JP3284571B2 - Electric car - Google Patents

Electric car

Info

Publication number
JP3284571B2
JP3284571B2 JP01057192A JP1057192A JP3284571B2 JP 3284571 B2 JP3284571 B2 JP 3284571B2 JP 01057192 A JP01057192 A JP 01057192A JP 1057192 A JP1057192 A JP 1057192A JP 3284571 B2 JP3284571 B2 JP 3284571B2
Authority
JP
Japan
Prior art keywords
motor
power
secondary battery
power converter
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01057192A
Other languages
Japanese (ja)
Other versions
JPH05207664A (en
Inventor
忠士 渋谷
博之 三宅
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP01057192A priority Critical patent/JP3284571B2/en
Publication of JPH05207664A publication Critical patent/JPH05207664A/en
Application granted granted Critical
Publication of JP3284571B2 publication Critical patent/JP3284571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気自動車に係り、特
に搭載する蓄電池を充電するための充電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric vehicle and, more particularly, to a charging device for charging an onboard storage battery.

【0002】[0002]

【従来の技術】電気自動車は、モータを原動機とし、そ
の電源に二次電池(蓄電池)が搭載され、モータ制御装
置によるモータ制御がなされる。このため、電気自動車
は、内燃機関を原動機とする従来の自動車に必要なガソ
リン等の燃料を給油するのとは異なり、搭載した蓄電池
を充電する充電装置を必要とする。
2. Description of the Related Art In an electric vehicle, a motor is used as a motor, a secondary battery (rechargeable battery) is mounted on a power source thereof, and motor control is performed by a motor control device. For this reason, an electric vehicle requires a charging device for charging a mounted storage battery, unlike supplying fuel such as gasoline required for a conventional vehicle using an internal combustion engine as a prime mover.

【0003】図7は従来の電気自動車用の充電装置を示
す。1は充電装置であり、2は電気自動車である。充電
装置1の出力端子A,Bには充電ケーブル3が接続さ
れ、この充電ケーブル3の他端を電気自動車2の入力端
子A′,B′に接続することにより、電気自動車2に搭
載された蓄電池4の充電を行う。
FIG. 7 shows a conventional charging device for an electric vehicle. 1 is a charging device, and 2 is an electric vehicle. A charging cable 3 is connected to output terminals A and B of the charging device 1, and the other end of the charging cable 3 is connected to input terminals A ′ and B ′ of the electric vehicle 2, so that the charging cable 3 is mounted on the electric vehicle 2. The storage battery 4 is charged.

【0004】充電装置1では交流電源5からスイッチ6
を介して交流電力を取り込み、この交流電力を整流器7
により直流電力に変換し、スイッチ8を介して出力端子
A,Bに直流出力を得る。整流器7との組み合わせで充
電器を構成する制御部9は、電流検出部10及び電圧検
出部11によって検出された直流電流及び直流電圧に基
づいて整流器7の出力電流及び電圧を制御し、定電流定
電圧方式等の充電方式によって蓄電池4を充電する。
[0004] In the charging device 1, the switch 6
AC power is taken in through the rectifier 7
To obtain DC power at the output terminals A and B via the switch 8. The control unit 9 which configures the charger in combination with the rectifier 7 controls the output current and the voltage of the rectifier 7 based on the DC current and the DC voltage detected by the current detection unit 10 and the voltage detection unit 11, and controls the constant current. The storage battery 4 is charged by a charging method such as a constant voltage method.

【0005】なお、充電装置1は短時間で蓄電池4を充
電できることが、電気自動車の普及及びメンテナンス面
で要望され、出力の大電流,高電圧化が進められると共
に急速充電を可能とする蓄電池4の改良,研究も進めら
れている。
[0005] The charging device 1 is required to be able to charge the storage battery 4 in a short time in view of the spread and maintenance of electric vehicles. Improvements and researches are underway.

【0006】[0006]

【発明が解決しようとする課題】従来の電気自動車は、
搭載する蓄電池の充電装置が電気自動車専用の充電設備
として特定の場所に設置(据置)されるため、蓄電池の
充電を必要とするときに該充電設備の設置場所まで移動
させなければならない。
A conventional electric vehicle is:
Since the charging device for the storage battery to be mounted is installed (installed) in a specific place as charging equipment exclusively for electric vehicles, when the storage battery needs to be charged, it must be moved to the installation location of the charging equipment.

【0007】このため、充電装置の設置場所までの移動
に手間取る問題があった。特に、現状では充電設備の設
置場所及びエリアが限られており、設置場所までの距離
が長くなることが多く、充電に要する手間が問題とな
る。また、充電装置の設置エリア外では充電不能になる
ことから電気自動車の遠隔地走行を難しくしている。
For this reason, there is a problem that it takes time to move the charging device to the installation location. In particular, at present, the installation location and area of the charging equipment are limited, and the distance to the installation location is often long, and the time and effort required for charging becomes a problem. Also, charging becomes impossible outside the installation area of the charging device, which makes it difficult for the electric vehicle to travel at remote locations.

【0008】この問題を解決するには、電気自動車に充
電装置を搭載し、一般家庭や営業所に配電される商用の
交流電源から充電電力を取り込めるようにすることが考
えられる。
In order to solve this problem, it is conceivable that a charging device is mounted on an electric vehicle so that charging power can be taken from a commercial AC power source distributed to ordinary households and business offices.

【0009】しかし、充電装置を電気自動車に搭載する
ための設置スペース,重量増を招くし、電気自動車のコ
ストアップになる。
However, installation space and weight for mounting the charging device on the electric vehicle are increased, and the cost of the electric vehicle is increased.

【0010】上述の充電装置に専用のものを不要にする
ものとして、電気自動車の駆動用モータを交流モータと
し、この交流モータをインバータで駆動し、該インバー
タが持つダイオード及びスイッチング素子を整流及びチ
ョッパ素子として利用し、さらにチョッパに必要なリア
クトルに駆動用モータの巻線を利用したものが提案され
ている(例えば、実開平1−134902号公報)。
[0010] In order to eliminate the need for a dedicated charging device, an AC motor is used as a driving motor for an electric vehicle. The AC motor is driven by an inverter, and a diode and a switching element of the inverter are rectified and choppered. There has been proposed a device that uses a coil of a driving motor as a reactor required for a chopper (for example, Japanese Utility Model Application Laid-Open No. 1-134902).

【0011】この従来装置ではインバータ回路素子を整
流及びチョッパ回路素子として利用するため、インバー
タ回路と整流及びチョッパ回路の構成の切り換えのため
の多くの切換スイッチを必要とする。また、モータの巻
線をリアクトルとして利用するのにモータの巻線の接続
関係を切り換えるための切換スイッチ及びモータの巻線
端子の引出しも必要とする。これら多くの切換スイッチ
を必要とするため、従来装置では複雑な回路構成及び切
換スイッチ制御回路も複雑になる問題があるし、モータ
自体も複雑にする問題があった。
In this conventional device, since an inverter circuit element is used as a rectifier and a chopper circuit element, a number of changeover switches for switching the configuration of the inverter circuit and the rectifier and the chopper circuit are required. In addition, in order to use the motor winding as a reactor, a changeover switch for switching the connection relationship of the motor winding and the drawing of the motor winding terminal are required. Since such a large number of changeover switches are required, the conventional apparatus has a problem that a complicated circuit configuration and a changeover switch control circuit are complicated, and a problem is that the motor itself is also complicated.

