に入り込んだり、装置近隣のテレビやラジオアンテナに対して放射ノイズ撒き散らすなどの問題が生じている。
【0008】
ここまで、従来技術の一例として、ダイオード整流器からなるコンバータ部(順変換部)2を用いた電力変換装置を取り上げたが、バッテリー等の蓄電部14(蓄電池)が出力する直流電力をインバータ部3に供給して成る電力変換装置でも前記と同様インバータ部3の半導体スイッチング素子40がPWM制御されることにより、直流電力が所定の電圧と所定の周波数の交流電力に変換され、この結果、乗物の動力源,冷却装置の冷却ファン,冷却水の循環用ポンプ駆動電動機,油圧機具向け油圧ポンプ駆動電動機,エアコン用コンプレッサー駆動電動機などの負荷6に可変電圧可変周波数の電力が供給され、前記した放射ノイズを出すことは言うまでもない。
【0009】
ここで、ノイズの原因となる漏れ電流8を流さないように図16に示すような電力ラインに接続された受動素子であるコモンモードトランス9と電力ラインと対地を接続するX結線及びY型結線用のコンデンサ10で構成されたラインフィルタ5を電力変換装置の入力電力ラインへ負荷6や電源に対し直列に挿入することで、高周波の漏れ電流8をコモンモードトランス9により遮断し、遮断された漏れ電流8がY型結線コンデンサ10に流れ対地に帰還することから、入力電力ラインに流れていた漏れ電流8が大幅に減少でき、他の機器に誤動作などの悪影響を与えたり、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減でき、他の機器に入り込むといった問題を解決してきた。
【0010】
さらに、ラインフィルタ5を小形化する為、特開平6−224045号公報に記載のLC複合素子15を用いたラインフィルタ5が提案され、図17に示すようなコンデンサの陽極16と陰極17電極をフェライト等の棒状磁性体19を芯として同心円上に巻き付け、前記陽極16及び陰極17電極でLC複合素子15を形成し、形成されたLC複合素子15がその巻廻し方からコモンモードトランスとして動作し、前記陽極16及び陰極17電極と対地間にX結線及びY型結線用のコンデンサ10を作り込む為の第3及び第4の電極を前記陽極16及び陰極17電極と共に巻廻しラインフィルタ5を構成し、小形で高性能なラインフィルタ5を実現し入力電力ラインに流れていた漏れ電流8が大幅に減少でき、他の機器に誤動作などの悪影響を与えたり、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減でき、他の機器に入り込むといった問題を解決してきた。
【0011】
一方、漏れ電流8をダンピングする為、漏れ電流8の流れる経路にダンピングする為の抵抗13を挿入するといった手法が開発され、電気学会平成7年度産業応用部門全国大会No93「コモンモードトランスを用いた高周波漏れ電流抑制効果と設計法」で報告され、電力ラインに直列に挿入されたコモンモードトランス9に新たに零相コイル26となる同相の巻線を付加し(以下、同相の巻線を付加したコモンモードトランスをCMTと呼ぶ。)、電力ラインに流れる漏れ電流8がコモンモードトランス9のコア部に作り出す磁束を新たに付加した零相コイル26に鎖交させ、漏れ電流8の持つエネルギーを新たに付加した零相コイル26に伝え、零相コイル26の出力を抵抗13で短絡することで、漏れ電流8が抵抗13を流れることになり、コモンモード電流つまり漏れ電流8が抵抗13を流れることで漏れ電流8をダンピングできることから、電力ラインに流れていた漏れ電流8が大幅に減少でき、他の機器に誤動作などの悪影響を与えたり、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減でき、他の機器に入り込むといった問題を解決してきた。
【0012】
さらに特開2000−60107では、前記した電気学会平成7年度産業応用部門全国大会No93「コモンモードトランスを用いた高周波漏れ電流抑制効果と設計法」で報告されたCMTを電力変換機の電力の入力段であるコンバータ部と、負荷へ電力を供給する出力段となるインバータ部の間に平滑用のコンデンサと並列に且つ、前記コンバータ部と前記インバータ部に直列に挿入することで、コモンモード電流つまり漏れ電流8が抵抗13を流れることで漏れ電流8をダンピングできることから、電力ラインに流れていた漏れ電流8が大幅に減少でき、他の機器に誤動作などの悪影響を与えたり、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減でき、他の機器に入り込むといった問題を解決してきている。
【0013】
【発明が解決しようとする課題】
上記従来技術は、電力ラインに接続されたコモンモードトランス9と電力ラインと対地を接続するコンデンサ10で構成されたラインフィルタ5を用いてノイズの原因となる漏れ電流8の流れを抑制して対策しているが、特にラインフィルタ5に用いるコモンモードトランス9には数mHなど比較的大きな値のインダクタンス特性が必要であり、各相ごとに大きな磁性体コアに複数回電線を精度良く巻廻し、さらに巻廻した電線に負荷電流を流すため比較的直径の大きな電線が必要となることから、コモンモードトランス9のサイズが大きくなりラインフィルタ5のサイズも大きくなることから、出力数kWの電力変換装置の場合、電力変換装置と同サイズにまでラインフィルタ5が大型化し、電力変換装置と別ケースでラインフィルタ5を構成せざるをえず、電力変換システムの大型化とラインフィルタ5のコストが高い問題がある。
【0014】
さらに、従来のLC複合素子15を用いたラインフィルタ5では、パッシブ回路として動作する為、漏れ電流8を遮断する為のインダクタンス値を大きくする必要があり、コモンモードトランス9を構成している電極の巻廻しの回数を増やし作られるインダクタンスを大きくするか、芯となるフェライト等の磁性体を太くして構成されるインダクタンスを大きくする必要があり、電極間に挟み込む絶縁紙の厚さも加わり、サイズを小形化することが困難であった。
【0015】
また、ラインフィルタ5やCMT11の回路定数は、電力変換装置の実装条件が安全規格等で決められた範囲内で漏れ電流8に対してその低減効果が出るように決められており、当然、実装条件の一つである電力変換装置と負荷を接続する電力ケーブルの長さや漏れ容量7の特性を異なる値、例えば電力ケーブルの長さを所定値よりも長くすると所定の漏れ電流8の低減特性が得られなくなったり、特にラインフィルタ5では電力変換装置内で用いる半導体スイッチング素子40の特性や半導体スイッチング素子40のドライブ回路43が変わると、半導体スイッチング素子40の過渡的な出力電圧特性が異なり、当然漏れ電流8の波形が変化し、漏れ電流8の中に含まれる周波数成分が異なることからラインフィルタ5での所定のノイズ低減特性が得られなくなる問題があった。
【0016】
本発明の目的は、小形のコモンモードトランス9を用いて、漏れ電流8を低減すると共に電力変換装置の実装条件や半導体スイッチング素子40の特性が変化しても所定の漏れ電流低減効果を発揮できるラインフィルタ5を電力変換装置内に内蔵し、低ノイズで小形で低コストな電力変換装置を提供することにある。
【0017】
【課題を解決するための手段】
上記目的は、インバータ部3とコンバータ部2及び蓄電部14を接続している電力配線に平滑用のコンデンサ4としてLC複合素子15が接続された電力変換装置において、LC複合素子15の陽極16と陰極17が少なくとも誘電率が空気よりも大きな絶縁紙18もしくは電解液を浸した絶縁紙18に固着され、陽極16と陰極17を少なくとも絶縁紙18の幅より長いフェライト等の棒状磁性体19に重ねて巻廻しコンデンサを構成させると共に陽極16と陰極17のそれぞれ両端より電気的に外部と接続する接続電極20を固着し、両端が開口した円筒形ケース21内にコンデンサを内蔵し、樹脂等で作られた封止板22を円筒形ケース21内の両端へ固着すると共に接続電極20と棒状磁性体19を円筒形ケース21の外に出す為の穴を封止板22に設け、円筒形ケース21外側にコの字状の磁性体23を棒状磁性体19の両端を繋ぐように配置し、トロイダル状の磁気回路を構成させ、前記コの字状の磁性体23を円筒形ケース21側面に治具24を用いて固着させ、前記コの字状の磁性体23に零相コイル26となる第3のコイルを巻き付け、零相コイル26の出力を所定の抵抗13で短絡したことにより、インバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に抵抗13を挿入でき、コモンモード電流つまり漏れ電流8が抵抗13を流れることで漏れ電流8をダンピングし、電力ラインに流れていた漏れ電流8を大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減でき、他の機器への誤動作などの悪影響をも低減し、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0018】
同じく上記目的は、インバータ部3とコンバータ部2及び蓄電部14を接続している電力配線に平滑用のコンデンサ4としてLC複合素子15が接続された電力変換装置において、LC複合素子15の陽極16と陰極17が少なくとも誘電率が空気よりも大きな絶縁紙18もしくは電解液を浸した絶縁紙18に固着され、陽極16と陰極17を少なくとも絶縁紙18の幅より長いフェライト等の棒状磁性体19に重ねて巻廻しコンデンサを構成させると共に陽極16と陰極17のそれぞれ両端より電気的に外部と接続する接続電極20を固着し、両端が開口した円筒形ケース21内にコンデンサを内蔵し、樹脂等で作られた封止板22を円筒形ケース21内の両端へ固着すると共に接続電極20と棒状磁性体19を円筒形ケース21の外に出す為の穴を封止板22に設け、円筒形ケース21外側にコの字状の磁性体23を棒状磁性体19の両端を繋ぐように配置し、トロイダル状の磁気回路を構成させ、前記コの字状の磁性体23を円筒形ケース21側面に治具24を用いて固着させ、前記コの字状の磁性体23に零相コイル26となる第3のコイルを巻き付け、零相コイル26の出力を可変抵抗器27で短絡し、インバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に可変抵抗器27が挿入でき、計算機28を用いて可変抵抗器27の抵抗値を複数回変えると共に各回毎に可変抵抗器27の両端の電圧を測り、検出した可変抵抗器27の電圧を用いてコモンモードの漏れ電流8が最小になる可変抵抗器27の抵抗値を計算機28で算出し、算出結果をもとに再度可変抵抗器27の抵抗値を計算機28から制御し所定の値に設定することで、漏れ電流8を最小にできる抵抗13を用いて漏れ電流8のダンピングが可能になり、電力変換装置及び負荷6の実装状態に関わらず電力ラインに流れていた漏れ電流8を大幅に減少でき、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0019】
