JP3425360B2 - Test method for self-excited converter - Google Patents

Test method for self-excited converter

Info

Publication number
JP3425360B2
JP3425360B2 JP08107298A JP8107298A JP3425360B2 JP 3425360 B2 JP3425360 B2 JP 3425360B2 JP 08107298 A JP08107298 A JP 08107298A JP 8107298 A JP8107298 A JP 8107298A JP 3425360 B2 JP3425360 B2 JP 3425360B2
Authority
JP
Japan
Prior art keywords
phase
self
excited converter
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08107298A
Other languages
Japanese (ja)
Other versions
JPH11285265A (en
Inventor
丈雄 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP08107298A priority Critical patent/JP3425360B2/en
Publication of JPH11285265A publication Critical patent/JPH11285265A/en
Application granted granted Critical
Publication of JP3425360B2 publication Critical patent/JP3425360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自励式変換器の試
験方法に関する。
TECHNICAL FIELD The present invention relates to a method for testing a self-excited converter.

【0002】[0002]

【従来の技術】図4は、従来の自励式変換器の試験回路
の構成図である。自励式変換器1の直流側には、自励式
変換器1に直流電力を供給する整流器2が接続され、自
励式変換器1の交流側には負荷としてのリアクトル3が
接続されている。
2. Description of the Related Art FIG. 4 is a block diagram of a test circuit for a conventional self-excited converter. A rectifier 2 for supplying DC power to the self-excited converter 1 is connected to the DC side of the self-excited converter 1, and a reactor 3 as a load is connected to the AC side of the self-excited converter 1.

【0003】図4の試験回路では、整流器2から自励式
変換器1及びリアクトル3の損失分の直流電力を供給し
ながら、定格直流電圧を維持する。自励式変換器1は定
格運転状態、つまり定格周波数、定格電流、定格出力電
圧で運転される。リアクトル3には、定格出力電圧にお
いて定格電流が流れるインダクタンスが選定される。
In the test circuit of FIG. 4, the rated DC voltage is maintained while the DC power for the loss of the self-excited converter 1 and the reactor 3 is supplied from the rectifier 2. The self-excited converter 1 is operated in the rated operating state, that is, the rated frequency, rated current, and rated output voltage. For the reactor 3, an inductance through which a rated current flows at a rated output voltage is selected.

【0004】図5は、自励式変換器1の1相の構成図で
ある。スイッチング素子4には、逆並列にダイオード5
が接続されており、更にダイオードとコンデンサと抵抗
とからなるスナバ回路が並列に接続されている。
FIG. 5 is a configuration diagram of one phase of the self-excited converter 1. A diode 5 is connected in anti-parallel to the switching element 4.
, And a snubber circuit composed of a diode, a capacitor, and a resistor is connected in parallel.

【0005】図6は、従来の試験回路の動作説明図であ
る。(a)は三角波の搬送波と電圧基準を示し、(b)
は出力線間電圧を示し、(c)はリアクトル3に流れる
電流を示し、(d)はスイッチング素子を流れる電流を
示す。
FIG. 6 is a diagram for explaining the operation of a conventional test circuit. (A) shows a triangular wave carrier and voltage reference, (b)
Indicates the output line voltage, (c) indicates the current flowing through the reactor 3, and (d) indicates the current flowing through the switching element.

【0006】スイッチング素子4−1のオン・オフは三
角波の搬送波と電圧基準値である正弦波の比較で決定さ
れ、電圧基準値の値が搬送波より大きい場合はオンとな
る。単相ブリッジ接続された自励式変換器の場合は第1
相に対して第2相は180°遅れた電圧基準値が与えら
れ、スイッチング素子のスイッチングが決定される。
The switching element 4-1 is turned on / off by comparing a triangular wave carrier with a sine wave which is a voltage reference value, and is turned on when the voltage reference value is larger than the carrier wave. 1st in the case of a self-excited converter with a single-phase bridge connection
The second phase is provided with a voltage reference value delayed by 180 ° with respect to the phase, and switching of the switching element is determined.

【0007】図6において、(d)はスイッチング素子
4−1とダイオード5−1に流れる電流であり、正側は
スイッチング素子4−1に流れる電流、負側はダイオー
ド5−1に流れる電流である。
In FIG. 6, (d) is the current flowing through the switching element 4-1 and the diode 5-1. The positive side is the current flowing through the switching element 4-1 and the negative side is the current flowing through the diode 5-1. is there.