【0012】本発明の目的は、商用の交流電源からの充
電を可能にしながら専用の充電装置を不要にして装置構
成も簡単にする電気自動車を提供することにある。
It is an object of the present invention to provide an electric vehicle which can be charged from a commercial AC power source and does not require a dedicated charging device, thereby simplifying the device configuration.

【0013】[0013]

【0014】[0014]

【課題を解決するための手段】 本発明は、前記課題の解
決を図るため、 交流モータを原動機とし、該モータの駆
動に必要な電源を二次電池とする電気自動車において、
直流入出力端が前記二次電池に接続され該二次電池から
の直流を交流に変換して交流入出力端から前記交流モー
タに直結で供給しかつ外部の直流電源からの直流電力を
チョッパ制御で昇圧又は降圧して該二次電池側に直流電
力を得る電力変換器と、前記電力変換器の交流出力を前
記交流モータに供給するモータ駆動モードと前記直流電
源からの直流入力をチョッパ用リアクトルを介して該電
力変換器に供給する二次電池充電モードとを切り換える
切換制御回路とを備えたことを特徴とする。
According to the present invention, there is provided a solution to the above problems.
In order to make a decision, in an electric vehicle using an AC motor as a prime mover and a power source required for driving the motor as a secondary battery,
A DC input / output terminal is connected to the secondary battery, converts DC from the secondary battery into AC, and converts the AC mode from the AC input / output terminal.
A power converter that supplies DC power directly to the secondary battery and obtains DC power on the secondary battery side by boosting or stepping down DC power from an external DC power supply under chopper control; and outputting the AC output of the power converter to the AC motor. And a switching control circuit for switching between a motor driving mode to be supplied to the power converter and a secondary battery charging mode for supplying a DC input from the DC power supply to the power converter via a chopper reactor.

【0015】また、本発明は、交流モータを原動機とし
該モータの駆動に必要な電源を二次電池とする電気自動
車において、直流入出力端が前記二次電池に接続され該
二次電池からの直流を交流に変換して交流入出力端から
前記交流モータの一次側スター巻線に直結で供給しかつ
該交流モータの巻線を通した直流電流をチョッパ制御で
昇圧して該二次電池側に直流電力を得る電力変換器と、
前記電力変換器の交流出力を前記交流モータに供給する
モータ駆動モードと外部の直流電源からの直流入力を前
記交流モータの巻線を介して該電力変換器に供給する二
次電池充電モードとを切換える切換制御回路とを備えた
ことを特徴とする。
Further, the present invention relates to an electric vehicle in which an AC motor is used as a prime mover and a power source required for driving the motor is used as a secondary battery, and a DC input / output terminal is connected to the secondary battery. DC is converted to AC and supplied directly from the AC input / output end to the primary star winding of the AC motor, and the DC current passing through the winding of the AC motor is boosted by chopper control to increase the DC current. A power converter for obtaining DC power on the secondary battery side,
A motor drive mode for supplying the AC output of the power converter to the AC motor, and a secondary battery charging mode for supplying a DC input from an external DC power supply to the power converter through the winding of the AC motor. And a switching control circuit for switching.

【0016】また、本発明は、交流モータを原動機とし
該モータの駆動に必要な電源を二次電池とする電気自動
車において、直流入出力端が前記二次電池に接続され該
二次電池からの直流を交流に変換して交流入出力端から
前記交流モータの一次側スター巻線に直結で供給しかつ
該交流モータの巻線を通した直流電流をチョッパ制御で
昇圧可能にして該二次電池側に直流電力を得る電力変換
器と、前記交流モータの巻線に降圧制御した直流電流を
供給するスイッチ回路と、前記電力変換器の交流出力を
前記交流モータに供給するモータ駆動モードと外部の直
流電源からの直流入力を前記交流モータの巻線を介して
該電力変換器に供給する二次電池充電モードとを切換え
る切換制御回路とを備えたことを特徴とする。
Further, the present invention relates to an electric vehicle in which an AC motor is used as a prime mover and a power supply required for driving the motor is used as a secondary battery, and a DC input / output terminal is connected to the secondary battery. DC is converted to AC and supplied directly from the AC input / output end to the primary star winding of the AC motor, and the DC current passing through the winding of the AC motor can be boosted by chopper control. A power converter for obtaining DC power on the secondary battery side, a switch circuit for supplying a step-down controlled DC current to a winding of the AC motor, and a motor drive for supplying an AC output of the power converter to the AC motor. A switching control circuit for switching between a mode and a secondary battery charging mode for supplying a DC input from an external DC power supply to the power converter via a winding of the AC motor.

【0017】[0017]

【0018】[0018]

【作用】 請求項1 では、電力変換器を直流・交流変換と
チョッパ制御による直流・直流変換の双方向電力変換器
とし、チョッパ制御を昇圧または降圧とすることで交流
電源と二次電池の電圧関係を任意にする。
According to the first aspect , the power converter is a bidirectional power converter for DC / AC conversion and DC / DC conversion by chopper control, and the voltage of the AC power supply and the voltage of the secondary battery is increased by increasing or decreasing the chopper control. Make the relationship optional.

【0019】請求項2では電気自動車の二次電池から直
流電力を得て交流モータを駆動する電力変換器を直流・
交流変換と昇圧チョッパ制御による直流・直流変換の双
方向電力変換器とし、チョッパ制御に必要なリアクトル
に交流モータの巻線を利用する。
According to a second aspect of the present invention , a power converter that obtains DC power from a secondary battery of an electric vehicle and drives an AC motor includes a DC / DC converter.
A bidirectional power converter for DC / DC conversion by AC conversion and step-up chopper control. The winding of the AC motor is used for the reactor required for chopper control.

【0020】請求項3では、交流モータの巻線に供給す
る直流電流をスイッチ回路で降圧制御し、電力変換器の
昇圧チョッパ制御との組み合わせで外部の交流電源と二
次電池の電圧関係を任意にする。
According to a third aspect of the present invention , the DC current supplied to the winding of the AC motor is stepped down by a switch circuit, and the voltage relationship between the external AC power supply and the secondary battery is arbitrarily determined in combination with the step-up chopper control of the power converter. To

【0021】[0021]

【実施例】図1は本発明の一実施例を示す構成図であ
る。電気自動車21は、蓄電池4を電源として搭載し、
蓄電池4の直流電力を電力変換器22によって交流電力
に変換し、この交流電力をモータ23に供給することで
モータ23を駆動し、走行のための駆動力を該モータか
ら得る。
FIG. 1 is a block diagram showing an embodiment of the present invention. The electric vehicle 21 includes the storage battery 4 as a power supply,
The DC power of the storage battery 4 is converted into AC power by the power converter 22, and the AC power is supplied to the motor 23 to drive the motor 23 and obtain driving power for traveling from the motor.