上記目的は、インバータ部3とコンバータ部2及び蓄電部14を接続している電力配線に平滑用のコンデンサ4として第1のLC複合素子33を直流電力プラス側,第2のLC複合素子34を直流電力マイナス側として直列に接続された電力変換装置において、第1のLC複合素子33の陽極35と陰極36が少なくとも誘電率が空気よりも大きな絶縁紙18もしくは電解液を浸した絶縁紙18に固着され、陽極35と陰極36を少なくとも絶縁紙18の幅より長いフェライト等の棒状磁性体19に例えば陽極35を上側に重ねて巻廻しコンデンサを構成させると共に陽極35と陰極36のそれぞれ両端より電気的に外部と接続する接続電極20を固着し、両端が開口した円筒形ケース21内にコンデンサを内蔵し、樹脂等で作られた封止板22を円筒形ケース21内の両端へ固着すると共に接続電極20と棒状磁性体19を円筒形ケース21の外に出す為の穴を封止板22に設け、第2のLC複合素子34の電極を第1のLC複合素子33の電極の重ね方と逆に陰極38を上側に重ねて巻廻し構成し、第1及び第2のLC複合素子の各棒状磁性体を円筒形ケース外側に用意した接続用磁性体で接続し、トロイダル状の磁気回路を構成させ、前記第1のLC複合素子33の陰極36と第2のLC複合素子34の陽極37を接続することで第1及び第2のLC複合素子を直列接続し、前記円筒形ケース外側に用意した接続用磁性体に零相コイル26を巻き付け、零相コイル26の出力を所定の抵抗13で短絡したことにより、インバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に抵抗13を挿入でき、コモンモード電流つまり漏れ電流8が抵抗13を流れることで漏れ電流8をダンピングし、さらにLC複合素子を直列に接続する際、第1のLC複合素子33の陽極35と陰極36の重ね順と逆にした第2のLC複合素子34を用いて直列接続のLC複合素子を構成したことで、直流電力プラス側電位となる第1のLC複合素子33の陽極35と直流電力マイナス側電位となる第2のLC複合素子34の陰極38部の棒状磁性体19に対する位置を対象にできることから、電極位置のズレによる誤差磁束を低減でき高精度なコモンモードトランス9を構成できることから誤検出したコモンモード電流(漏れ電流)で抵抗13の発熱や破壊を防ぐことができ、電力変換装置や負荷6の漏れ容量7からの漏れ電流8だけを零相コイル26に誘導できることから、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングでき、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0020】
【発明の実施の形態】
以下、本発明による電力変換装置について、図示の実施形態により詳細に説明する。
【0021】
図1は、本発明の第1の実施形態に係るLC複合素子の断面の一例であり、図2は図1で示したLC複合素子の側面図であり、図3は実施形態に係るLC複合素子を用いた電力変換装置の構成の一例である。一般的な電力変換装置の構成は、図16で示すように商用交流電力1を整流するダイオード整流器からなるコンバータ部2と、このコンバータ部2から出力される直流電力が入力されるPWM制御方式のインバータ部3、それにコンバータ部2とインバータ部3の間の直流部に接続された平滑用のコンデンサ4で構成された主回路を備えている。
【0022】
一般的に用いられている電力変換装置のラインフィルタ5は、前記コンバータ部2の商用交流電力1側に接続され、負荷6である交流電動機や交流電動機への電力配線が持つアース間の漏れ容量7から流れ出る漏れ電流8を商用交流電力1側に伝えないように高周波特性に優れたチョークコイルで高周波ラインインピータンスを高め漏れ電流8の通過を阻止し、アースに片側が接続され反対側が電力配線に接続された周波数応答に優れたY型結線コンデンサ10を通して漏れ電流8をアースに流し込む構成とし、商用交流電力1への漏れ電流8の流出を防いでいる。
【0023】
また従来のCMT11は、3相インバータの出力電流であるIU,IV,IWを全て足し合わせると零になるようにPWM制御された前記インバータ部3と負荷6間の電力配線に直列に配置され、トロイダルコアに同位相で電力線を3本及び零相コイル26含めた4本を巻廻し、零相コイル26の出力を抵抗13で短絡し構成され、すると各相を流れる負荷電流が磁束を作り、それら磁束がトロイダルコア内の磁気回路内で合成されるが、IU,IV,IWで作られる磁束の和は当然零となり、磁気回路内に残る磁束は漏れ電流8による成分だけとなり、零相コイル26に漏れ電流8による磁束が誘起され、零相コイル26の出力を短絡している抵抗13に漏れ電流8が流れ、つまり漏れ電流8の流れる経路に抵抗13が直列に挿入されたことと等しく、漏れ電流8を抵抗13にてダンピングする効果が得られる。
【0024】
図1,図2及び図3に示した実施形態が、図16及び図17の従来技術と異なる点は、インバータ部3とコンバータ部2及び蓄電部14を接続している電力配線に平滑用のコンデンサ4としてLC複合素子15を用いた電力変換装置において、図4に示すように陽極16と陰極17が少なくとも誘電率が空気よりも大きな絶縁紙18もしくは電解液を浸した絶縁紙18に固着され、図5に示すように陽極16と陰極17を少なくとも絶縁紙18の幅より長いフェライト等の棒状磁性体19に重ねて巻廻しコンデンサを構成させると共に陽極16と陰極17のそれぞれ両端より電気的に外部と接続する接続電極20を固着し、図1に示す両端が開口した円筒形ケース21内にコンデンサを内蔵し、樹脂等で作られた封止板22を円筒形ケース21内の両端へ固着すると共に接続電極20と棒状磁性体19を円筒形ケース21の外に出す為の穴を封止板22に設け、円筒形ケース21外側にコの字状の磁性体23を棒状磁性体19の両端に近接するように配置し、トロイダル状の磁気回路を構成させ、前記コの字状の磁性体23を円筒形ケース21側面に治具24を用いて固着させ、前記コの字状の磁性体23にボビン25を取付け零相コイル26となる第3のコイルを巻き付け、前記ボビン25をLC複合素子15の一部で固定し、零相コイル26の出力を所定の抵抗13で短絡したことにより、図6に示すようにインバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に抵抗13が挿入でき、抵抗13に漏れ電流8が流れることから漏れ電流8をダンピングできる点であり、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0025】
図7は、本発明の第2の実施形態に係るLC複合素子を用いた電力変換装置の一例で、この実施形態が、図1で説明した実施形態と異なる点は、前記コの字状の磁性体23にボビン25を取付け零相コイル26となる第3のコイルを巻き付け、前記ボビン25をLC複合素子15の一部で固定し、零相コイル26の出力を可変抵抗器27で短絡し、インバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に可変抵抗器27を挿入し、例えば図8に示すようなフローチャートに従い計算機28を用いて可変抵抗器27の抵抗値を複数回変えると共に各回毎に可変抵抗器27の両端の電圧を測定し、測定では抵抗両端の電圧を半波整流回路29で整流した後、ピークホールド回路30もしくはサンプル&ホールド回路でホールドし、A/D変換機31に入力しデジタル量に電圧を変換し、検出した電圧を用いてコモンモードの漏れ電流8が最小になる可変抵抗器27の抵抗値を計算機で算出し、算出結果をもとに再度可変抵抗器27の抵抗値を計算機28から抵抗コントローラ32を制御し所定の値に設定することで、漏れ電流8を最小にできる抵抗13を用い漏れ電流8のダンピングを可能にした点である。これによって、電力変換装置及び負荷6の実装状態に関わらず、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0026】
図9は、本発明の第3の実施形態に係るLC複合素子の断面の一例であり、図10は図9で示したLC複合素子15の側面図であり、図11は実施形態に係るLC複合素子15を用いた電力変換装置の構成の一例である。図1及び図7で説明した実施形態と異なる点は、図11に示すようにインバータ部3とコンバータ部2及び蓄電部14を接続している電力配線に平滑用のコンデンサ4として第1のLC複合素子33を直流電力プラス側,第2のLC複合素子34を直流電力マイナス側として直列に接続された電力変換装置において、図5同様に第1のLC複合素子33の陽極35と陰極36が少なくとも誘電率が空気よりも大きな絶縁紙18もしくは電解液を浸した絶縁紙18に固着され、陽極16と陰極17を少なくとも絶縁紙18の幅より長いフェライト等の棒状磁性体19に例えば陽極35を上側に重ねて巻廻しコンデンサを構成させると共に陽極35と陰極36のそれぞれ両端より電気的に外部と接続する接続電極20を固着し、両端が開口した円筒形ケース21内にコンデンサを内蔵し、樹脂等で作られた封止板22を円筒形ケース21内の両端へ固着すると共に接続電極20と棒状磁性体19を円筒形ケース21の外に出す為の穴を封止板22に設け、第2のLC複合素子34の陽極37と陰極38を第1のLC複合素子33の陽極35と陰極36の重ね方と逆に陰極38を上側に重ねて巻廻して構成し、第1及び第2のLC複合素子の各棒状磁性体19を円筒形ケース21外側に用意した2個の接続用磁性体39で接続し、トロイダル状の磁気回路を構成させ、前記第1のLC複合素子33の陰極36と第2のLC複合素子34の陽極37を接続することで第1及び第2のLC複合素子を直列接続し、前記円筒形ケース21外側に用意した2個の接続用磁性体39の何れかにボビン25を取付け零相コイル26となる第3のコイルを巻き付け、前記ボビン25をLC複合素子15の一部で固定し、零相コイル26の出力を所定の抵抗13で短絡した点であり、インバータ部3とコンバータ部2及び蓄電部14間を流れるコモンモードの漏れ電流経路に抵抗13を挿入でき、抵抗13に漏れ電流が流れることから漏れ電流8をダンピングでき、さらにLC複合素子15を直列に接続する際、第1のLC複合素子33の陽極35と陰極36の重ね順と逆にした第2のLC複合素子34を用いて直列接続のLC複合素子15を構成したことで、直流電力プラス側電位となる第1のLC複合素子33の陽極35と直流電力マイナス側電位となる第2のLC複合素子34の陰極38の棒状磁性体19に対する位置を対象にでき、電極位置のズレによる誤差磁束を低減でき高精度なコモンモードトランスを構成し、誤検出したコモンモード電流(漏れ電流)で抵抗13の発熱や破壊を防ぐことができ、電力変換装置や負荷6の漏れ容量7からの漏れ電流8だけを零相コイル26に誘導できる構成となることから、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0027】
図12は、本発明の第4の実施形態に係るLC複合素子を用いた電力変換装置の一例で、この実施形態が、図1及び図7で説明した実施形態と異なる点は、直流電力ラインに接続された前記LC複合素子15の陽極16及び陰極17のインバータ部3側もしくはコンバータ部2及び蓄電部14側電極に、LC複合素子15と並列となるように一般的な平滑用のコンデンサ4を接続した点であり、零相コイル26となる第3のコイルの出力を抵抗13もしくは可変抵抗器27で短絡し、抵抗13もしくは可変抵抗器27を漏れ電流経路に挿入し、漏れ電流8が最小になる様に抵抗値に設定することで、漏れ電流8のダンピングが可能になると共に、平滑用のコンデンサ4をLC複合素子15に並列接続したことから平滑用コンデンサの容量を容易に増大させながらも、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0028】
図13は、本発明の第5の実施形態に係るLC複合素子を用いた電力変換装置の一例で、この実施形態が、前記実施形態と異なる点は、図13に示すようにアルミダイキャスト等で作られた電力変換装置の外形ケース12内にインバータ部3とコンバータ部2用の半導体スイッチング素子40が内蔵されたパワーモジュール41を配置し、パワーモジュール41の冷却器42が電力変換装置の外形ケース12にネジ等により固着され、パワーモジュール41の上部にLC複合素子15,端子台53,パワー半導体をコントロールするドライブ回路43,PWM制御を行う計算機28,電力変換装置の上位コントローラからの信号を計算機28に伝える通信回路45や電源回路46が実装された制御基板47を配置すると共に前記パワーモジュール41の電極と半田等を用いて接続し電力変換装置を構成し、電力変換装置の外形ケース12と負荷6である交流電動機の外形ケース44を一体化した点であり、一体化に当ってはネジやボルトで組み合わせてもよいが一体成形にて構成しても良く、このように負荷6である交流電動機と電力変換装置を近接させると漏れ電流8を作り出すインバータ部3と負荷6を接続する出力電力配線の長さが全ての実装条件で一定に保たれることから、実装条件の変化で生じる漏れ電流8の変化も無くなり、漏れ電流8を最小にする為の零相コイル26の短絡抵抗13も一意的に交流電動機の漏れ容量7から決められることから、漏れ電流8のダンピング効果を精度良く実現し、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0029】