【0008】この試験回路では、リアクトル3を負荷と
しているため、負荷力率はゼロであり、電流は電圧から
90°遅れとなる。従って、電流の1/2はスイッチン
グ素子4−1に流れ、残りの1/2はダイオード5−1
に流れる。
In this test circuit, since the reactor 3 is used as a load, the load power factor is zero and the current is delayed by 90 ° from the voltage. Therefore, 1/2 of the current flows to the switching element 4-1, and the remaining 1/2 is the diode 5-1.
Flow to.

【0009】この方法によれば、少ない電力で自励式変
換器を定格状態で運転できるので、一般的に行われてい
る。特に、大容量の自励式変換器においては、電源系統
に接続したり、定格容量の抵抗負荷を準備することは不
可能であるため、製造者における試験方法として広く行
われている。
According to this method, the self-excited converter can be operated in a rated state with a small amount of electric power, and therefore it is generally used. In particular, in a large-capacity self-excited converter, it is not possible to connect to a power supply system or prepare a resistive load having a rated capacity, so that it is widely used as a test method by manufacturers.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
試験回路には、次のような問題点がある。本来、自励式
変換器1が有効電力を出力しているときのスイッチング
素子4−1に流れる電流は、図7の通りである。つま
り、従来の試験方法における電流波形の方が明らかに楽
になっている。
However, the conventional test circuit has the following problems. Originally, the current flowing through the switching element 4-1 when the self-excited converter 1 outputs active power is as shown in FIG. 7. That is, the current waveform in the conventional test method is obviously easier.

【0011】このため、従来の試験方法では実際の運転
と等価な責務与えているとは言えなかった。また、電
圧基準値を実際の運転に合わせるためにはリアクトル3
のインダクタンス値を製品毎に準備する必要があり、不
経済であった。
[0011] For this reason, in the conventional test methods can not be said has given the actual operation and equivalent responsibilities. Moreover, in order to adjust the voltage reference value to the actual operation, the reactor 3
It was uneconomical to prepare the inductance value for each product.

【0012】よって、本発明は、上述の問題点を除去
し、従来と同等の試験回路のままで、自励式変換器に実
際の運転と等価な責務を与えることのできる試験方法を
提供することを目的とする。
Therefore, the present invention eliminates the above-mentioned problems, and provides a test method capable of giving a duty equivalent to actual operation to a self-excited converter with a test circuit equivalent to a conventional one. With the goal.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る自励式変換器の試験方法で
は、単相インバータの任意の1相を所定の運転状態にお
けるスイッチング状態に設定し、残りの1相を前記第1
相の電圧に対し電流の位相が−180°〜180°にな
るように位相及び振幅を調整する。これにより、第1相
の電圧に対し電流の位相が90°の場合を除けば、単相
インバータの第1相のスイッチング素子から見れば有効
電力を出力しているのと同じ状態とすることができ、第
2相の位相及び振幅を変えることで、実際の運転状態と
同じ状態を作り出すことができ、スイッチング素子に実
際の運転と等価な責務を与えることができる。また、実
際には有効電力は出力しないので、試験に使用する電力
は従来と同じく変換器の損失分とリアクトルの損失分だ
けで済み大きな電力を必要としない。更に、第2相の調
整によりリアクタンスのインダクタンス値がどのような
値でも必要な電流値に調整することが可能で、インダク
タンスを製品毎に調整する必要は無くなる。また、イン
ダクタンス値が小さくても定格電流になるように調整が
できるため、インダクタンスは小さなもので良く、試験
設備を小さくすることができる。
In order to achieve the above object, in the method for testing a self-excited converter according to claim 1 of the present invention, any one phase of a single-phase inverter is switched in a predetermined operating state. And set the remaining one phase to the first
The phase and amplitude are adjusted so that the phase of the current is −180 ° to 180 ° with respect to the voltage of the phase. Thus, except for the case where the current phase is 90 ° with respect to the voltage of the first phase, the same state as that of outputting active power can be obtained from the viewpoint of the switching element of the first phase of the single-phase inverter. By changing the phase and amplitude of the second phase, the same state as the actual operating state can be created, and the switching element can be given a duty equivalent to the actual operating state. Moreover, since the active power is not actually output, the power used for the test is only the loss of the converter and the loss of the reactor as in the conventional case, and a large amount of power is not required. Furthermore, by adjusting the second phase, it is possible to adjust the inductance value of the reactance to any required current value, and it is not necessary to adjust the inductance for each product. Further, since the rated current can be adjusted even if the inductance value is small, the inductance may be small, and the test equipment can be downsized.