【0022】このための電力変換器22は、半導体スイ
ッチ素子構成の主回路24を例えばPWM制御し、電圧
及び周波数制御された交流電力を得てモータ23に供給
する。この主回路制御はモータ制御回路25によって行
われ、走行速度信号等からなるモータ指令と電圧検出器
26からのモータ23への印加電圧検出信号との突き合
わせによってフィードバック制御される。
For this purpose, the power converter 22 performs, for example, PWM control on the main circuit 24 having a semiconductor switch element configuration, obtains AC power whose voltage and frequency are controlled, and supplies the AC power to the motor 23. This main circuit control is performed by a motor control circuit 25, and feedback control is performed by comparing a motor command including a traveling speed signal and the like with a voltage detection signal applied to the motor 23 from a voltage detector 26.

【0023】ここで、本実施例では電力変換器22は双
方向電力変換器として機能させ、蓄電池4からの直流電
力を交流電力に変換してモータ23に供給するモータ駆
動モードと、モータ側からの交流電力を直流電力に変換
して蓄電池4に供給する蓄電池充電モードの両機能を持
たせる。
In this embodiment, the power converter 22 functions as a bidirectional power converter, and converts the DC power from the storage battery 4 into AC power and supplies the AC power to the motor 23. And a storage battery charging mode for converting the AC power into DC power and supplying the DC power to the storage battery 4.

【0024】この両機能のうち、蓄電池充電モードは、
充電制御回路27による主回路24のPWMゲート制御
でなされ、この制御には電流検出器28による交流入力
検出電流と電圧検出器29による蓄電池充電電圧とによ
り定電流・定電圧充電方式等によって充電電流,電圧制
御がなされる。このとき、主回路24は例えば昇圧整流
制御によって交流・直流変換する。
Of these functions, the storage battery charging mode is
The charge control circuit 27 performs PWM gate control of the main circuit 24. This control is performed based on the AC input detection current by the current detector 28 and the storage battery charging voltage by the voltage detector 29. , Voltage control is performed. At this time, the main circuit 24 performs AC / DC conversion by, for example, boost rectification control.

【0025】主回路24に対するモータ駆動モードでの
ゲート制御と蓄電池充電モードでのゲート制御はゲート
切換回路30によって切り換えられ、このモード切換制
御は切換制御部31と切換スイッチ32と電圧検出器3
3によって構成される。
The gate control of the main circuit 24 in the motor drive mode and the gate control in the storage battery charging mode are switched by a gate switching circuit 30. The mode switching control is performed by a switching control unit 31, a switching switch 32 and a voltage detector 3.
3

【0026】切換スイッチ32は、電力変換器の交流入
出力端Aへの接続をモータ23と外部交流電源ライン3
4との切り換えを行い、電圧検出器33は交流電源ライ
ン34への外部交流電源接続を検出する。切換制御部3
1は交流電源ライン34への交流電圧印加を電圧検出器
33で検出したときに切換スイッチ32をライン34側
に切り換えると共にゲート切換回路30を充電制御回路
側へ切り換える。なお、電圧検出器33は省略し、切換
制御部31の切換指令スイッチを手動で切り換える構成
やライン34への交流電源接続操作で切り換える構成で
も良い。
The changeover switch 32 connects the motor converter 23 to the external AC power supply line 3 to connect the power converter to the AC input / output terminal A.
4 and the voltage detector 33 detects the connection of the external AC power supply to the AC power supply line 34. Switching control unit 3
When the voltage detector 33 detects the application of an AC voltage to the AC power supply line 34, the switch 1 switches the switch 32 to the line 34 and switches the gate switching circuit 30 to the charge control circuit. The voltage detector 33 may be omitted, and a configuration in which the switching command switch of the switching control unit 31 is manually switched or a configuration in which the switching is performed by an operation of connecting an AC power supply to the line 34 may be employed.

【0027】電気自動車21への外部交流電源印加は、
商用の交流電源35から絶縁トランス36及びLCフィ
ルタ37を通してコネクタ接続でなされる。この場合、
絶縁トランス36及びフィルタ37は充電制御のための
リアクトルとしても利用されるが電気自動車21内に実
装し、交流電源35へ接続する構成でも良い。
The application of external AC power to the electric vehicle 21
The connection is made by a connector from a commercial AC power supply 35 through an insulating transformer 36 and an LC filter 37. in this case,
The insulating transformer 36 and the filter 37 are also used as a reactor for charge control, but may be mounted in the electric vehicle 21 and connected to the AC power supply 35.

【0028】本実施例において、電気自動車21の走行
時には電力変換器22をモータ駆動モードによって制御
し、蓄電池4からの直流電力を電力変換器22によって
交流電力に変換し、モータ23の速度制御等を行う。
In this embodiment, when the electric vehicle 21 is running, the power converter 22 is controlled in the motor drive mode, the DC power from the storage battery 4 is converted into AC power by the power converter 22, and the speed of the motor 23 is controlled. I do.

【0029】一方、蓄電池4の充電には電力変換器22
を蓄電池充電モードによって制御し、交流電源35から
の交流電力を電力変換器22によって直流電力に変換
し、蓄電池4の充電を行う。
On the other hand, the power converter 22
Is controlled in the storage battery charging mode, the AC power from the AC power supply 35 is converted into DC power by the power converter 22, and the storage battery 4 is charged.

【0030】従って、電力変換器22は電気自動車のモ
ータ駆動のほかに蓄電池4の充電器として利用する。こ
れにより、電気自動車21には蓄電池充電のための専用
の充電器を設けることを不要とし、切換スイッチ32や
充電制御回路27などの回路要素を設けることで済む。
Therefore, the power converter 22 is used as a charger for the storage battery 4 in addition to driving the motor of the electric vehicle. This eliminates the need to provide a dedicated charger for charging the storage battery in the electric vehicle 21 and suffices to provide circuit elements such as the changeover switch 32 and the charge control circuit 27.

【0031】図2は本発明の他の実施例を示す構成図で
ある。同図が図1と異なる部分は、主回路24の交流入
出力端はスイッチ32を介することなくモータ23に直
結してその駆動電流を供給できるようにし、蓄電池充電
モードでは電力変換器22をチョッパ制御にして直流・
直流変換する構成とした点にある。このチョッパ制御
は、外部からリアクトル40を通した直流電力をライン
34に導入し、分路スイッチ41を通して主回路24の
3相出力端に印加し、主回路24の各相スイッチ素子に
なるトランジスタTrx,Try,Trzのオン・オフ
制御によって昇圧チョッパ動作にする。
FIG. 2 is a block diagram showing another embodiment of the present invention. Portions figure differs from FIG. 1, the AC input of the main circuit 24
The output terminal is directly connected to the motor 23 without passing through the switch 32.
To supply the drive current and charge the storage battery.
In the mode , the power converter 22 is controlled by
The point is that DC conversion is performed. For this chopper control , a DC power that is externally passed through the reactor 40 is introduced into the line 34, applied to the three-phase output terminal of the main circuit 24 through the shunt switch 41, and turned into a transistor serving as each phase switch element of the main circuit 24. A boost chopper operation is performed by on / off control of Trx, Try, and Trz.