図18は、本発明の第6の実施形態に係るLC複合素子を用いた電力変換装置の一例で、この実施形態が、図1及び図2で説明した実施形態と異なる点は、直流電力ラインに接続された前記LC複合素子15の各電極を扁平に巻き回し、巻き回し軸に垂直な断面を楕円状とした点であり、さらに巻き回した電極中心部に挿入する磁性体をトロイダル状とし磁気回路を構成すると共に、この磁性体の前記電極の巻き回し軸に垂直な断面を楕円状もしくは表方形とした点であり、この様にするとトロイダル状に形成した磁気回路の実効磁路長を大きく増加させること無く、前記棒状磁性体19の磁路の実効断面積を大幅に増加させることができることから、CMTの励磁インダクタンスを増加させることができ、零相コイル26と抵抗13もしくは可変抵抗器27の漏れ電流8へのダンピング効果を向上でき、電力ラインに流れていた漏れ電流8が大幅に減少し、商用交流電力1を介して他の機器に流れ込む漏れ電流8を低減し、他の機器への誤動作などの悪影響を低減でき、漏れ電流8と漏れ電流経路の配線電圧によって作り出される電磁波を低減できることから、新たにコモンモードトランス9を内蔵したラインフィルタ5を用いずに漏れ電流8をダンピングできることから、電力変換装置の低ノイズ化と共に小形化と低コスト化が達成される。
【0030】
図19は、本発明の第7の実施形態に係るLC複合素子を用いた電力変換装置の一例で、この実施形態が、前記実施例で説明した実施形態と異なる点は、LC複合素子の各陽極及び陰極16,17の表面に生成される凹凸粗さが異なる領域を設け、前記領域を各陽極及び陰極に各2個接続された接続電極20を結ぶ様に帯状に設けた点であり、これにより表面の凹凸の粗さが少ない領域16Aの電気抵抗が低下し発熱を抑えることができ、LC複合素子の内部発熱を低減でき、一方表面の凹凸粗さが大きい領域16Bでは電気容量を増加することが可能となりLC複合素子の容量を増加させることができ、低発熱で高容量のLC複合素子を構成できることから、電力変換装置の低ノイズ化と共に低損失及び高い変換効率が達成される。
【0031】
当然だが、図14に示す様な太陽電池51と電力変換装置で構成される太陽光発電システムの電源系統連係用電力変換装置52や、図15で示す内燃機関48と負荷6の電動機を動力源とし、蓄電部14から供給される直流電力をLC複合素子15を介してインバータ部3に接続しミッション49を通して内燃機関48と負荷6の電動機の力をタイヤに伝えて移動する乗物及び乗物に搭載される全てのインバータ装置や、さらに家庭用及び業務用のエアコンに用いるコンプレッサやファン用電動機駆動のインバータ装置や洗濯機の洗濯層を回す電動機や掃除機の吸い込みファンの電動機や電気調理機の磁界生成用インダクタンス駆動用電力変換装置等にも前記した実施例の電力変換装置が適用でき低ノイズ化と共に小形化と低コスト化が達成される。
【0032】
【発明の効果】
本発明によれば、コンデンサの陽極16と陰極17を棒状磁性体19に巻廻し、陽極16及び陰極17の両端からそれぞれ接続電極20を引出し、棒状磁性体19の両端を繋ぐように接続用磁性体39を用い磁気回路を構成し、磁気回路と鎖交する第3のコイルを持つLC複合素子15を用いて低ノイズ化と共に小形化と低コスト化が達成される電力変換装置を提供できる。
【図面の簡単な説明】
【図1】本発明によるLC複合素子の第1の実施形態を示す断面図。
【図2】図1の実施形態のLC複合素子の側面図。
【図3】図1の実施形態のLC複合素子を用いた電力変換装置の構成図。
【図4】図1の実施形態のLC複合素子内部電極の展開図。
【図5】図1の実施形態のLC複合素子内部電極の構成図。
【図6】図1の実施形態のLC複合素子を用いた電力変換装置の漏れ電流経路の簡易等価回路。
【図7】本発明によるLC複合素子の第2の実施形態及び実施形態のLC複合素子を用いた電力変換装置の構成図。
【図8】図7の実施形態の電力変換装置おける漏れ電流の最小化のフローチャート。
【図9】本発明によるLC複合素子の第3の実施形態を示す断面図。
【図10】図9の第3の実施形態を示す側面図。
【図11】図9で示した第3の実施形態のLC複合素子を用いた電力変換装置の主回路結線図。
【図12】本発明による第4の実施形態を示すLC複合素子を用いた電力変換装置の主回路結線図。
【図13】本発明による第5の実施形態を示すLC複合素子を用いた電力変換装置の構成図。
【図14】本発明によるLC複合素子を用いた電力変換装置の構成図。
【図15】本発明によるLC複合素子を用いた電力変換装置の構成図。
【図16】従来のラインフィルタとCMTを用いた電力変換装置の構成図。
【図17】従来のLC複合素子の構成と等価回路。
【図18】本発明によるLC複合素子の側面図。
【図19】LC複合素子内部電極の展開図。
【符号の説明】
1…商用交流電力、2…コンバータ部、3…インバータ部、4…平滑用のコンデンサ、5…ラインフィルタ、6…負荷、7…漏れ容量、8…漏れ電流、9…コモンモードトランス、10…接地用のY型結線コンデンサ、11…CMT(零相コイル付きコモンモードトランス)、12…電力変換装置の外形ケース、13…抵抗、14…蓄電部、15…LC複合素子、16…陽極、16A…電極表面凹凸が密な面、16B…電極表面凹凸が粗の面、17…陰極、18…絶縁紙、19…棒状磁性体、20…接続電極、21…円筒形ケース、22…封止板、23…コの字状の磁性体、24…治具、25…ボビン、26…零相コイル、27…可変抵抗器、28…計算機、29…半波整流回路、30…ピークホールド回路、31…A/D変換機、32…抵抗コントローラ、33…第1のLC複合素子、34…第2のLC複合素子、35…第1のLC複合素子の陽極、36…第1のLC複合素子の陰極、37…第2のLC複合素子の陽極、38…第2のLC複合素子の陰極、39…接続用磁性体、40…半導体スイッチング素子、41…パワーモジュール、42…パワーモジュールの冷却器、43…ドライブ回路、44…交流電動機の外形ケース、45…通信回路、46…電源回路、47…制御基板、48…内燃機関、49…ミッション、50…寄生インダクタンス、51…太陽電池、52…電源系統連係用電力変換装置、53…端子台。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device such as an inverter device or a power storage device, and more particularly to a power conversion device using an LC composite element that reduces noise leaking from the power conversion device.
[0002]
[Prior art]
Inverter devices are widely used in the operation of AC motors such as induction motors, and in recent years, they have also been used as controllers for vehicle power sources, so that the advantages of variable speed operation by inverter devices can be fully enjoyed. .
[0003]
For the control of the conventional inverter device shown in FIG. 16, a conventional PWM (Pulse Wide Modulation) control method is adopted and widely used, and a converter unit (forward conversion unit) 2 composed of a diode rectifier, PWM control type inverter unit (inverse conversion unit) 3 to which DC power output from the converter unit 2 is input, and a smoothing capacitor (capacitor) connected to the DC unit between the converter unit 2 and the inverter unit 3 4 is provided.
[0004]
When AC power is input from the commercial AC power 1 serving as a power source to the converter unit 2, DC power smoothed by the capacitor 4 is supplied to the inverter unit 3. Here, the semiconductor switching of the inverter unit 3 is performed. As the element 40 is PWM controlled, the DC power is converted into AC power having a predetermined voltage and a predetermined frequency, and as a result, power of variable voltage and variable frequency is supplied to the load 6 such as an induction motor. .
[0005]
At this time, the semiconductor switching element 40 in the inverter unit 3 is controlled to be on (conductive) and off (cut off) in accordance with the PWM signal sent from the computer (computer) 28 via the driver circuit 43, and is rectangular with respect to the load 6. A wave voltage and a load current are output, and a conduction loss generated by the semiconductor switching element 40 and a load current generated by the load current, and a switching loss that occurs during a transient voltage / current variation at the time of on / off are generated.