【0014】本発明の請求項2に係る自励式変換器の試
験方法では、三相インバータの任意の1相を所定の運転
状態におけるスイッチング状態に設定し、残りの2相の
内1相を前記第1相の電圧に対し電流の位相が−180
°〜180°になるように位相及び振幅を調整する。こ
れにより、第1相の電圧に対し電流の位相が90°の場
合を除けば、三相インバータの第1相のスイッチング素
子から見れば有効電力を出力しているのと同じ状態とす
ることができ、第2相の位相及び振幅を変えることで、
実際の運転状態と同じ状態を作り出すことができ、スイ
ッチング素子に実際の運転と等価な責務を与えることが
できる。また、実際には有効電力は出力しないので、試
験に使用する電力は従来と同じく変換器の損失分とリア
クトルの損失分だけで済み大きな電力を必要としない。
更に、第2相の調整によりリアクタンスのインダクタン
ス値がどのような値でも必要な電流値に調整することが
可能で、インダクタンスを製品毎に調整する必要は無く
なる。また、インダクタンス値が小さくても定格電流に
なるように調整ができるため、インダクタンスは小さな
もので良く、試験設備を小さくすることができる。
In the method for testing a self-excited converter according to claim 2 of the present invention, any one phase of the three-phase inverter is set to a switching state in a predetermined operating state, and one of the remaining two phases is set to the above-mentioned one. The phase of the current is -180 with respect to the voltage of the first phase.
Adjust the phase and amplitude so that the angle is between 180 ° and 180 °. As a result, except for the case where the current phase is 90 ° with respect to the voltage of the first phase, the same state as the output of active power can be obtained from the viewpoint of the switching element of the first phase of the three-phase inverter. Yes, by changing the phase and amplitude of the second phase,
The same state as the actual operating state can be created, and the switching element can be given a responsibility equivalent to the actual operating state. Moreover, since the active power is not actually output, the power used for the test is only the loss of the converter and the loss of the reactor as in the conventional case, and a large amount of power is not required.
Furthermore, by adjusting the second phase, it is possible to adjust the inductance value of the reactance to any required current value, and it is not necessary to adjust the inductance for each product. Further, since the rated current can be adjusted even if the inductance value is small, the inductance may be small, and the test equipment can be downsized.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、本発明の第1の実
施の形態の動作説明図である。(a)は三角波の搬送波
と第1相、第2相の電流基準値であり、(b)は第1相
と第2相の電圧基準値から求められる出力線間電圧であ
り、(c)はリアクトル3に流れる電流である。図2
は、出力電圧、電流を表すベクトル図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an operation explanatory diagram of the first embodiment of the present invention. (A) is the carrier wave of the triangular wave and the current reference values of the first phase and the second phase, (b) is the output line voltage obtained from the voltage reference values of the first phase and the second phase, (c) Is a current flowing through the reactor 3. Figure 2
[Fig. 3] is a vector diagram showing an output voltage and a current.

【0016】本実施の形態では、第1相の電圧基準値を
定格運転状態に設定しておき、第2相の電圧基準値を第
1相の電圧基準値に対して出力線間電圧の位相が90°
進んだ位相になるように設定する。
In this embodiment, the voltage reference value of the first phase is set to the rated operation state, and the voltage reference value of the second phase is set to the phase of the output line voltage with respect to the voltage reference value of the first phase. Is 90 °
Set so that the phase is advanced.

【0017】このような設定で運転を行うと、リアクト
ル3に流れる電流の位相は、出力線間電圧に対して90
°遅れた位相となるから、リアクトル3に流れる電流の
位相は、第1相の電圧基準値と同位相となる。これは、
第1相のスイッチング素子から見れば有効電力を出力し
ている状態と同じになり、第1相のスイッチング素子に
は図7で示した電流波形が流れる。
When the operation is performed with such a setting, the phase of the current flowing through the reactor 3 is 90 with respect to the output line voltage.
Since the phase is delayed, the phase of the current flowing in the reactor 3 becomes the same phase as the voltage reference value of the first phase. this is,
From the viewpoint of the first-phase switching element, the state becomes the same as the state in which active power is output, and the current waveform shown in FIG. 7 flows through the first-phase switching element.

【0018】また、図3のように第2相の位相、振幅を
変更することにより、第1相の電圧に対し電流の位相を
自由に変えることができる。このように、第2相の振幅
と位相を調整することで、第1相の電圧に対して電流の
位相を自由に調整でき、第1相のスイッチング素子4に
は実際の運転と等価な責務を与えることが可能である。
また、自励式変換器は有効電力を発生していないので、
整流器2が供給する電力は従来と同じく変換器の損失分
とリアクトルの損失分だけで済み大きな電力を必要とし
ない。
Further, by changing the phase and amplitude of the second phase as shown in FIG. 3, the phase of current can be freely changed with respect to the voltage of the first phase. As described above, by adjusting the amplitude and phase of the second phase, the phase of the current can be freely adjusted with respect to the voltage of the first phase, and the switching element 4 of the first phase has a duty equivalent to that of the actual operation. It is possible to give
Also, since the self-excited converter does not generate active power,
The power supplied by the rectifier 2 is only the loss of the converter and the loss of the reactor as in the conventional case, and large power is not required.