【0032】即ち、分路スイッチ41のオン状態でトラ
ンジスタTrx,Try,Trzを同時にオン制御する
と、リアクトル40に短路電流が流れ始め、この後のト
ランジスタTrx,Try,Trzのオフによってリア
クトル40の短路電流がダイオードDu,Dv,Dwを
通して蓄電池4側の充電電流になる。このときの充電電
流はトランジスタTrx〜Trzのオン・オフ比として
制御され、充電時の電流及び電圧制御のための検出はモ
ータ制御モードでの電流・電圧検出回路42が利用され
る。43は外部交流電源35から直流電力を得るための
整流器である。
That is, when the transistors Trx, Try, and Trz are simultaneously turned on while the shunt switch 41 is on, a short-circuit current starts flowing through the reactor 40, and the short-circuit current of the reactor 40 is turned off by turning off the transistors Trx, Try, Trz thereafter. The current becomes the charging current on the storage battery 4 side through the diodes Du, Dv, and Dw. The charging current at this time is controlled as the on / off ratio of the transistors Trx to Trz, and the current / voltage detection circuit 42 in the motor control mode is used for detection for controlling the current and voltage during charging. Reference numeral 43 denotes a rectifier for obtaining DC power from the external AC power supply 35.

【0033】本実施例においては、チョッパ制御による
充電電流発生になるが、図1の実施例と同様に電力変換
器22を双方向電力変換手段として利用することで専用
の充電器を不要にする。
In this embodiment, the charging current is generated by chopper control. However, as in the embodiment of FIG. 1, the use of the power converter 22 as a bidirectional power conversion means eliminates the need for a dedicated charger. .

【0034】なお、外部入力は直流になるため、電力変
換器22とモータ23とは充電制御モードでも接続した
ままで済み、図1の場合の切換スイッチ32を不要にす
る。分路スイッチ41は直流入力を電力変換器22の各
相に共通に供給することで電力変換器のスイッチ素子全
部を有効に使用するが、外部交流電源35が単相の場合
には該スイッチ41を不要になる。
Since the external input is DC, the power converter 22 and the motor 23 can be kept connected even in the charge control mode, and the switch 32 shown in FIG. 1 becomes unnecessary. The shunt switch 41 effectively uses all the switching elements of the power converter by supplying a DC input to each phase of the power converter 22 in common, but when the external AC power supply 35 is a single phase, the switch 41 is used. Becomes unnecessary.

【0035】また、リアクトル40及び整流器43を電
気自動車21内に設ける構成では交流電源35への接続
のみで充電機能を得ることができる。
In the configuration in which the reactor 40 and the rectifier 43 are provided in the electric vehicle 21, a charging function can be obtained only by connecting to the AC power supply 35.

【0036】図3は本発明の他の実施例を示す。同図が
図2と異なる部分は、外部からの直流入力をスイッチ回
路44によってチョッパ動作させ、分路スイッチ41を
通して主回路24の出力端と高圧側アーム間(蓄電池4
の正極)に充電電流を供給する降圧チョッパ制御を行う
点にある。
FIG. 3 shows another embodiment of the present invention. 2 is different from FIG. 2 in that a DC input from the outside is chopper-operated by a switch circuit 44, and a shunt switch 41 is provided between the output terminal of the main circuit 24 and the high-voltage side arm (the storage battery 4).
(A positive electrode of the power supply) to perform a step-down chopper control for supplying a charging current.

【0037】即ち、分路スイッチ41のオン状態でスイ
ッチ回路44のトランジスタTrをオン動作させると、
リアクトル40には蓄電池4→ダイオードDx,Dy,
Dz→スイッチ41→整流器43の経路で充電電流が流
れ、トランジスタTrのオフにはダイオードDを通した
フライホイール電流が流れて蓄電池4を降圧充電する。
このときの充電電流はトランジスタTrのオン・オフ比
で制御できるが、トランジスタTru,Trv,Trw
のオン・オフ制御との組み合わせで昇圧チョッパ制御機
能を持たせることができる。
That is, when the transistor Tr of the switch circuit 44 is turned on while the shunt switch 41 is on,
The reactor 40 has a storage battery 4 → diodes Dx, Dy,
A charging current flows through a path of Dz → switch 41 → rectifier 43, and a flywheel current flowing through diode D flows when transistor Tr is turned off, thereby stepping down and charging storage battery 4.
The charging current at this time can be controlled by the on / off ratio of the transistor Tr, but the transistors Tru, Trv, Trw
Can be provided with a boost chopper control function in combination with the on / off control.

【0038】本実施例においても前述までの実施例と同
様に電力変換器22を利用することで専用の充電器を不
要にする。これに加えて、本実施例では充電電流に昇圧
と降圧チョッパ制御ができ、蓄電池4の電圧と交流電源
35の電圧の大小によって昇圧と降圧を選択制御するこ
とにより、充電に使用できる外部交流電源の電圧階級範
囲を広げ、充電の自由度を高める。
In this embodiment as well, the use of the power converter 22 eliminates the need for a dedicated charger as in the previous embodiments. In addition, in the present embodiment, the charging current can be stepped up and stepped down by a chopper control, and the voltage of the storage battery 4 and the voltage of the AC power supply 35 are selectively controlled to be stepped up or stepped down. The range of the voltage class is expanded, and the degree of freedom of charging is increased.

【0039】なお、分路スイッチ41を省略した構成及
び整流器43を電気自動車内に設けることができるのは
勿論である。
It is needless to say that the rectifier 43 and the configuration in which the shunt switch 41 is omitted can be provided in the electric vehicle.

【0040】図4は本発明の他の実施例を示す。同図が
図3と異なる部分は、リアクトル40の電流を分路スイ
ッチ41を通して主回路24のモータ側入出力端に供給
する構成になる。
FIG. 4 shows another embodiment of the present invention. 3 differs from FIG. 3 in that the current of the reactor 40 is supplied to the motor-side input / output terminal of the main circuit 24 through the shunt switch 41.