[0006]
In recent years, in order to reduce the switching loss, the transient response performance of the semiconductor switching element 40 has been improved, and an IGBT (insulated, gate, bipolar, transistor) having a high-speed switching characteristic has been developed to reduce the loss. In addition, the cooler of the apparatus has been contributed to downsizing and the power converter represented by an inverter has been downsized.
[0007]
However, when the transient voltage change of the rectangular wave described above becomes steep, the leakage capacity 7 (capacity to ground) of the power cable that connects the inverter motor to the AC motor, which is a typical load 6, or the winding of the AC motor Current flowing through the leakage capacity 7 (ground-to-ground capacity) increases (hereinafter referred to as leakage current), and the peak value of leakage current 8 rises in proportion to the rate of change of voltage with respect to time. The leakage current 8 resonates with the parasitic inductance 50 of the wiring at a high frequency, flows through the inverter unit 3 and the converter unit 2 to the commercial AC power 1, and adversely affects other devices such as malfunctions. Problems such as electromagnetic waves generated by the wiring voltage in the leakage current path enter other devices, or radiate noise to the TV or radio antenna near the device. There.
[0008]
Up to this point, as an example of the prior art, a power conversion device using a converter unit (forward conversion unit) 2 composed of a diode rectifier has been taken up. However, the DC power output from the power storage unit 14 (storage battery) such as a battery is used as the inverter unit 3. In the power conversion device supplied to the inverter, the DC power is converted into AC power having a predetermined voltage and a predetermined frequency by PWM control of the semiconductor switching element 40 of the inverter unit 3 as described above. Power of variable voltage and variable frequency is supplied to a load 6 such as a power source, a cooling fan for a cooling device, a pump drive motor for circulating cooling water, a hydraulic pump drive motor for hydraulic equipment, a compressor drive motor for an air conditioner, etc. Needless to say.
[0009]
Here, the common mode transformer 9 which is a passive element connected to the power line as shown in FIG. 16 and the X line and the Y type connection for connecting the power line and the ground so as not to cause the leakage current 8 causing noise. The high frequency leakage current 8 is cut off by the common mode transformer 9 by inserting the line filter 5 composed of the capacitor 10 for the power supply into the input power line of the power converter in series with the load 6 and the power source. Since the leakage current 8 flows to the Y-type connection capacitor 10 and returns to the ground, the leakage current 8 flowing through the input power line can be greatly reduced, and other devices can be adversely affected, such as malfunctions. The electromagnetic wave produced by the wiring voltage of the leakage current path can be reduced, and the problem of entering into other devices has been solved.
[0010]
Furthermore, in order to reduce the size of the line filter 5, a line filter 5 using the LC composite element 15 described in Japanese Patent Laid-Open No. 6-224045 has been proposed, and the anode 16 and cathode 17 electrodes of the capacitor as shown in FIG. A rod-shaped magnetic body 19 such as ferrite is wound around a concentric circle, and the LC composite element 15 is formed by the anode 16 and the cathode 17 electrode. The formed LC composite element 15 operates as a common mode transformer from the winding manner. A line filter 5 is formed by winding the third and fourth electrodes together with the anode 16 and the cathode 17 electrode for forming the capacitor 10 for the X connection and the Y connection between the anode 16 and the cathode 17 and the ground. In addition, the small and high-performance line filter 5 can be realized, and the leakage current 8 flowing in the input power line can be greatly reduced, which can cause other devices to malfunction. Or give, it is possible to reduce the electromagnetic waves produced by the wiring voltage of the leakage current path and the leakage current 8, has solved the problem of entering the other equipment.
[0011]
On the other hand, in order to dampen the leakage current 8, a technique of inserting a resistor 13 to dampen the path through which the leakage current 8 flows was developed, and the Institute of Electrical Engineers of Japan National Conference No.93 “Common Mode Transformer was used. The common-mode transformer 9 inserted in series in the power line was newly added with the same-phase winding as the zero-phase coil 26 (hereinafter referred to as the same-phase winding). The common mode transformer is referred to as CMT.), And the leakage current 8 flowing in the power line is linked to the newly added zero-phase coil 26 with the magnetic flux created in the core of the common mode transformer 9, and the energy of the leakage current 8 is obtained. By transmitting to the newly added zero-phase coil 26 and short-circuiting the output of the zero-phase coil 26 with the resistor 13, the leakage current 8 flows through the resistor 13. Since the leakage current 8 can be damped by causing the common mode current, that is, the leakage current 8 to flow through the resistor 13, the leakage current 8 flowing in the power line can be greatly reduced, and other devices can be adversely affected such as malfunction. The electromagnetic wave produced by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, and the problem of entering into other devices has been solved.
[0012]
Furthermore, in Japanese Patent Laid-Open No. 2000-60107, the CMT reported in the National Institute of Electrical Engineers of Japan 2007 No. 93 “High Frequency Leakage Current Suppression Effect and Design Method Using Common Mode Transformer” is used to input power to the power converter. By inserting the converter unit and the inverter unit in parallel between the converter unit that is a stage and the inverter unit that is an output stage that supplies power to the load, in parallel with the converter unit and the inverter unit, that is, Since the leakage current 8 can be damped by the leakage current 8 flowing through the resistor 13, the leakage current 8 flowing in the power line can be significantly reduced, and other devices can be adversely affected, such as malfunctions. Electromagnetic waves generated by the wiring voltage in the current path can be reduced, and problems such as entering other devices have been solved.
[0013]
[Problems to be solved by the invention]
The above prior art uses a line filter 5 composed of a common mode transformer 9 connected to the power line and a capacitor 10 that connects the power line and the ground to suppress the flow of leakage current 8 that causes noise. However, in particular, the common mode transformer 9 used for the line filter 5 needs a relatively large inductance characteristic such as several mH, and each wire is wound around a large magnetic core with a high accuracy with a high accuracy. Furthermore, since a relatively large-diameter wire is required to pass a load current through the wound wire, the size of the common mode transformer 9 and the size of the line filter 5 become large. In the case of a device, the line filter 5 is enlarged to the same size as the power converter, and the line filter 5 is installed in a separate case from the power converter. Do what forced to pictorial, size and cost of the line filter 5 of the power conversion system is highly problematic.
[0014]
Further, since the line filter 5 using the conventional LC composite element 15 operates as a passive circuit, it is necessary to increase the inductance value for blocking the leakage current 8, and the electrodes constituting the common mode transformer 9 It is necessary to increase the number of windings to increase the inductance that is made, or increase the inductance that is formed by thickening the magnetic material such as ferrite as the core, and the thickness of the insulating paper sandwiched between the electrodes is also added, the size It was difficult to reduce the size.
[0015]
In addition, the circuit constants of the line filter 5 and the CMT 11 are determined so that the effect of reducing the leakage current 8 is obtained within the range in which the mounting conditions of the power converter are determined by safety standards and the like. If the length of the power cable connecting the load and the load, which is one of the conditions, and the characteristics of the leakage capacity 7 are different from each other, for example, if the length of the power cable is longer than a predetermined value, the reduction characteristic of the predetermined leakage current 8 is reduced. When the characteristics of the semiconductor switching element 40 used in the power converter or the drive circuit 43 of the semiconductor switching element 40 are changed in the line filter 5 in particular, the transient output voltage characteristics of the semiconductor switching element 40 are different. Since the waveform of the leakage current 8 changes and the frequency components included in the leakage current 8 are different, the predetermined noise in the line filter 5 is low. Characteristic is a problem that can not be obtained.
[0016]
The object of the present invention is to use the small common mode transformer 9 to reduce the leakage current 8 and to exhibit a predetermined leakage current reduction effect even when the mounting conditions of the power converter and the characteristics of the semiconductor switching element 40 change. An object of the present invention is to provide a low-noise, small-sized and low-cost power conversion device by incorporating the line filter 5 in the power conversion device.
[0017]
[Means for Solving the Problems]
The above object is achieved in a power converter in which an LC composite element 15 is connected as a smoothing capacitor 4 to a power wiring connecting the inverter unit 3, the converter unit 2, and the power storage unit 14, and the anode 16 of the LC composite element 15 The cathode 17 is fixed to an insulating paper 18 having a dielectric constant greater than that of air or at least an insulating paper 18 immersed in an electrolyte, and the anode 16 and the cathode 17 are stacked on a rod-like magnetic body 19 such as ferrite that is longer than the width of the insulating paper 18. In addition, the capacitor 16 is wound and the connecting electrode 20 electrically connected to the outside is fixed from both ends of the anode 16 and the cathode 17, and the capacitor is built in the cylindrical case 21 having both ends opened, and is made of resin or the like. The sealing plate 22 is fixed to both ends of the cylindrical case 21 and the connection electrode 20 and the rod-shaped magnetic body 19 are taken out of the cylindrical case 21. Is provided on the sealing plate 22, and a U-shaped magnetic body 23 is arranged outside the cylindrical case 21 so as to connect both ends of the rod-shaped magnetic body 19 to form a toroidal magnetic circuit. The magnetic body 23 is fixed to the side surface of the cylindrical case 21 using a jig 24, and a third coil to be a zero-phase coil 26 is wound around the U-shaped magnetic body 23 to output the zero-phase coil 26. By short-circuiting with the predetermined resistor 13, the resistor 13 can be inserted into the common mode leakage current path flowing between the inverter unit 3, the converter unit 2, and the power storage unit 14, and the common mode current, that is, the leakage current 8 flows through the resistor 13. The leakage current 8 is damped in the power line, the leakage current 8 flowing in the power line is greatly reduced, the leakage current 8 flowing into other devices via the commercial AC power 1 can be reduced, and malfunctions to other devices, etc. Adverse effect Since the electromagnetic wave produced by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the leakage current 8 can be damped without newly using the line filter 5 with the built-in common mode transformer 9. As well as lowering noise, downsizing and cost reduction are achieved.