【0019】更に、第2相の調整によりリアクタンス3
のインダクタンス値がどのような値でも必要な電流値に
調整することが可能で、インダクタンスを製品毎に調整
する必要は無くなる。また、インダクタンス値が小さく
ても定格電流になるように調整ができるため、インダク
タンス3は小さなもので良く、試験設備を小さくするこ
とができる。
Further, the reactance 3 is adjusted by adjusting the second phase.
Any inductance value can be adjusted to a required current value, and it is not necessary to adjust the inductance for each product. Further, since the rated current can be adjusted even if the inductance value is small, the inductance 3 may be small, and the test equipment can be downsized.

【0020】次に三相ブリッジ接続された自励式変換器
に適用した場合について説明する。三相ブリッジ構成の
自励式変換器においても、基本的な考え方は上述した単
相ブリッジ構成の自励式変換器と同様であり、異なるの
は第3相の取り扱いである。
Next, a case where the present invention is applied to a three-phase bridge-connected self-exciting converter will be described. The basic concept of the self-excited converter of the three-phase bridge structure is the same as that of the self-excited converter of the single-phase bridge structure described above, and the difference is the handling of the third phase.

【0021】第1相の電圧基準値を定格運転状態に設定
しておき、第2相の電圧基準値の振幅と位相を調整する
ことで、第1相の電圧に対して電流の位相を調整する。
そして、残る第3相は、停止状態にするか、第2相と同
じ電圧基準で運転するかすれば良い。
By setting the voltage reference value of the first phase to the rated operation state and adjusting the amplitude and phase of the voltage reference value of the second phase, the current phase is adjusted with respect to the voltage of the first phase. To do.
Then, the remaining third phase may be brought into a stopped state or operated with the same voltage reference as the second phase.

【0022】これにより、上述した単相ブリッジ構成の
自励式変換器と同様の効果が得られ、従来と同じ電力
で、スイッチング素子に実際の運転状態と等価な責務を
与えて試験をすることが可能で、また、リアクトルも小
さくてすみ経済的で信頼性の高い試験方法を提供するこ
とができる。
As a result, the same effect as that of the self-exciting converter having the above-mentioned single-phase bridge structure can be obtained, and it is possible to perform a test with the same power as the conventional one while giving the switching element a duty equivalent to the actual operating state. It is possible to provide a test method that is economical, highly reliable, and has a small reactor.

【0023】以上の説明では、自励式変換器の接続方法
を単相ブリッジ、三相ブリッジで説明したが、変換器の
接続方式にはよらず、どんな接続方式でも同様な効果が
得られる。例えば、多レベルインバータ方式でも良い。
また、第2相の位相、振幅の調整は手動で調整しても良
く、電流制御系により自動的に調整しても良い。
In the above description, the connection method of the self-excited converter is described as a single-phase bridge or a three-phase bridge, but the same effect can be obtained by any connection method regardless of the converter connection method. For example, a multi-level inverter system may be used.
Further, the phase and amplitude of the second phase may be manually adjusted, or may be automatically adjusted by the current control system.

【0024】[0024]

【発明の効果】以上詳述したように、本発明によれば、
小容量の試験設備でスイッチング素子に実際の運転状態
と等価な責務を与えた試験を行うことが可能で、経済的
で信頼性の高い自励式変換器の試験方法を提供すること
ができる。
As described in detail above, according to the present invention,
It is possible to perform a test in which the switching device is given a duty equivalent to the actual operating state in a small-capacity test facility, and it is possible to provide an economical and highly reliable test method for a self-excited converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態の動作説明図。FIG. 1 is an operation explanatory diagram of the first embodiment of the present invention.

【図2】 出力電圧、電流を表すベクトル図。FIG. 2 is a vector diagram showing output voltage and current.

【図3】 出力電圧、電流を表すベクトル図。FIG. 3 is a vector diagram showing output voltage and current.

【図4】 自励式変換器の試験回路の構成図。FIG. 4 is a configuration diagram of a test circuit of a self-excited converter.

【図5】 自励式変換器の1相の構成図。FIG. 5 is a configuration diagram of one phase of a self-excited converter.

【図6】 従来の試験回路の動作説明図。FIG. 6 is an operation explanatory diagram of a conventional test circuit.