【0041】本実施例における充電制御モードではスイ
ッチ41をオンさせ、スイッチ回路44のオン・オフと
主回路42の低圧側トランジスタTrx,Try,Tr
zのオン・オフ制御による昇圧チョッパ制御又は該トラ
ンジスタのオフ保持による降圧チョッパ制御を選択で
き、図3の実施例と同等の作用効果を得ることができ
る。 図5は本発明の他の実施例を示す構成図である。
In the charging control mode in this embodiment, the switch 41 is turned on, the switch circuit 44 is turned on and off, and the low voltage side transistors Trx, Try, Tr of the main circuit 42 are turned on.
The step-up chopper control by z on / off control or the step-down chopper control by holding the transistor off can be selected, and the same operation and effect as the embodiment of FIG. 3 can be obtained. FIG. 5 is a configuration diagram showing another embodiment of the present invention.

【0042】電力変換器22は、半導体スイッチ素子構
成の主回路24を例えばPWM制御し、電圧及び周波数
制御された交流電力を得てモータ23に供給する。この
主回路制御はモータ制御回路25によって行われ、走行
速度信号等からなるモータ指令と電圧検出器45及び電
流検出器46からの検出信号を電流・電圧検出回路47
から得てモータ23への電圧・電流フィードバック制御
がなされる。
The power converter 22 performs, for example, PWM control on the main circuit 24 having a semiconductor switch element configuration, obtains AC power whose voltage and frequency are controlled, and supplies the AC power to the motor 23. This main circuit control is performed by a motor control circuit 25, and a motor command including a traveling speed signal and detection signals from a voltage detector 45 and a current detector 46 are converted into a current / voltage detection circuit 47.
, Voltage / current feedback control to the motor 23 is performed.

【0043】ここで、本実施例では電力変換器22は双
方向電力変換器として機能させ、蓄電池4からの直流電
力を交流電力に変換してモータ23に供給するモータ駆
動モードと、モータの巻線を通した直流電流を昇圧チョ
ッパ制御で直流電力に変換して蓄電池4に供給する蓄電
池充電モードの両機能を持たせる。
In this embodiment, the power converter 22 functions as a bidirectional power converter, and converts the DC power from the storage battery 4 into AC power and supplies the AC power to the motor 23. Both functions of a storage battery charging mode in which the DC current passing through the line is converted into DC power by the boost chopper control and supplied to the storage battery 4 are provided.

【0044】この両機能のうち、蓄電池充電モードは、
充電制御回路48による主回路24の昇圧チョッパ制御
でなされ、この制御には電圧検出器49による蓄電池充
電電圧と電流検出器46の検出電流により定電流・定電
圧充電方式等によって充電電流,電圧制御がなされる。
Of these functions, the storage battery charging mode is
The boosting chopper control of the main circuit 24 is performed by the charge control circuit 48. In this control, the charging current and the voltage are controlled by the constant current / constant voltage charging method based on the storage battery charging voltage by the voltage detector 49 and the detection current of the current detector 46. Is made.

【0045】主回路24に対するモータ駆動モードでの
ゲート制御と蓄電池充電モードでのゲート制御はゲート
切換回路50によって切換えられる。このモード切換制
御は切換制御部51によって行われ、電圧検出器45の
検出電圧からモータ23の巻線への直流電圧印加を検出
し、ゲート切換回路50への切換制御指令及び充電制御
回路48への充電制御指令でなされる。
The gate control for the main circuit 24 in the motor drive mode and the gate control in the storage battery charging mode are switched by the gate switching circuit 50. This mode switching control is performed by the switching control unit 51, which detects the application of the DC voltage to the winding of the motor 23 from the detection voltage of the voltage detector 45, and issues a switching control command to the gate switching circuit 50 and a charge control circuit 48. This is done by the charge control command of.

【0046】交流モータ23は一次巻線がスター結線さ
れ、そのスターポイント(中性点)には蓄電池充電時に
外部から直流電力が供給される。このための直流電源
は、一般家庭等の商用の交流電源35から整流する整流
器43にされる。
The primary winding of the AC motor 23 is star-connected, and its star point (neutral point) is supplied with DC power from the outside when the storage battery is charged. A DC power supply for this purpose is provided as a rectifier 43 for rectifying a commercial AC power supply 35 such as a general home.

【0047】なお、直流電圧印加は電圧検出器45の検
出で切換制御部51で判別されるが、切換制御部51の
切換指令スイッチを手動で切換える構成や整流器43と
電気自動車21の接続操作で切換える構成でも良い。ま
た、整流器43は電気自動車21内に実装し、交流電源
33へ接続する構成でも良い。
The application of the DC voltage is discriminated by the switching control unit 51 by the detection of the voltage detector 45, but the switching command switch of the switching control unit 51 is manually switched or the connection operation between the rectifier 43 and the electric vehicle 21 is performed. A switching configuration may be used. The rectifier 43 may be mounted in the electric vehicle 21 and connected to the AC power supply 33.

【0048】本実施例において、電気自動車21の走行
時には電力変換器22をモータ駆動モードによって制御
し、蓄電池4からの直流電力を電力変換器22によって
交流電力に変換し、モータ23の速度制御等を行う。
In this embodiment, when the electric vehicle 21 is running, the power converter 22 is controlled in the motor drive mode, the DC power from the storage battery 4 is converted into AC power by the power converter 22, and the speed of the motor 23 is controlled. I do.

【0049】一方、蓄電池4の充電には電力変換器22
を蓄電池充電モードによって制御し、整流器34からの
直流電力をモータ23の巻線をリアクトルとして利用
し、電力変換器22を昇圧チョッパ制御することで蓄電
池4の充電を行う。
On the other hand, the electric power converter 22
Is controlled in the storage battery charging mode, the DC power from the rectifier 34 is used as a reactor of the motor 23 as a reactor, and the power converter 22 is subjected to boost chopper control to charge the storage battery 4.

【0050】この昇圧チョッパ制御は、主回路24の低
圧側トランジスタTrX,TrY,TrZのオン制御によりモ
ータ23の巻線に短絡電流を流し、この後のトランジス
タTrX,TrY,TrZのオフによって巻線の短絡電流がダ
イオードDU,DV,DWを通して蓄電池4側の充電電流
として取出す。このときの充電電流はトランジスタTrX
〜TrZのオン・オフ比として制御される。
In this step-up chopper control, a short-circuit current flows through the winding of the motor 23 by ON control of the low-voltage side transistors TrX , TrY , TrZ of the main circuit 24, and the transistors TrX , TrY , T By turning off rZ , the short-circuit current of the winding is extracted as the charging current on the storage battery 4 side through the diodes D U , D V , and D W. The charging current at this time is the transistor TrX
It is controlled as an on / off ratio of ~ TrZ .

【0051】従って、電力変換器22は電気自動車のモ
ータ駆動のほかに蓄電池4の充電器として利用し、しか
も昇圧チョッパ制御に必要なリアクトルを交流モータ2
3の巻線を利用する。これにより、電気自動車21には
蓄電池充電のための専用の充電器を設けることを不要に
し、充電制御回路48などの回路要素を設けることで済
む。
Accordingly, the power converter 22 is used not only for driving the motor of the electric vehicle but also as a charger for the storage battery 4, and furthermore, the reactor required for controlling the step-up chopper is controlled by the AC motor 2
3 are used. This eliminates the need to provide a dedicated charger for charging the storage battery in the electric vehicle 21 and suffices to provide circuit elements such as the charge control circuit 48.