[0018]
Similarly, in the power converter in which the LC composite element 15 is connected as the smoothing capacitor 4 to the power wiring connecting the inverter unit 3, the converter unit 2, and the power storage unit 14, the anode 16 of the LC composite element 15 is used. The cathode 17 and the cathode 17 are fixed to an insulating paper 18 having a dielectric constant larger than that of air or an insulating paper 18 dipped in an electrolyte solution, and the anode 16 and the cathode 17 are fixed to a rod-like magnetic body 19 such as a ferrite longer than the width of the insulating paper 18. A capacitor is formed by overlapping and winding, and a connection electrode 20 that is electrically connected to the outside is fixed from both ends of the anode 16 and the cathode 17, and the capacitor is built in a cylindrical case 21 that is open at both ends. The produced sealing plate 22 is fixed to both ends of the cylindrical case 21, and the connection electrode 20 and the rod-shaped magnetic body 19 are brought out of the cylindrical case 21. Holes are provided in the sealing plate 22 and U-shaped magnetic bodies 23 are arranged outside the cylindrical case 21 so as to connect both ends of the rod-shaped magnetic bodies 19 to form a toroidal magnetic circuit. A U-shaped magnetic body 23 is fixed to the side surface of the cylindrical case 21 using a jig 24, and a third coil serving as a zero-phase coil 26 is wound around the U-shaped magnetic body 23. The variable resistor 27 is short-circuited by the variable resistor 27, and the variable resistor 27 can be inserted into the common mode leakage current path flowing between the inverter unit 3, the converter unit 2, and the power storage unit 14. The resistance value is changed a plurality of times, the voltage across the variable resistor 27 is measured each time, and the resistance value of the variable resistor 27 at which the common-mode leakage current 8 is minimized is detected using the detected voltage of the variable resistor 27. Calculated by computer 28 and calculated Based on the results, the resistance value of the variable resistor 27 is controlled again from the computer 28 and set to a predetermined value, so that the leakage current 8 can be damped using the resistor 13 that can minimize the leakage current 8. Regardless of the mounting state of the power converter and the load 6, the leakage current 8 flowing in the power line can be greatly reduced, and the leakage current 8 flowing into other devices via the commercial AC power 1 can be reduced to other devices. Can reduce adverse effects such as malfunctions, and can reduce electromagnetic waves generated by the leakage current 8 and the wiring voltage of the leakage current path, so that the leakage current 8 can be damped without newly using the line filter 5 with the built-in common mode transformer 9. Therefore, reduction in size and cost as well as reduction in noise of the power conversion device are achieved.
[0019]
The purpose is to connect the first LC composite element 33 to the DC power plus side and the second LC composite element 34 as the smoothing capacitor 4 to the power wiring connecting the inverter unit 3, the converter unit 2 and the power storage unit 14. In the power converter connected in series as the DC power minus side, the anode 35 and the cathode 36 of the first LC composite element 33 are formed on the insulating paper 18 having at least a dielectric constant larger than that of air or the insulating paper 18 immersed in an electrolyte. The anode 35 and the cathode 36 are wound around a rod-like magnetic body 19 such as ferrite, which is longer than the width of the insulating paper 18, for example, by winding the anode 35 on the upper side to form a capacitor, and the anode 35 and the cathode 36 are electrically connected from both ends. A sealing plate made of resin or the like, in which a connection electrode 20 for external connection is fixed, a capacitor is built in a cylindrical case 21 having both ends open. 2 is fixed to both ends of the cylindrical case 21, and a hole is provided in the sealing plate 22 for connecting the connection electrode 20 and the rod-shaped magnetic body 19 to the outside of the cylindrical case 21. In contrast to the method of stacking the electrodes of the first LC composite element 33, the cathode 38 is stacked on the upper side and wound, and the rod-like magnetic bodies of the first and second LC composite elements are prepared outside the cylindrical case. By connecting with a connecting magnetic body to form a toroidal magnetic circuit, the cathode 36 of the first LC composite element 33 and the anode 37 of the second LC composite element 34 are connected to each other. An LC composite element is connected in series, and a zero-phase coil 26 is wound around a connecting magnetic body prepared outside the cylindrical case, and the output of the zero-phase coil 26 is short-circuited by a predetermined resistor 13, whereby the inverter unit 3 and the converter Between the unit 2 and the power storage unit 14 When the resistor 13 can be inserted into the common mode leakage current path, the common mode current, that is, the leakage current 8 flows through the resistor 13, the leakage current 8 is damped, and the LC composite elements are connected in series. The first LC composite element having a DC power plus side potential is obtained by configuring the LC composite element connected in series using the second LC composite element 34 in which the anode 35 and the cathode 36 of the element 33 are reversed in the stacking order. Since the position of the anode 38 of the 33 and the cathode 38 of the second LC composite element 34 having a negative DC power potential with respect to the rod-shaped magnetic body 19 can be targeted, the error magnetic flux due to the displacement of the electrode position can be reduced, and a highly accurate common Since the mode transformer 9 can be configured, the erroneously detected common mode current (leakage current) can prevent the resistor 13 from being heated and destroyed, and the leakage capacity of the power converter and the load 6 can be prevented. Since only the leakage current 8 from the quantity 7 can be induced to the zero-phase coil 26, the leakage current 8 flowing in the power line is greatly reduced, and the leakage current 8 flowing into other devices via the commercial AC power 1 is reduced. In addition, since adverse effects such as malfunctions to other devices can be reduced and electromagnetic waves generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the line filter 5 newly incorporating the common mode transformer 9 is not used. Leakage current 8 can be damped, and a reduction in size and cost as well as noise reduction of the power conversion device can be achieved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the power converter by this invention is demonstrated in detail by embodiment of illustration.
[0021]
1 is an example of a cross section of the LC composite element according to the first embodiment of the present invention, FIG. 2 is a side view of the LC composite element shown in FIG. 1, and FIG. 3 is an LC composite according to the embodiment. It is an example of the structure of the power converter device using an element. As shown in FIG. 16, a general power conversion apparatus has a converter unit 2 composed of a diode rectifier that rectifies commercial AC power 1, and a PWM control method in which DC power output from the converter unit 2 is input. A main circuit is provided which includes an inverter unit 3 and a smoothing capacitor 4 connected to a DC unit between the converter unit 2 and the inverter unit 3.
[0022]
The line filter 5 of the power converter generally used is connected to the commercial AC power 1 side of the converter unit 2 and has a leakage capacity between the earths of the AC motor as the load 6 and the power wiring to the AC motor. The choke coil with excellent high frequency characteristics prevents the leakage current 8 flowing out from the commercial AC power 1 from being transmitted to the commercial AC power 1 side, thereby increasing the high frequency line impedance and preventing the leakage current 8 from passing through. The leakage current 8 is made to flow to the ground through the Y-type connection capacitor 10 having excellent frequency response connected to the, and the leakage current 8 is prevented from flowing out to the commercial AC power 1.
[0023]
Further, the conventional CMT 11 is arranged in series in the power wiring between the inverter unit 3 and the load 6 that are PWM-controlled so that when all the output currents IU, IV, and IW of the three-phase inverter are added to zero, Three power lines and four wires including the zero-phase coil 26 are wound around the toroidal core in the same phase, and the output of the zero-phase coil 26 is short-circuited by the resistor 13, so that the load current flowing through each phase creates a magnetic flux, These magnetic fluxes are synthesized in the magnetic circuit in the toroidal core, but the sum of the magnetic fluxes produced by IU, IV, IW is naturally zero, and the magnetic flux remaining in the magnetic circuit is only the component due to the leakage current 8, and the zero-phase coil 26, a magnetic flux is induced by the leakage current 8, and the leakage current 8 flows through the resistor 13 short-circuiting the output of the zero-phase coil 26. That is, the resistor 13 is inserted in series in the path through which the leakage current 8 flows. Equally, the effect of damping the leakage current 8 by resistance 13 is obtained.
[0024]
The embodiment shown in FIGS. 1, 2 and 3 differs from the prior art of FIGS. 16 and 17 in that the power wiring connecting the inverter unit 3, the converter unit 2 and the power storage unit 14 is smoothed. In the power conversion apparatus using the LC composite element 15 as the capacitor 4, as shown in FIG. 4, the anode 16 and the cathode 17 are fixed to the insulating paper 18 having a dielectric constant larger than that of air or the insulating paper 18 immersed in an electrolyte. As shown in FIG. 5, the anode 16 and the cathode 17 are wound at least on a rod-like magnetic body 19 such as ferrite longer than the width of the insulating paper 18 to form a capacitor, and electrically connected to both ends of the anode 16 and the cathode 17. A connection electrode 20 connected to the outside is fixed, a capacitor is built in a cylindrical case 21 having both ends opened as shown in FIG. 1, and a sealing plate 22 made of resin or the like is used as the cylindrical case 2. A hole for fixing the connection electrode 20 and the rod-shaped magnetic body 19 to the outside of the cylindrical case 21 is provided in the sealing plate 22, and a U-shaped magnetic body 23 is provided outside the cylindrical case 21. It arrange | positions so that it may adjoin to the both ends of the rod-shaped magnetic body 19, a toroidal-shaped magnetic circuit may be comprised, the said U-shaped magnetic body 23 may be fixed to the side surface of the cylindrical case 21 using the jig | tool 24, A bobbin 25 is attached to a U-shaped magnetic body 23, and a third coil to be a zero-phase coil 26 is wound. The bobbin 25 is fixed by a part of the LC composite element 15, and the output of the zero-phase coil 26 is set to a predetermined resistance. Since the short circuit 13 causes the resistor 13 to be inserted into the common mode leakage current path flowing between the inverter unit 3, the converter unit 2, and the power storage unit 14 as shown in FIG. 6, and the leakage current 8 flows to the resistor 13. Double leakage current 8 The leakage current 8 flowing in the power line is greatly reduced, the leakage current 8 flowing into other devices via the commercial AC power 1 is reduced, and adverse effects such as malfunctions to other devices are caused. Since the electromagnetic wave generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the leakage current 8 can be damped without newly using the line filter 5 with the built-in common mode transformer 9. Miniaturization and cost reduction are achieved with low noise.