【図7】 自励式変換器が有効電力を出力しているとき
にスイッチング素子に流れる電流波形。
FIG. 7 is a waveform of a current flowing through the switching element when the self-exciting converter outputs active power.

【符号の説明】[Explanation of symbols]

1・・・自励式変換器 2・・・整流器 3・・・リアクトル 4・・・スイッチング素子 5・・・ダイオード 1-Self-excited converter 2 rectifier 3 ... Reactor 4 ... Switching element 5 ... Diode

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 単相インバータの負荷側にリアクトルが
接続された自励式変換器の試験方法において、前記単相
インバータの任意の1相を所定の運転状態におけるスイ
ッチング状態に設定し、残りの1相を前記第1相の電圧
に対し電流の位相が−180°〜180°になるように
位相及び振幅を調整することを特徴とする自励式変換器
の試験方法。
1. A test method for a self-excited converter in which a reactor is connected to a load side of a single-phase inverter, wherein any one phase of the single-phase inverter is set to a switching state in a predetermined operating state, and the remaining 1 phase is set. A test method for a self-excited converter, wherein the phase and the amplitude are adjusted so that the phase of the current is −180 ° to 180 ° with respect to the voltage of the first phase.
【請求項2】 三相インバータの負荷側にリアクトルが
接続された自励式変換器の試験方法において、前記三相
インバータの任意の1相を所定の運転状態におけるスイ
ッチング状態に設定し、残りの2相の内1相を前記第1
相の電圧に対し電流の位相が−180°〜180°にな
るように位相及び振幅を調整することを特徴とする自励
式変換器の試験方法。
2. A test method for a self-excited converter in which a reactor is connected to a load side of a three-phase inverter, wherein any one phase of the three-phase inverter is set to a switching state in a predetermined operating state, and the remaining two phases are set. One of the phases is the first
A test method for a self-excited converter, characterized in that the phase and amplitude are adjusted so that the current phase is -180 ° to 180 ° with respect to the phase voltage.
JP08107298A 1998-03-27 1998-03-27 Test method for self-excited converter Expired - Lifetime JP3425360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08107298A JP3425360B2 (en) 1998-03-27 1998-03-27 Test method for self-excited converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08107298A JP3425360B2 (en) 1998-03-27 1998-03-27 Test method for self-excited converter

Publications (2)

Publication Number Publication Date
JPH11285265A JPH11285265A (en) 1999-10-15
JP3425360B2 true JP3425360B2 (en) 2003-07-14

Family

ID=13736198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08107298A Expired - Lifetime JP3425360B2 (en) 1998-03-27 1998-03-27 Test method for self-excited converter

Country Status (1)

Country Link
JP (1) JP3425360B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132960A1 (en) * 2014-03-07 2015-09-11 東芝三菱電機産業システム株式会社 Inverter testing apparatus
JP6192114B2 (en) * 2014-06-26 2017-09-06 東芝三菱電機産業システム株式会社 Test method and apparatus for transducer

Also Published As

Publication number Publication date
JPH11285265A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US6847531B2 (en) System and method for regenerative PWM AC power conversion
US5625539A (en) Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
US6771522B2 (en) Inverter parallel operation system
Sul et al. Design and performance of a high-frequency link induction motor drive operating at unity power factor
US6542390B2 (en) System and method for regenerative PWM AC power conversion
JP4003409B2 (en) Multi-output power conversion circuit
CN107567680B (en) Variable speed drive with active converter
JP3698440B2 (en) Energy control device
WO2001067590A1 (en) Pwm cycloconverter and power fault detector
JP2004538493A (en) Apparatus and method for connection monitoring of an electric supply unit
JP2004120883A (en) Inverter device for three-phase ac motor driving
TW571479B (en) Dynamic series voltage compensator with current sharing static switch
US20060273765A1 (en) Controller for a permanent magnet generator and a generator in combination with such a controller
US11342878B1 (en) Regenerative medium voltage drive (Cascaded H Bridge) with reduced number of sensors
JP4712148B2 (en) Power converter
JP3425360B2 (en) Test method for self-excited converter
JPH07163153A (en) Control method for single-phase three-wire inverter
JP4693214B2 (en) Inverter device
Bala et al. Matrix converter BLDC drive using reverse-blocking IGBTs
US7301736B2 (en) Method and device for shutting down a drive with a matrix converter during a power outage
JPS58141699A (en) Motor controller
JPH11187576A (en) Distributed power supply
KR100844753B1 (en) Pwm cycloconverter input voltage detection method and device
JPH0744834B2 (en) Pulse width control power converter
JP3374827B2 (en) Reactive power generator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term