【0052】なお、実施例におけるモータ巻線への直流
電力供給は、整流器43の負側をモータ23の巻線側に
接続し、正側を主回路24の高圧側(蓄電池4の正極)
に接続し、トランジスタTrU,TrV,TrXのチョッパ制
御によって昇圧充電を行うことができる。
In the embodiment, the DC power supply to the motor winding is performed by connecting the negative side of the rectifier 43 to the winding side of the motor 23 and the positive side to the high voltage side of the main circuit 24 (the positive electrode of the storage battery 4).
Connected to the transistors T rU, T rV, it is possible to perform the boost charged by chopper control of T rX.

【0053】図6は本発明の他の実施例を示す構成図で
ある。同図が図5と異なる部分は、整流器34からの直
流入力をスイッチ回路52によってチョッパ動作させる
ことで交流モータ23の巻線に降圧制御した直流電流を
供給する点にある。ダイオードDはフライホイールダイ
オードである。
FIG. 6 is a block diagram showing another embodiment of the present invention. 5 differs from FIG. 5 in that a DC input from the rectifier 34 is chopper-operated by the switch circuit 52 to supply a DC current whose voltage is stepped down to the winding of the AC motor 23. Diode D is a flywheel diode.

【0054】蓄電池充電モードにおいて、主回路24の
低圧側トランジスタTrX〜TrZのオフ状態でスイッチ回
路52のトランジスタTrをチョッパ制御することでス
イッチ回路52→モータ巻線→ダイオードDU,DV,D
X→蓄電池4の経路で充電電流を供給し、トランジスタ
rのオン・オフ比で制御された降圧充電を行う。
[0054] In battery charging mode, the switch circuit 52 → the motor windings → diode D U by chopper control of the transistor T r of the switching circuit 52 in the off state of the low-pressure side transistor T rX through T rZ of the main circuit 24, D V and D
X → supplying charge current path of the battery 4, performs step-down charging, which is controlled by on-off ratio of the transistor T r.

【0055】また、上述の降圧充電に主回路24の低圧
側トランジスタTrX〜TrZのオン・オフを付け加えた制
御により、昇圧充電を行う。
Further, the boost charging is performed by the control in which the on / off of the low-voltage transistors TrX to TrZ of the main circuit 24 is added to the above-described step-down charging.

【0056】従って、蓄電池4の電圧に対し、充電用と
して接続される交流電源35の電圧が高い場合には降圧
充電により両者の電圧差を調節し、逆に交流電源35の
電圧が蓄電池4の電圧より低い場合には昇圧充電により
電圧差を調節できる。これにより、充電に使用できる交
流電源35の電圧階級範囲を広げ、充電の自由度を高め
る。
Therefore, when the voltage of the AC power supply 35 connected for charging is higher than the voltage of the storage battery 4, the voltage difference between the two is adjusted by step-down charging. When the voltage is lower than the voltage, the voltage difference can be adjusted by boost charging. Thereby, the voltage class range of the AC power supply 35 that can be used for charging is widened, and the degree of freedom of charging is increased.

【0057】なお、実施例におけるスイッチ回路52と
整流器43の直流電力供給は、その負側をモータ23の
巻線側に接続し、正側を主回路24の高圧側(蓄電池4
の正極)に接続した降圧充電又はこれにトランジスタT
rU,TrV,TrXのチョッパ制御を組合わせた昇降圧充電
を行うことができる。
In the DC power supply of the switch circuit 52 and the rectifier 43 in the embodiment, the negative side is connected to the winding side of the motor 23, and the positive side is connected to the high voltage side (the storage battery 4) of the main circuit 24.
Step-down charging connected to the positive electrode of
rU, T rV, can perform step-up and step-down charging that combines chopper control of T rX.

【0058】上述までの図5及び図6に示す実施例にお
いて、蓄電池充電モードにおける主回路24のトランジ
スタ昇圧チョッパ制御は、1相分のみ(例えばトランジ
スタTrX)又は2相分のみを制御する構成にできる。こ
の場合、整流器43の定格電流容量が小さい場合に有効
となる。
In the embodiment shown in FIGS. 5 and 6 described above, the transistor boost chopper control of the main circuit 24 in the storage battery charging mode is configured to control only one phase (for example, transistor TrX ) or only two phases. Can be. This is effective when the rated current capacity of the rectifier 43 is small.

【0059】[0059]

【発明の効果】以上のとおり、本発明によれば、電気自
動車に搭載するモータ駆動用電力変換器に双方向電力変
換の機能を持たせ、蓄電池の充電には外部から交流又は
直流電力を供給し、電力変換器の交流・直流変換又は直
流・直流変換によって充電電流を得るようにしたため、
一般家庭等の交流電源を利用して容易に充電でき、しか
も電気自動車には専用の充電装置を搭載することを不要
にし、その設置スペース,重量増が少なくなるし、電気
自動車のコストダウンを図ることができる。
As described above, according to the present invention, a power converter for driving a motor mounted on an electric vehicle is provided with a function of bidirectional power conversion, and AC or DC power is supplied from the outside to charge a storage battery. Since the charging current is obtained by AC / DC conversion or DC / DC conversion of the power converter,
It can be easily charged by using an AC power source of ordinary households, etc. In addition, it is not necessary to install a dedicated charging device in the electric vehicle, the installation space and weight increase are reduced, and the cost of the electric vehicle is reduced. be able to.

【0060】また、モータ駆動用電力変換器を直流・交
流変換と昇圧チョッパ制御による直流・直流変換の双方
向電力変換の機能を持たせ、昇圧チョッパ制御に必要な
リアクトルに交流モータの巻線を使用し、蓄電池の充電
には外部から交流又は直流電力を供給し、電力変換器の
チョッパ制御との組合わせで昇圧充電又は降圧充電する
ようにしたため、チョッパ制御に必要なリアクトルの設
置を不要にする。
Further, the motor drive power converter is provided with a function of bidirectional power conversion of DC / AC conversion and DC / DC conversion by boost chopper control, and the winding of the AC motor is connected to a reactor required for boost chopper control. It uses AC or DC power from outside to charge the storage battery, and performs step-up or step-down charging in combination with the chopper control of the power converter, eliminating the need to install a reactor required for chopper control. I do.