[0025]
FIG. 7 is an example of a power conversion device using the LC composite element according to the second embodiment of the present invention. This embodiment is different from the embodiment described in FIG. A bobbin 25 is attached to the magnetic body 23 and a third coil to be a zero-phase coil 26 is wound. The bobbin 25 is fixed by a part of the LC composite element 15, and the output of the zero-phase coil 26 is short-circuited by the variable resistor 27. The variable resistor 27 is inserted into a common mode leakage current path that flows between the inverter unit 3, the converter unit 2, and the power storage unit 14, and the resistance of the variable resistor 27 is calculated using the computer 28 according to the flowchart shown in FIG. The value is changed a plurality of times and the voltage across the variable resistor 27 is measured each time. In the measurement, the voltage across the resistor is rectified by the half-wave rectifier circuit 29 and then the peak hold circuit 30 or the sample and hold. Hold on the road, input to the A / D converter 31 to convert the voltage into a digital quantity, and use the detected voltage to calculate the resistance value of the variable resistor 27 that minimizes the common mode leakage current 8 with a computer. Based on the calculation result, the resistance value of the variable resistor 27 is set again to a predetermined value by controlling the resistance controller 32 from the computer 28, and the leakage current 8 is dumped using the resistor 13 that can minimize the leakage current 8. This is the point that made this possible. As a result, regardless of the mounting state of the power converter and the load 6, the leakage current 8 flowing in the power line is greatly reduced, and the leakage current 8 flowing into other devices via the commercial AC power 1 is reduced. Since adverse effects such as malfunctions on other devices can be reduced and electromagnetic waves generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the leakage current can be eliminated without using the line filter 5 newly incorporating the common mode transformer 9. Since 8 can be damped, it is possible to reduce the size and cost of the power conversion device as well as to reduce the noise.
[0026]
9 is an example of a cross section of an LC composite element according to the third embodiment of the present invention, FIG. 10 is a side view of the LC composite element 15 shown in FIG. 9, and FIG. 11 is an LC view according to the embodiment. 2 is an example of a configuration of a power conversion device using a composite element 15; 1 and FIG. 7 is different from the embodiment described in FIG. 1 and FIG. 7 in that the first LC as the smoothing capacitor 4 is connected to the power wiring connecting the inverter unit 3, the converter unit 2 and the power storage unit 14, as shown in FIG. In the power converter connected in series with the composite element 33 as the DC power plus side and the second LC composite element 34 as the DC power minus side, the anode 35 and the cathode 36 of the first LC composite element 33 are connected as in FIG. At least an insulating paper 18 having a dielectric constant greater than that of air or an insulating paper 18 dipped in an electrolyte solution is fixed, and the anode 16 and the cathode 17 are attached to a rod-like magnetic body 19 such as a ferrite longer than the width of the insulating paper 18, for example, an anode 35. A capacitor is formed by being wound on top of each other, and a connecting electrode 20 electrically connected to the outside is fixed from both ends of the anode 35 and the cathode 36, and both ends are open. A capacitor is built in the case 21, and a sealing plate 22 made of resin or the like is fixed to both ends of the cylindrical case 21 and the connection electrode 20 and the rod-shaped magnetic body 19 are taken out of the cylindrical case 21. Are provided in the sealing plate 22, and the anode 37 and the cathode 38 of the second LC composite element 34 are overlapped with the cathode 38 on the upper side opposite to the way the anode 35 and the cathode 36 of the first LC composite element 33 are overlapped. The rod-like magnetic bodies 19 of the first and second LC composite elements are connected by two connecting magnetic bodies 39 prepared outside the cylindrical case 21 to form a toroidal magnetic circuit. The first and second LC composite elements are connected in series by connecting the cathode 36 of the first LC composite element 33 and the anode 37 of the second LC composite element 34, and are prepared outside the cylindrical case 21. The bobbin in one of the two connecting magnetic bodies 39 5 is wound around a third coil that becomes a zero-phase coil 26, the bobbin 25 is fixed by a part of the LC composite element 15, and the output of the zero-phase coil 26 is short-circuited by a predetermined resistor 13, an inverter The resistor 13 can be inserted into the common mode leakage current path that flows between the unit 3, the converter unit 2, and the power storage unit 14, the leakage current flows through the resistor 13, the leakage current 8 can be damped, and the LC composite element 15 is connected in series By connecting the LC composite element 15 connected in series using the second LC composite element 34 in which the anode 35 and the cathode 36 of the first LC composite element 33 are reversed in the connection, the direct current power plus The position of the anode 35 of the first LC composite element 33 having a side potential and the position of the cathode 38 of the second LC composite element 34 having a negative DC power potential with respect to the rod-like magnetic body 19 can be targeted. The error magnetic flux due to misalignment can be reduced, and a high-precision common mode transformer can be constructed. The erroneously detected common mode current (leakage current) can prevent the resistor 13 from being heated and destroyed, and the power converter and load 6 can leak. Since only the leakage current 8 from the capacitor 7 can be induced to the zero-phase coil 26, the leakage current 8 flowing in the power line is greatly reduced, and leakage flowing into other devices via the commercial AC power 1 Since the current 8 can be reduced, adverse effects such as malfunctions to other devices can be reduced, and electromagnetic waves generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced. Therefore, the line filter 5 newly incorporating the common mode transformer 9 Since the leakage current 8 can be damped without using the power converter, the power converter can be reduced in noise and reduced in size and cost.
[0027]
FIG. 12 shows an example of a power conversion device using an LC composite element according to the fourth embodiment of the present invention. This embodiment is different from the embodiment described in FIGS. The smoothing capacitor 4 is generally connected so as to be parallel to the LC composite element 15 on the inverter unit 3 side or the converter unit 2 and power storage unit 14 side electrodes of the anode 16 and the cathode 17 of the LC composite element 15 connected to the The output of the third coil serving as the zero-phase coil 26 is short-circuited by the resistor 13 or the variable resistor 27, the resistor 13 or the variable resistor 27 is inserted into the leakage current path, and the leakage current 8 is By setting the resistance value so as to be minimized, the leakage current 8 can be damped and the smoothing capacitor 4 is connected in parallel to the LC composite element 15 so that the capacity of the smoothing capacitor can be controlled. However, the leakage current 8 flowing in the power line is greatly reduced, the leakage current 8 flowing into other devices via the commercial AC power 1 is reduced, and adverse effects such as malfunctions to other devices are caused. Since the electromagnetic wave generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the leakage current 8 can be damped without newly using the line filter 5 with the built-in common mode transformer 9. Miniaturization and cost reduction are achieved with low noise.
[0028]
FIG. 13 is an example of a power conversion device using an LC composite element according to the fifth embodiment of the present invention. This embodiment is different from the above embodiment in that an aluminum die-cast or the like is used as shown in FIG. The power module 41 in which the semiconductor switching element 40 for the inverter unit 3 and the converter unit 2 is built is disposed in the outer case 12 of the power conversion device made in the above, and the cooler 42 of the power module 41 is the outer shape of the power conversion device. Fixed to the case 12 with screws or the like, the LC module 15, the terminal block 53, the drive circuit 43 that controls the power semiconductor, the computer 28 that performs PWM control, and the signal from the host controller of the power converter are attached to the upper part of the power module 41. A control board 47 on which a communication circuit 45 and a power circuit 46 for transmitting to the computer 28 are mounted and the power module is arranged. The power conversion device is configured by connecting with the electrode of the cable 41 using solder or the like, and the outer case 12 of the power conversion device and the outer case 44 of the AC motor as the load 6 are integrated. May be combined with screws or bolts, or may be formed by integral molding. In this way, the inverter 6 and the load 6 that create the leakage current 8 are connected when the AC motor as the load 6 and the power converter are brought close to each other. Since the length of the output power wiring to be maintained is constant under all mounting conditions, there is no change in the leakage current 8 caused by changes in the mounting conditions, and the zero-phase coil 26 is short-circuited to minimize the leakage current 8. Since the resistor 13 is also uniquely determined from the leakage capacity 7 of the AC motor, the damping effect of the leakage current 8 is accurately realized, the leakage current 8 flowing through the power line is greatly reduced, and the commercial AC power 1 is reduced. The leakage current 8 flowing into other devices can be reduced, adverse effects such as malfunctions to other devices can be reduced, and the electromagnetic waves created by the leakage current 8 and the wiring voltage of the leakage current path can be reduced. Since the leakage current 8 can be damped without using the line filter 5 incorporating the transformer 9, it is possible to reduce the size and cost of the power converter as well as to reduce the noise.
[0029]
FIG. 18 is an example of a power conversion device using an LC composite element according to the sixth embodiment of the present invention. This embodiment is different from the embodiment described in FIGS. 1 and 2 in that a DC power line Each of the electrodes of the LC composite element 15 connected to the electrode is flatly wound, and the cross section perpendicular to the winding axis is an ellipse. Further, the magnetic body inserted into the center of the wound electrode is formed into a toroidal shape. In addition to constituting the magnetic circuit, the cross section perpendicular to the winding axis of the electrode of the magnetic material is an ellipse or a square, and in this way, the effective magnetic path length of the magnetic circuit formed in a toroidal shape is obtained. Since the effective cross-sectional area of the magnetic path of the rod-like magnetic body 19 can be greatly increased without greatly increasing, the excitation inductance of the CMT can be increased, and the zero-phase coil 26 and the resistor 13 can be used. The damping effect of the variable resistor 27 on the leakage current 8 can be improved, the leakage current 8 flowing in the power line is greatly reduced, and the leakage current 8 flowing into other devices via the commercial AC power 1 is reduced. Since adverse effects such as malfunctions on other devices can be reduced and electromagnetic waves generated by the leakage current 8 and the wiring voltage of the leakage current path can be reduced, the leakage current can be eliminated without using the line filter 5 newly incorporating the common mode transformer 9. Since 8 can be damped, it is possible to reduce the size and cost of the power conversion device as well as to reduce the noise.
[0030]
FIG. 19 is an example of a power conversion device using an LC composite element according to the seventh embodiment of the present invention. This embodiment is different from the embodiment described in the above example in that each LC composite element is A region having different roughness roughness generated on the surfaces of the anode and the cathodes 16 and 17 is provided, and the region is provided in a band shape so as to connect two connection electrodes 20 connected to each anode and cathode, As a result, the electric resistance of the region 16A having a small surface roughness can be reduced and heat generation can be suppressed, the internal heat generation of the LC composite element can be reduced, while the electric capacity is increased in the region 16B having a large surface roughness. Therefore, the capacity of the LC composite element can be increased, and the LC composite element having a low heat generation and a high capacity can be configured. Therefore, low power loss and high conversion efficiency are achieved along with low noise of the power converter.
[0031]
Naturally, as shown in FIG. 14, a power conversion device 52 for linking a power supply system of a photovoltaic power generation system including a solar cell 51 and a power conversion device, or an internal combustion engine 48 and an electric motor of a load 6 shown in FIG. The DC power supplied from the power storage unit 14 is connected to the inverter unit 3 through the LC composite element 15, and the power of the motor of the internal combustion engine 48 and the load 6 is transmitted to the tire through the mission 49 and mounted on the moving vehicle and vehicle. Magnetic field of all inverter devices used, and inverters driven by motors for compressors and fans used in home and commercial air conditioners, motors that rotate the washing layer of washing machines, and motors for suction fans of vacuum cleaners and electric cookers The power converter of the above-described embodiment can be applied to a power converter for driving an inductance for generation, etc., and a reduction in size and cost as well as reduction in noise are achieved. It is.
[0032]
【The invention's effect】
According to the present invention, the anode 16 and the cathode 17 of the capacitor are wound around the rod-shaped magnetic body 19, the connection electrode 20 is drawn from both ends of the anode 16 and the cathode 17, and the connection magnet is connected so as to connect both ends of the rod-shaped magnetic body 19. It is possible to provide a power conversion device that is configured to form a magnetic circuit using the body 39 and achieve a reduction in size and cost as well as a reduction in noise by using the LC composite element 15 having a third coil linked to the magnetic circuit.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of an LC composite element according to the present invention.
FIG. 2 is a side view of the LC composite element of the embodiment of FIG.
FIG. 3 is a configuration diagram of a power conversion device using the LC composite element of the embodiment of FIG.
4 is a development view of an internal electrode of an LC composite element according to the embodiment of FIG.
5 is a configuration diagram of an LC composite element internal electrode of the embodiment of FIG. 1. FIG.
6 is a simplified equivalent circuit of a leakage current path of a power conversion device using the LC composite element of the embodiment of FIG.
FIG. 7 is a configuration diagram of a second embodiment of an LC composite element according to the present invention and a power converter using the LC composite element of the embodiment.
8 is a flowchart for minimizing leakage current in the power conversion apparatus according to the embodiment of FIG. 7;
FIG. 9 is a cross-sectional view showing a third embodiment of the LC composite element according to the present invention.
10 is a side view showing the third embodiment of FIG. 9. FIG.
11 is a main circuit connection diagram of a power conversion device using the LC composite element of the third embodiment shown in FIG. 9;
FIG. 12 is a main circuit connection diagram of a power conversion device using an LC composite element according to a fourth embodiment of the present invention.
FIG. 13 is a configuration diagram of a power conversion device using an LC composite element according to a fifth embodiment of the present invention.
FIG. 14 is a configuration diagram of a power conversion device using an LC composite element according to the present invention.
FIG. 15 is a configuration diagram of a power conversion apparatus using an LC composite element according to the present invention.
FIG. 16 is a configuration diagram of a power converter using a conventional line filter and CMT.
FIG. 17 shows a configuration and an equivalent circuit of a conventional LC composite element.
FIG. 18 is a side view of an LC composite device according to the present invention.
FIG. 19 is a development view of LC composite element internal electrodes.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Commercial AC power, 2 ... Converter part, 3 ... Inverter part, 4 ... Smoothing capacitor, 5 ... Line filter, 6 ... Load, 7 ... Leakage capacity, 8 ... Leakage current, 9 ... Common mode transformer, 10 ... Y-type connection capacitor for grounding, 11... CMT (common mode transformer with zero-phase coil), 12... External case of power converter, 13... Resistor, 14 ... Power storage unit, 15 ... LC composite element, 16. ... Electrode surface uneven surface, 16 B. Electrode surface uneven surface, 17. Cathode, 18. Insulating paper, 19. Rod-like magnetic material, 20. Connection electrode, 21. Cylindrical case, 22. , 23 ... U-shaped magnetic body, 24 ... Jig, 25 ... Bobbin, 26 ... Zero-phase coil, 27 ... Variable resistor, 28 ... Computer, 29 ... Half-wave rectifier circuit, 30 ... Peak hold circuit, 31 ... A / D converter, 32 ... Controller 33 ... first LC composite element 34 ... second LC composite element 35 ... anode of first LC composite element 36 ... cathode of first LC composite element 37 ... second LC composite element 38 ... cathode of second LC composite element 39 ... magnetic body for connection 40 ... semiconductor switching element 41 ... power module 42 ... cooler of power module 43 ... drive circuit 44 ... AC motor Outer case, 45 ... communication circuit, 46 ... power supply circuit, 47 ... control board, 48 ... internal combustion engine, 49 ... mission, 50 ... parasitic inductance, 51 ... solar cell, 52 ... power converter for power system linkage, 53 ... terminal Stand.

Claims (18)

負荷に電力を供給する電力配線間にコンデンサを接続して成る電力変換装置において、箔状の第1の電極と第2の電極それぞれが絶縁シートに固着され、前記第1の電極と第1の電極用絶縁シート及び前記第2の電極と第2の電極用絶縁シートを棒状の第1の磁性体に重ねて巻廻してLC複合素子を構成し、前記第1の電極と第2の電極のそれぞれ両端に電気的に接続する接続電極を固着し、前記第1の磁性体の両端を繋ぐもしくは近接するように第2の磁性体を配置し、前記第2の磁性体を巻廻した前記第1の電極と第2の電極の外側を通るように配置し、前記第2の磁性体に前記第1の磁性体に巻廻した前記第1の電極及び第2の電極と同じ向きにコイルを巻廻し、前記コイルの出力を短絡する抵抗を具備したことを特徴とする電力変換装置。In a power conversion device in which a capacitor is connected between power wirings for supplying power to a load, each of a foil-like first electrode and a second electrode is fixed to an insulating sheet, and the first electrode and the first electrode The electrode insulating sheet and the second electrode and the second electrode insulating sheet are wound on the rod-shaped first magnetic body to form an LC composite element, and the first electrode and the second electrode The connection electrodes that are electrically connected to both ends are fixed, the second magnetic body is disposed so as to connect or close both ends of the first magnetic body, and the second magnetic body is wound around the first magnetic body. The coil is disposed so as to pass outside the first electrode and the second electrode, and the coil is wound around the second magnetic body in the same direction as the first electrode and the second electrode wound around the first magnetic body. Power conversion characterized by comprising a resistor that winds and short-circuits the output of the coil Location. 請求項1に記載の電力変換装置において、前記LC複合素子を両端が開口した円筒形ケースに内蔵し、絶縁材で作られた封止板を前記円筒形ケースの両端へ固着し開口部を塞ぐと共に前記封止板に設けた穴から前記接続電極と第1の磁性体を引出し、円筒形ケース外側に第2の磁性体を第1の磁性体の両端を繋ぐように配置し、前記第2の磁性体を円筒形ケース側面及び封止板に治具や接着剤を用いて固着させたことを特徴とする電力変換装置。2. The power conversion device according to claim 1, wherein the LC composite element is built in a cylindrical case having both ends opened, and a sealing plate made of an insulating material is fixed to both ends of the cylindrical case to close the opening. In addition, the connection electrode and the first magnetic body are drawn out from the hole provided in the sealing plate, and the second magnetic body is disposed outside the cylindrical case so as to connect both ends of the first magnetic body, and the second A power conversion device characterized in that the magnetic body is fixed to a side surface of a cylindrical case and a sealing plate using a jig or an adhesive. 請求項2に記載の電力変換装置において、前記第2の磁性体を固定すると共に前記LC複合素子を配線基板等に固定する治具を前記円筒形ケースに固着したことを特徴とする電力変換装置。The power conversion device according to claim 2, wherein a jig for fixing the second magnetic body and fixing the LC composite element to a wiring board or the like is fixed to the cylindrical case. . 請求項2に記載の電力変換装置において、前記第2の磁性体を固定すると共に前記LC複合素子を配線基板等に固定する治具を前記封止板に具備したことを特徴とする電力変換装置。3. The power conversion device according to claim 2, wherein a jig for fixing the second magnetic body and fixing the LC composite element to a wiring board or the like is provided on the sealing plate. . 負荷に電力を供給する電力配線間に複数のコンデンサを直列に接続して成る電力変換装置において、箔状の第1の電極と第2の電極それぞれが絶縁シートに固着され、前記第1の電極と第1の電極用絶縁シート及び前記第2の電極と第2の電極用絶縁シートを棒状の第1の磁性体に常に第1の電極が上層に来るように重ねて巻廻して第1のLC複合素子を構成し、同様に第2のLC複合素子の第1の電極と第1の電極用絶縁シート及び第2の電極と第2の電極用絶縁シートを棒状の第3の磁性体に常に第2の電極が上層に来るように巻回すと共に第1の磁性体に第1のLC複合素子の前記第1の電極と前記第1の電極用絶縁シート及び前記第2の電極と前記第2の電極用絶縁シートを巻廻した向きと同じ向きに第2のLC複合素子の前記第1の電極と前記第1の電極用絶縁シート及び前記第2の電極と前記第2の電極用絶縁シートを巻廻し、第1のLC複合素子の前記第2の電極と第2のLC複合素子の前記第2の電極を電気的に接続し、第1のLC複合素子と第2のLC複合素子を直列接続させ、前記第1の磁性体と前記第3の磁性体それぞれの両端を繋ぐように第4及び第5の磁性体を配置し、前記第4もしくは第5の磁性体に前記第1及び第3の磁性体に巻廻した第1の電極及び第2の電極と同じ向きにコイルを巻廻し、前記コイルの出力を短絡する抵抗を具備したことを特徴とする電力変換装置。In a power conversion device in which a plurality of capacitors are connected in series between power wirings for supplying power to a load, each of a foil-like first electrode and a second electrode is fixed to an insulating sheet, and the first electrode The first electrode insulating sheet and the second electrode and the second electrode insulating sheet are wound on the rod-shaped first magnetic body so that the first electrode is always on the upper layer, and wound around the first electrode. The LC composite element is configured, and the first electrode and the first electrode insulating sheet and the second electrode and the second electrode insulating sheet of the second LC composite element are similarly formed into a rod-shaped third magnetic body. The first electrode of the first LC composite element, the first electrode insulating sheet, the second electrode, and the first magnetic body are wound so that the second electrode is always on the upper layer. The first LC composite element in the same direction as the direction in which the electrode insulating sheet 2 is wound. An electrode, the first electrode insulating sheet, the second electrode, and the second electrode insulating sheet are wound, and the second electrode of the first LC composite element and the second LC composite element of the first LC composite element are wound. The second electrode is electrically connected, the first LC composite element and the second LC composite element are connected in series, and both ends of the first magnetic body and the third magnetic body are connected to each other. 