【0061】また、本発明は、モータ駆動用電力変換器
の主回路構成を変えることなく交流・直流変換器等を行
うため、従来のインバータと整流・チョッパ回路の切り
換えのための多くの切換スイッチを不要にする。さら
に、モータの巻線をチョッパのリアクトルとして利用す
るのに該モータの巻線接続関係を切り換える切換スイッ
チを不要にすると共にモータ自体の巻線端子構造を簡単
にする。また、本発明は、電力変換器の交流入出力端を
モータに直結した構成とするため、図2〜図6の実施例
では充電モードと駆動モードの切換えのためのスイッチ
41等には大きな電流になるモータ駆動電流が流れるこ
とがなく、小型で低コストのスイッチで済むし、モータ
駆動の信頼性を高めることができる。
Further, since the present invention performs an AC / DC converter or the like without changing the main circuit configuration of the motor drive power converter, there are many changeover switches for switching between a conventional inverter and a rectifier / chopper circuit. Is unnecessary. In addition, a changeover switch for switching the winding connection of the motor is not required to use the winding of the motor as a reactor of the chopper, and the winding terminal structure of the motor itself is simplified. Also, the present invention provides an AC input / output terminal of a power converter.
The embodiment of FIGS. 2 to 6 has a structure directly connected to the motor.
Switch for switching between charge mode and drive mode
The motor drive current, which becomes a large current, flows through 41 etc.
A small, low-cost switch,
Driving reliability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】他の実施例の構成図。FIG. 2 is a configuration diagram of another embodiment.

【図3】他の実施例の構成図。FIG. 3 is a configuration diagram of another embodiment.

【図4】他の実施例の構成図。FIG. 4 is a configuration diagram of another embodiment.

【図5】他の実施例の構成図。FIG. 5 is a configuration diagram of another embodiment.

【図6】他の実施例の構成図。FIG. 6 is a configuration diagram of another embodiment.

【図7】従来の充電装置の構成図。FIG. 7 is a configuration diagram of a conventional charging device.

【符号の説明】[Explanation of symbols]

2,21…電気自動車、4…蓄電池、22…電力変換
器、23…モータ、24…主回路、25…モータ制御回
路、27…充電制御回路、30…ゲート切換回路、31
…切換制御部、32…切換スイッチ、41…分路スイッ
チ、43…整流器、44…スイッチ回路、45…電圧検
出器、46…電流・電圧検出回路、50…ゲート切換回
路、51…切換制御部。
2, 21 ... electric vehicle, 4 ... storage battery, 22 ... power converter, 23 ... motor, 24 ... main circuit, 25 ... motor control circuit, 27 ... charge control circuit, 30 ... gate switching circuit, 31
... Switch control unit, 32 ... Switch, 41 ... Shunt switch, 43 ... Rectifier, 44 ... Switch circuit, 45 ... Voltage detector, 46 ... Current / voltage detection circuit, 50 ... Gate switching circuit, 51 ... Switch control unit .

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−61402(JP,A) 実開 昭63−44643(JP,U) (58)調査した分野(Int.Cl.7,DB名) H02J 7/00 - 7/36 B60L 11/18 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-61402 (JP, A) JP-A-63-44643 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H02J 7/00-7/36 B60L 11/18

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 交流モータを原動機とし、該モータの駆
動に必要な電源を二次電池とする電気自動車において、 直流入出力端が前記二次電池に接続され該二次電池から
の直流を交流に変換して交流入出力端から前記交流モー
タに直結で供給しかつ外部の直流電源からの直流電力を
チョッパ制御で昇圧又は降圧して該二次電池側に直流電
力を得る電力変換器と、 前記電力変換器の交流出力を前記交流モータに供給する
モータ駆動モードと前記直流電源からの直流入力をチョ
ッパ用リアクトルを介して該電力変換器に供給する二次
電池充電モードとを切り換える切換制御回路とを備えた
ことを特徴とする電気自動車。
1. An electric vehicle in which an AC motor is used as a prime mover and a power source required for driving the motor is used as a secondary battery. A DC input / output terminal is connected to the secondary battery, and a DC from the secondary battery is subjected to AC. To the AC mode from the AC input / output end.
A power converter that supplies DC power to the secondary battery side by directly supplying the DC power from the external DC power supply and boosting or stepping down DC power from an external DC power supply by chopper control; and outputting the AC output of the power converter to the AC motor. And a switching control circuit for switching between a motor drive mode for supplying power to the power converter and a secondary battery charging mode for supplying a DC input from the DC power supply to the power converter via a chopper reactor. .
【請求項2】 交流モータを原動機とし該モータの駆動
に必要な電源を二次電池とする電気自動車において、 直流入出力端が前記二次電池に接続され該二次電池から
の直流を交流に変換して交流入出力端から前記交流モー
タの一次側スター巻線に直結で供給しかつ該交流モータ
の巻線を通した直流電流をチョッパ制御で昇圧して該二
次電池側に直流電力を得る電力変換器と、 前記電力変換器の交流出力を前記交流モータに供給する
モータ駆動モードと外部の直流電源からの直流入力を前
記交流モータの巻線を介して該電力変換器に供給する二
次電池充電モードとを切換える切換制御回路とを備えた
ことを特徴とする電気自動車。
2. An electric vehicle using an AC motor as a prime mover and a power source required for driving the motor as a secondary battery, wherein a DC input / output terminal is connected to the secondary battery to convert DC from the secondary battery into AC. DC power is supplied directly from the AC input / output terminal to the primary side star winding of the AC motor, and DC current passing through the winding of the AC motor is boosted by chopper control to supply DC power to the secondary battery side. And a motor drive mode for supplying the AC output of the power converter to the AC motor, and supplying a DC input from an external DC power supply to the power converter via the winding of the AC motor. An electric vehicle, comprising: a switching control circuit for switching between a secondary battery charging mode.
【請求項3】 交流モータを原動機とし該モータの駆動
に必要な電源を二次電池とする電気自動車において、 直流入出力端が前記二次電池に接続され該二次電池から
の直流を交流に変換して交流入出力端から前記交流モー
タの一次側スター巻線に直結で供給しかつ該交流モータ
の巻線を通した直流電流をチョッパ制御で昇圧可能にし
て該二次電池側に直流電力を得る電力変換器と、 前記交流モータの巻線に降圧制御した直流電流を供給す
るスイッチ回路と、 前記電力変換器の交流出力を前記交流モータに供給する
モータ駆動モードと外部の直流電源からの直流入力を前
記交流モータの巻線を介して該電力変換器に供給する二
次電池充電モードとを切換える切換制御回路とを備えた
ことを特徴とする電気自動車。
3. An electric vehicle in which an AC motor is used as a prime mover and a power supply required for driving the motor is used as a secondary battery. A DC input / output terminal is connected to the secondary battery, and DC from the secondary battery is converted into AC. The AC power is supplied directly from the AC input / output terminal to the primary side star winding of the AC motor, and the DC current passing through the winding of the AC motor can be boosted by chopper control so that DC power is supplied to the secondary battery side. And a switch circuit for supplying a step-down controlled DC current to the windings of the AC motor; and a motor drive mode for supplying the AC output of the power converter to the AC motor, and an external DC power supply. A switching control circuit for switching between a secondary battery charging mode for supplying a DC input to the power converter through a winding of the AC motor.
JP01057192A 1992-01-24 1992-01-24 Electric car Expired - Lifetime JP3284571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01057192A JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01057192A JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Publications (2)

Publication Number Publication Date
JPH05207664A JPH05207664A (en) 1993-08-13
JP3284571B2 true JP3284571B2 (en) 2002-05-20

Family

ID=11753927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01057192A Expired - Lifetime JP3284571B2 (en) 1992-01-24 1992-01-24 Electric car

Country Status (1)

Country Link
JP (1) JP3284571B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136746A (en) * 2010-01-25 2011-07-27 Ls产电株式会社 Charger
EP2537701A3 (en) * 2011-06-23 2017-03-22 LSIS Co., Ltd. Switching device for electric vehicle and method of controlling the switching device
EP2765022A3 (en) * 2013-02-06 2017-03-29 LG Electronics, Inc. Charging apparatus and electric vehicle including the same
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3989450B2 (en) * 2004-02-20 2007-10-10 財団法人鉄道総合技術研究所 Circuit device and vehicle operation system
JP4211806B2 (en) 2006-06-07 2009-01-21 トヨタ自動車株式会社 Vehicle drive system and vehicle equipped with the same
JP4798072B2 (en) * 2007-06-22 2011-10-19 日産自動車株式会社 Control method for vehicle charger
JP5644070B2 (en) * 2008-07-16 2014-12-24 株式会社豊田中央研究所 Power control device
US7932633B2 (en) * 2008-10-22 2011-04-26 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US8080973B2 (en) 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
DE102009014704A1 (en) * 2009-03-27 2010-10-07 Sew-Eurodrive Gmbh & Co. Kg Drive system, method of operating a drive system and use
JP5280267B2 (en) 2009-03-27 2013-09-04 株式会社日本総合研究所 Manufacturing method and vehicle
JP5336902B2 (en) 2009-03-30 2013-11-06 株式会社日本総合研究所 CHARGE CONTROL DEVICE, BATTERY PACK, VEHICLE, AND CHARGE CONTROL METHOD
JP5519169B2 (en) * 2009-03-30 2014-06-11 株式会社日本総合研究所 Battery unit and vehicle
DE102009020504B4 (en) * 2009-05-08 2023-08-17 Sew-Eurodrive Gmbh & Co Kg Loading arrangement for a vehicle and vehicle
JP5493568B2 (en) 2009-08-06 2014-05-14 株式会社デンソー Electric motor drive device, electric motor drive device control method, and electric device
US8030884B2 (en) * 2009-08-31 2011-10-04 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
JP5605061B2 (en) * 2010-08-02 2014-10-15 富士電機株式会社 Electric vehicle drive circuit
US9290097B2 (en) 2010-11-05 2016-03-22 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
KR101273736B1 (en) * 2011-03-18 2013-06-12 엘에스산전 주식회사 Inverter-charger conversed device for electric vehicles and method for controlling thereof
JP5884700B2 (en) * 2012-10-02 2016-03-15 トヨタ自動車株式会社 Vehicle control apparatus and vehicle
JP2014082871A (en) * 2012-10-17 2014-05-08 Fuji Electric Co Ltd Charging device
FR3026244B1 (en) * 2014-09-22 2017-05-12 Renault Sas DEVICE AND METHOD FOR DETERMINING A CORRECTED SETTING OF THE NEUTRAL CURRENT OF A NON-GALVANIC INSULATING CHARGER FOR AN ELECTRIC OR HYBRID MOTOR VEHICLE BATTERY
US10507716B2 (en) 2016-04-25 2019-12-17 General Electric Company Integrated charger for vehicles and method of making same
JP2017011993A (en) * 2016-08-08 2017-01-12 日立オートモティブシステムズ株式会社 Charger
EP3878683B1 (en) * 2016-10-05 2024-05-22 Voltu Motor, Inc. Fluid-cooled energy storage device having resin encapsulation
CN110731040B (en) * 2017-10-13 2022-04-05 多伦多大学管理委员会 Vehicle-mounted bidirectional AC quick charger of electric vehicle
CN110971173B (en) 2018-12-21 2021-01-19 比亚迪股份有限公司 Charging method of power battery, motor control circuit and vehicle
JP6570779B1 (en) * 2019-03-08 2019-09-04 株式会社日立パワーソリューションズ Electric vehicle
JP6629482B1 (en) * 2019-08-02 2020-01-15 株式会社日立パワーソリューションズ Electric vehicle and electric vehicle charging system
CN112751396B (en) * 2019-10-31 2023-01-06 比亚迪股份有限公司 Energy conversion device and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11884168B2 (en) 2009-12-18 2024-01-30 General Electric Company Apparatus and method for rapid charging using shared power electronics
CN102136746A (en) * 2010-01-25 2011-07-27 Ls产电株式会社 Charger
CN102136746B (en) * 2010-01-25 2014-08-06 Ls产电株式会社 Charger
US8912750B2 (en) 2010-01-25 2014-12-16 Ls Industrial Systems Co., Ltd. Charger
EP2537701A3 (en) * 2011-06-23 2017-03-22 LSIS Co., Ltd. Switching device for electric vehicle and method of controlling the switching device
EP2765022A3 (en) * 2013-02-06 2017-03-29 LG Electronics, Inc. Charging apparatus and electric vehicle including the same
US10771001B2 (en) 2015-09-11 2020-09-08 Invertedpower Pty Ltd Controller for an inductive load having one or more inductive windings
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle

Also Published As

Publication number Publication date
JPH05207664A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JP3284571B2 (en) Electric car
US10994623B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
US8030882B2 (en) Power supply unit
US8922050B2 (en) Method for controlling a power supply device having an inverter
JP3211323B2 (en) Charging device
JP3477850B2 (en) Electric vehicle charger
US7177163B2 (en) Two-way DC-DC converter
JP4454444B2 (en) Bidirectional DC-DC converter
JPS5961402A (en) Charger for battery driven vehicle
JP3859105B2 (en) Hybrid vehicle charger
CN115280658A (en) Bidirectional DC-DC converter
JP2000152408A (en) Electric vehicle
JPH07115732A (en) Charging stand for electric vehicle
CN112389177B (en) Integrated electric drive system and electric vehicle comprising same
JP3444316B2 (en) Charging device
JP2850742B2 (en) Charger
KR20210102723A (en) Integrated Power Conversion System for Electric Vehicle
JP2827488B2 (en) Charging device for electric vehicles
CN210680638U (en) Vehicle-mounted distribution box and electric vehicle comprising same
CN210760596U (en) Vehicle-mounted distribution box and electric vehicle comprising same
JP2765492B2 (en) Charger
CN112389176B (en) Integrated electric drive system and electric vehicle comprising same
JPH09168205A (en) Electrical system of hybrid electric car
CN210760332U (en) Energy storage unit and electric vehicle including the same
CN210617830U (en) Integrated electric drive device and electric vehicle comprising same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120308

Year of fee payment: 10

EXPY Cancellation because of completion of term