4 and the fifth magnetic body are arranged, and the coil is wound around the fourth or fifth magnetic body in the same direction as the first electrode and the second electrode wound around the first and third magnetic bodies. A power conversion device comprising a resistor that rotates and short-circuits the output of the coil. 請求項5に記載の電力変換装置において、前記第1及び第2のLC複合素子を両端が開口した円筒形ケースに内蔵し、絶縁材で作られた封止板を前記円筒形ケースの両端へ固着し開口部を塞ぐと共に前記封止板に設けた穴から前記接続電極と前記第1及び第3の磁性体を引出し、円筒形ケース外側に前記第1の磁性体と前記第3の磁性体それぞれの両端を繋ぐように第4及び第5の磁性体を配置し、前記第4及び第5の磁性体を円筒形ケース側面及び封止板に治具や接着剤を用いて固着させたことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein the first and second LC composite elements are built in a cylindrical case having both ends opened, and sealing plates made of an insulating material are connected to both ends of the cylindrical case. The connection electrode and the first and third magnetic bodies are drawn out from a hole provided in the sealing plate while being fixed to close the opening, and the first magnetic body and the third magnetic body are drawn outside the cylindrical case. The fourth and fifth magnetic bodies are arranged so as to connect the both ends, and the fourth and fifth magnetic bodies are fixed to the side surface of the cylindrical case and the sealing plate using a jig or an adhesive. The power converter characterized by this. 請求項5に記載の電力変換装置において、前記第4及び第5の磁性体を固定すると共に前記LC複合素子を配線基板等に固定する治具を前記円筒形ケースに固着したことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein a jig for fixing the fourth and fifth magnetic bodies and fixing the LC composite element to a wiring board or the like is fixed to the cylindrical case. Power conversion device. 請求項5に記載の電力変換装置において、前記第4及び第5の磁性体を固定すると共に前記LC複合素子を配線基板等に固定する治具を前記封止板に具備したことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein a jig for fixing the fourth and fifth magnetic bodies and fixing the LC composite element to a wiring board or the like is provided on the sealing plate. Power conversion device. 請求項1に記載の電力変換装置において、前記コイルの出力を可変抵抗器で短絡し、可変抵抗器の抵抗値を複数回変えると共に各回毎に可変抵抗器の両端の電圧を測る手段と、検出した可変抵抗器の電圧を用いてLC複合素子に流れるコモンモードの電流を最小にする可変抵抗器の抵抗値を算出する計算手段を具備したことを特徴とする電力変換装置。The power converter according to claim 1, wherein the output of the coil is short-circuited by a variable resistor, the resistance value of the variable resistor is changed a plurality of times, and the voltage across the variable resistor is measured each time, and detection A power conversion apparatus comprising: a calculation means for calculating a resistance value of a variable resistor that minimizes a common mode current flowing through the LC composite element using the voltage of the variable resistor. 請求項5に記載の電力変換装置において、前記コイルの出力を可変抵抗器で短絡し、可変抵抗器の抵抗値を複数回変えると共に各回毎に可変抵抗器の両端の電圧を測る手段と、検出した可変抵抗器の電圧を用いてLC複合素子に流れるコモンモードの電流を最小にする可変抵抗器の抵抗値を算出する計算手段を具備したことを特徴とする電力変換装置。6. The power converter according to claim 5, wherein the output of the coil is short-circuited by a variable resistor, the resistance value of the variable resistor is changed a plurality of times, and the voltage across the variable resistor is measured each time, and detection A power conversion apparatus comprising: a calculation means for calculating a resistance value of a variable resistor that minimizes a common mode current flowing through the LC composite element using the voltage of the variable resistor. 請求項1に記載の電力変換装置において、直流電力を交流電力に変換するパルス幅変調方式を用いたインバータ装置を負荷である電動機の側面に固着させ一体化すると共に、インバータ部の直流電力の平滑用として前記LC複合素子を用いたことを特徴とする電力変換装置。2. The power conversion device according to claim 1, wherein an inverter device using a pulse width modulation method for converting DC power into AC power is fixed to and integrated with a side surface of a motor that is a load, and DC power of the inverter unit is smoothed. A power converter using the LC composite element for use. 請求項5に記載の電力変換装置において、直流電力を交流電力に変換するパルス幅変調方式を用いたインバータ装置を負荷である電動機の側面に固着させ一体化すると共に、インバータ部の直流電力の平滑用として前記LC複合素子を用いたことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein an inverter device using a pulse width modulation method for converting DC power to AC power is fixed to and integrated with a side surface of an electric motor as a load, and DC power of the inverter unit is smoothed. A power converter using the LC composite element for use. 乗物に搭載された直流電力を交流電力に変換するパルス幅変調方式を用いて負荷である電動機を回転させるインバータ装置を備えた電力変換装置において、インバータ部の直流電力の平滑用として前記LC複合素子を用いたことを特徴とする電力変換装置。In a power conversion device including an inverter device for rotating a motor as a load using a pulse width modulation method for converting DC power mounted on a vehicle into AC power, the LC composite element is used for smoothing DC power of the inverter unit. The power converter characterized by using. パルス幅変調方式を用いて太陽電池や蓄電池等が供給する直流電力を交流電力に変換し電源系統に電力を供給するインバータ装置を備えた電力変換装置において、インバータ部の直流電力の平滑用として前記LC複合素子を用いたことを特徴とする電力変換装置。In a power conversion device including an inverter device that converts a DC power supplied by a solar cell, a storage battery, or the like into an AC power by using a pulse width modulation method and supplies power to a power supply system, the smoothing of the DC power of the inverter unit A power conversion device using an LC composite element. 請求項1に記載の電力変換装置において、インバータ装置の直流電力を平滑する前記LC複合素子の前記第1の電極と第1の電極用絶縁シート及び前記第2の電極と第2の電極用絶縁シートを巻き回し、巻き回した軸に垂直な断面を扁平になるようにし、扁平に巻き回した電極の中心部に棒状の第1の磁性体を挿入したことを特徴とする電力変換装置。2. The power conversion device according to claim 1, wherein the first electrode, the first electrode insulating sheet, and the second electrode and second electrode insulation of the LC composite element that smoothes the DC power of the inverter device. A power converter comprising: a sheet wound around, a cross section perpendicular to a wound axis being flattened, and a rod-shaped first magnetic body inserted in a central portion of the flat wound electrode. 請求項5に記載の電力変換装置において、インバータ装置の直流電力を平滑する前記LC複合素子の前記第1の電極と第1の電極用絶縁シート及び前記第2の電極と第2の電極用絶縁シートを巻き回し、巻き回した軸に垂直な断面を扁平になるようにし、扁平に巻き回した電極の中心部に棒状の第1の磁性体を挿入したことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein the first electrode, the first electrode insulating sheet, and the second electrode and the second electrode insulation of the LC composite element that smoothes the DC power of the inverter device. A power converter comprising: a sheet wound around, a cross section perpendicular to a wound axis being flattened, and a rod-shaped first magnetic body inserted in a central portion of the flat wound electrode. 請求項1に記載の電力変換装置において、前記LC複合素子の各陽極及び陰極の表面に生成される凹凸粗さが異なる領域を設け用いたことを特徴とする電力変換装置。2. The power conversion device according to claim 1, wherein regions having different unevenness generated on the surfaces of the anode and the cathode of the LC composite element are provided and used. 請求項5に記載の電力変換装置において、前記LC複合素子の各陽極及び陰極の表面に生成される凹凸粗さが異なる領域を設け用いたことを特徴とする電力変換装置。6. The power conversion device according to claim 5, wherein regions having different roughness roughness generated on the surfaces of the anode and the cathode of the LC composite element are provided.
JP2002234295A 2001-08-21 2002-08-12 Power converter Expired - Fee Related JP3817501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234295A JP3817501B2 (en) 2001-08-21 2002-08-12 Power converter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-249734 2001-08-21
JP2001249734 2001-08-21
JP2002234295A JP3817501B2 (en) 2001-08-21 2002-08-12 Power converter

Publications (2)

Publication Number Publication Date
JP2003143873A JP2003143873A (en) 2003-05-16
JP3817501B2 true JP3817501B2 (en) 2006-09-06

Family

ID=26620691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234295A Expired - Fee Related JP3817501B2 (en) 2001-08-21 2002-08-12 Power converter

Country Status (1)

Country Link
JP (1) JP3817501B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228793B2 (en) * 2008-10-27 2013-07-03 三菱電機株式会社 Elevator control device
US7974069B2 (en) * 2008-10-29 2011-07-05 General Electric Company Inductive and capacitive components integration structure
WO2012093486A1 (en) * 2011-01-07 2012-07-12 東芝三菱電機産業システム株式会社 Electric power converter
JP6981379B2 (en) * 2018-07-31 2021-12-15 株式会社デンソー Power converter
CN112225301B (en) * 2020-11-11 2022-10-21 诸暨迅超工业设计有限公司 Alum throwing equipment for sewage treatment pool and its use method

Also Published As

Publication number Publication date
JP2003143873A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
KR100555380B1 (en) Power converter
JP4260110B2 (en) Filter device
JP6597446B2 (en) In-vehicle electric compressor
CN101809851B (en) Voltage conversion device and electrical load drive device
US5552976A (en) EMI filter topology for power inverters
US10277116B2 (en) On-vehicle power conversion apparatus
US20110198919A1 (en) Circuit Board
US11437181B2 (en) Motor-driven compressor
JP6806280B1 (en) Noise filter and power converter
JP6962945B2 (en) Power semiconductor module and power converter using it
US10978981B2 (en) Drive apparatus for electric motor and air conditioner
EP3876401B1 (en) Electronic control assembly and electric appliance
US20240014758A1 (en) Power conversion device
JP3817501B2 (en) Power converter
CN1265539C (en) Single-phase converter loop converter and refrigeration cycle device
US11233441B2 (en) Rotating electric machine
Krall et al. On the influence of the stator winding topology on the electromagnetic emissions of fractional horsepower bldc motors
CN114208007B (en) Circuit body and refrigeration cycle device
WO2023228641A1 (en) Inverter device and electric compressor comprising same
JP2022112367A (en) Choke coil, electrical equipment
JP2022112366A (en) Power convert equipment
JP2022113013A (en) electrical equipment
JP2020102524A (en) Switching element unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090616

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees