JP3155912B2 - Electric shock prevention circuit in electrical equipment - Google Patents

Electric shock prevention circuit in electrical equipment

Info

Publication number
JP3155912B2
JP3155912B2 JP24092095A JP24092095A JP3155912B2 JP 3155912 B2 JP3155912 B2 JP 3155912B2 JP 24092095 A JP24092095 A JP 24092095A JP 24092095 A JP24092095 A JP 24092095A JP 3155912 B2 JP3155912 B2 JP 3155912B2
Authority
JP
Japan
Prior art keywords
housing
power converter
output
voltage
electric shock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24092095A
Other languages
Japanese (ja)
Other versions
JPH0965564A (en
Inventor
好秀 金原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24092095A priority Critical patent/JP3155912B2/en
Publication of JPH0965564A publication Critical patent/JPH0965564A/en
Application granted granted Critical
Publication of JP3155912B2 publication Critical patent/JP3155912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、交流電源を入力
とする電気機器の筐体内に設けられている電力変換装置
出力側の出力線と筐体間に存在する浮遊容量および
の入力側と前記筐体間に存在する浮遊容量により筐体
に発生する電圧を低減し、筐体が接地されていなくても
人体の感電を防止する回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stray capacitance existing between an output line on the output side of a power conversion device provided in a housing of an electric equipment to which an AC power source is input and a housing, and a negative capacitance. The present invention relates to a circuit for reducing a voltage generated in a housing due to a stray capacitance existing between a load input side and the housing and preventing electric shock of a human body even when the housing is not grounded.

【0002】[0002]

【従来の技術】図6は筐体1内に電力変換装置2と負荷
3を有する電気機器4の一例である。筐体1とは主とし
て鉄板等の導体で構成され電気的に同電位で、電気部品
を取り付け、収納する容器である。電気機器4は交流電
源5の例えばS相を接地した3相交流電源R1、S1、
T1に漏電遮断器6を接続し、電力変換装置2の入力R
2、S2、T2に接続する。電力変換装置2は一般的に
は交流電圧を整流し、直流電圧に変換してからスイッチ
ング素子により負荷3に所望の電圧波形を出力する。例
えば図6の電力変換装置2はダイオード10〜15によ
り入力R2、S2、T2の電圧を整流し直流電圧に変換
する。この直流電圧は大容量のコンデンサ16により平
滑され一定の直流電圧になる。スイッチング素子20〜
25は例えばPWM制御(パルス幅変調制御)により高
い周波数でスイッチングし出力U1、V1、W1に低い
周波数の正弦波等の波形を出力する。負荷3は例えばモ
ータ等であればPWM制御の高い周波数には応答せず、
低い周波数の正弦波の電圧により駆動される。負荷3は
筐体1に取り付けられ、筐体1は、通常は接地端子Eに
接続され接地(アース)される。従来の電気機器4は以
上のように構成されている。
2. Description of the Related Art FIG. 6 shows an example of an electric device 4 having a power converter 2 and a load 3 in a housing 1. The housing 1 is a container mainly made of a conductor such as an iron plate and having the same electrical potential and for mounting and housing electrical components. The electric device 4 includes, for example, three-phase AC power supplies R1, S1,
The earth leakage breaker 6 is connected to T1 and the input R of the power converter 2 is
2, S2, and T2. The power converter 2 generally rectifies an AC voltage, converts it to a DC voltage, and outputs a desired voltage waveform to the load 3 by a switching element. For example, the power converter 2 of FIG. 6 rectifies the voltages of the inputs R2, S2, and T2 by the diodes 10 to 15 and converts them into a DC voltage. This DC voltage is smoothed by the large-capacity capacitor 16 to become a constant DC voltage. Switching element 20 ~
25 switches at a high frequency by, for example, PWM control (pulse width modulation control) and outputs a waveform such as a low frequency sine wave to the outputs U1, V1, and W1. If the load 3 is, for example, a motor, it does not respond to the high frequency of the PWM control,
It is driven by a low frequency sine wave voltage. The load 3 is attached to the housing 1, and the housing 1 is normally connected to a ground terminal E and grounded (earthed). The conventional electric device 4 is configured as described above.

【0003】次に、感電が起きる原因について説明す
る。電力変換装置2の出力U1、V1、W1は配線距離
が長いと筐体1との浮遊容量が存在する。また負荷3の
入力端子U2、V2、W2も筐体1との浮遊容量が存在
する。例えばモータ等の負荷3の場合は2000〜50
00pFの浮遊容量が存在する。これらの浮遊容量を出
力U1、V1、W1それぞれにCu、Cv、Cwとし、
それぞれの浮遊容量に流れる漏洩電流をiu、iv、i
wとすると、例えば出力U1の浮遊容量Cuに対して流
れる漏洩電流iuは出力U1と筐体1との間の電圧の変
化により決まる。この漏洩電流iu、iv、iwの合計
電流ieは筐体1の接地端子Eが接地してある場合漏洩
電流として流れる。そして、同一の電流値の電流が零相
電流として入力R2、S2、T2を流れる。従って、出
力U1、V1、W1の電圧変化が漏洩電流iu、iv、
iwとなり、接地への漏洩電流と3相交流電源5の各相
電流の合計である零相電流になる。もし筐体が接地され
ていない場合は、筐体が接地に対して電圧を持ち、人体
が接触すると感電する恐れがある。特に負荷3の浮遊容
量Cu、Cv、Cwが大きく、電力変換装置2のスイッ
チング周波数が高いほど電圧が高くなり危険である。ま
た人体が接触した時の漏洩電流も大きい。
Next, the cause of the electric shock will be described. The outputs U1, V1, and W1 of the power converter 2 have a stray capacitance with the housing 1 when the wiring distance is long. The input terminals U2, V2, and W2 of the load 3 also have a stray capacitance with the housing 1. For example, in the case of a load 3 such as a motor, 2000 to 50
There is a stray capacitance of 00 pF. Let these stray capacitances be Cu, Cv, and Cw for the outputs U1, V1, and W1, respectively.
The leakage current flowing through each stray capacitance is represented by iu, iv, i
Assuming that w, for example, a leakage current iu flowing to the stray capacitance Cu of the output U1 is determined by a change in voltage between the output U1 and the housing 1. The total current ie of the leakage currents iu, iv, iw flows as the leakage current when the ground terminal E of the housing 1 is grounded. Then, currents having the same current value flow through the inputs R2, S2, and T2 as zero-phase currents. Therefore, voltage changes of the outputs U1, V1, W1 are caused by the leakage currents iu, iv,
iw, which is a zero-phase current that is the sum of the leakage current to the ground and each phase current of the three-phase AC power supply 5. If the housing is not grounded, the housing has a voltage with respect to the ground, and there is a risk of electric shock when a human body comes into contact. In particular, the stray capacitances Cu, Cv, and Cw of the load 3 are large, and the higher the switching frequency of the power converter 2, the higher the voltage, which is dangerous. Also, the leakage current when a human body comes into contact is large.

【0004】図7は図6の従来の電気機器4の各部の波
形である。(a)の30は3相交流電源5のR1−S1
間の電圧波形である。同様に31はS1−T1間、32
はS1の電圧波形である。この3相交流電源5はS1が
接地してあるので図7(a)の32のS1の電圧はゼロ
である。(b)は電力変換装置2の3相交流を整流後の
電圧波形である。33はプラス側Pの電位、34はマイ
ナス側Nの電位である。35はPとNの中間の電圧を示
す。PとN間の電圧は大容量のコンデンサ16により一
定であるが、ダイオード10〜15の導通する位相によ
り電力変換装置2の接地に対する動作電圧は35のよう
に歪んだ低周波の交流電圧となる。スイッチング素子2
0〜25はそれぞれがスイッチングすることにより出力
をPの電位かまたはNの電位に高い周波数で切り換え
る。例えばスイッチング素子20がONすれば出力U1
はPの電位になり、スイッチング素子21がONすれば
出力U1はNの電位になる。従って出力U1はPWM制
御の高い周波数(キャリア周波数)で電位が変化する。
このように、出力U1、V1、W1はPとNが3相交流
電源の電圧により図7の(b)33、34のように変化
する低周波の電位変化に加えてスイッチング素子20〜
25のスイッチングによる高い周波数で電位が変化す
る。3相交流電源5の線間電圧が200Vの場合PとN
の電圧差は270V程度になる。
FIG. 7 shows waveforms at various parts of the conventional electric device 4 shown in FIG. 30 in (a) is R1-S1 of the three-phase AC power supply 5.
It is a voltage waveform between. Similarly, 31 is between S1 and T1, 32
Is the voltage waveform of S1. Since the three-phase AC power supply 5 has S1 grounded, the voltage of S1 at 32 in FIG. 7A is zero. (B) is a voltage waveform after rectifying the three-phase alternating current of the power converter 2. 33 is a plus-side P potential and 34 is a minus-side N potential. 35 indicates an intermediate voltage between P and N. Although the voltage between P and N is constant by the large-capacity capacitor 16, the operating voltage of the power converter 2 with respect to the ground is a low-frequency AC voltage distorted as 35 due to the conducting phase of the diodes 10 to 15. . Switching element 2
Each of 0 to 25 switches the output to the P potential or the N potential at a high frequency by switching. For example, if the switching element 20 is turned on, the output U1
Becomes the potential of P, and when the switching element 21 is turned on, the output U1 becomes the potential of N. Therefore, the potential of the output U1 changes at a high frequency (carrier frequency) of the PWM control.
As described above, the outputs U1, V1, and W1 include the switching elements 20 to in addition to the low-frequency potential change in which P and N change as shown in (b) 33 and 34 of FIG.
The potential changes at a high frequency due to 25 switchings. P and N when the line voltage of the three-phase AC power supply 5 is 200 V
Is about 270V.

【0005】図7(b)の36の部分を拡大したものを
図8に示す。(a)は出力U1の電圧波形であり、スイ
ッチング素子20と21が交互にスイッチングした波形
40である。この波形40は例えばキャリア周波数15
KHzのほぼ矩形波になる。この電圧波形40のスイッ
チング時41の部分は電圧変化が急峻であるため浮遊容
量Cuに流れる漏洩電流iuの電流波形は、接地端子E
が接地してある場合(b)42に示すようにピークが1
〜2A以上にもなる大きな漏洩電流が流れる。また、図
7(b)の36の部分はP、Nの電位が上昇している期
間であるので、図8(b)の43の部分は浮遊容量Cu
に流れる漏洩電流iuの電流波形としてはプラスの電流
が流れるが、電圧変化が遅いので漏洩電流は僅かであ
る。従って漏洩電流の大部分はスイッチング素子20〜
25が高周波でスイッチングすることにより発生し、小
さな浮遊容量であっても大きな漏洩電流が流れる。従っ
て、筐体1が接地されていない場合、人体が接触すると
図8(a)の波形40の電圧が浮遊容量Cu、Cv、C
wを通してかかり最悪の場合(b)の電流が流れるので
感電する危険があった。
FIG. 8 is an enlarged view of a portion 36 in FIG. 7B. (A) is a voltage waveform of the output U1, and is a waveform 40 in which the switching elements 20 and 21 are alternately switched. The waveform 40 has, for example, a carrier frequency of 15
It becomes a substantially rectangular wave of KHz. Since the voltage change is steep in the portion 41 of the voltage waveform 40 at the time of switching, the current waveform of the leakage current iu flowing to the stray capacitance Cu is
Is grounded (b) As shown in FIG.
A large leakage current of 2 A or more flows. 7B is a period during which the potentials of P and N are rising, and the portion 43 of FIG.
Although a positive current flows as a current waveform of the leakage current iu flowing through the circuit, the leakage current is slight because the voltage change is slow. Therefore, most of the leakage current is
25 is generated by switching at a high frequency, and a large leakage current flows even with a small stray capacitance. Therefore, when the housing 1 is not grounded and a human body comes into contact, the voltage of the waveform 40 in FIG. 8A is changed to the stray capacitances Cu, Cv, and C.
In the worst case (b), the current flows through w, and there is a risk of electric shock.

【0006】〈従来の技術に関する文献〉従来の技術に
関する文献としては以下のものがある。 1.小笠原、藤田、赤木:「電圧型PWMインバータが
発生する高周波漏れ電流のモデリングと理論解析」、電
気学会論文誌D(産業応用部門誌)Vol.115−
D,No.1,P.77〜83,1995 2.清水、胡、木村、広瀬:「交流中性点電位変動の抑
制による高周波漏洩電流の低減法」、電気学会研究会・
半導体電力変換研究会SPC−95−31,1995年
6月9日 3.公開実用新案公報 昭62−88484「漏電防止
装置」
<Documents Related to the Related Art> There are the following documents related to the related art. 1. Ogasawara, Fujita, Akagi: "Modeling and theoretical analysis of high-frequency leakage current generated by voltage-type PWM inverter", IEEJ Transactions on Industry Applications D (Volume of Industrial Applications), Vol. 115-
D, No. 1, P. 77-83, 1995 2. Shimizu, Hu, Kimura, Hirose: "Reduction method of high-frequency leakage current by suppressing AC neutral point potential fluctuation," IEICE Technical Committee.
Technical Committee on Semiconductor Power Conversion SPC-95-31, June 9, 1995 3. Published Utility Model Publication No. 62-88484 "Electric leakage prevention device"

【0007】[0007]

【発明が解決しようとする課題】従来の電気機器4は以
上のように構成されているので筐体1が接地されていな
い場合や、接地が不完全な場合、接地線が外れたり切れ
たりした場合人体に高周波の漏洩電流が浮遊容量Cu、
Cv、Cwを通してかかり感電する危険があるという問
題点があった。また、接地端子Eに流れる漏洩電流が多
く、JIS−T1002やUL1283等の規制に適合
しないという問題点があった。また、3相交流電源5の
R1、S1、T1と電力変換装置2の入力R2、S2、
T2との間に設けた漏電遮断機6の零相変流器7には上
記漏洩電流と同一の電流が流れるので増幅部8により引
き外しコイル9を動作させ回路を遮断してしまう。漏電
遮断機6は一般的に作動電流は30〜100mAである
ので電力変換器2のスイッチング周波数が高く、負荷3
の浮遊容量が大きいほど漏電遮断機6はこの高周波の漏
洩電流で誤動作してしまうという問題点があった。
Since the conventional electric device 4 is configured as described above, if the housing 1 is not grounded, or if the grounding is incomplete, the ground wire may be disconnected or cut off. In the case where high frequency leakage current is stray capacitance Cu,
There is a problem that there is a danger of receiving an electric shock through Cv and Cw. In addition, there is a problem that a large amount of leakage current flows through the ground terminal E and does not conform to regulations such as JIS-T1002 and UL1283. Also, R1, S1, T1 of the three-phase AC power supply 5 and inputs R2, S2,
Since the same current as the above-mentioned leakage current flows through the zero-phase current transformer 7 of the earth leakage breaker 6 provided between T2, the tripping coil 9 is operated by the amplifying unit 8 to cut off the circuit. Since the earth leakage breaker 6 generally has an operating current of 30 to 100 mA, the switching frequency of the power converter 2 is high and the load 3
There is a problem in that the larger the floating capacitance of the circuit breaker, the more the leakage breaker 6 malfunctions due to the high-frequency leakage current.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、筐体内に高周波でスイッチング
する電力変換装置とこれに接続した浮遊容量を有する負
荷を備えた電気機器に人体が接触した時の接地に対する
筐体の電圧を低減するための電気機器における感電防止
回路を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a human body is required for an electric device having a high-frequency switching power converter in a housing and a load having a stray capacitance connected thereto. It is an object of the present invention to obtain an electric shock prevention circuit in an electric device for reducing a voltage of a housing with respect to a ground when contact is made.

【0009】[0009]

【課題を解決するための手段】請求項1の発明にかかる
電気機器における感電防止回路は、電力変換装置の入力
の接地線と電力変換装置の出力側の出力線との間の電
圧を反転し、前記反転出力と筐体との間に接続したコン
デンサに流れる電流を負荷の浮遊容量に流れる漏洩電流
と逆方向で同一の電流値とし、両者の電流の合計がゼロ
になるようにして接地に対する筐体の電圧を低減し、感
電を防止するものである。
According to a first aspect of the present invention, there is provided an electric device for preventing electric shock in an electric appliance, comprising:
The voltage between the ground line on the side and the output line on the output side of the power converter is inverted, and the current flowing through the capacitor connected between the inverted output and the housing is opposite to the leakage current flowing through the floating capacitance of the load. The same current value is used in each direction, and the sum of the two currents becomes zero to reduce the voltage of the housing with respect to the ground, thereby preventing electric shock.

【0010】請求項2の発明にかかる電気機器における
感電防止回路は、電力変換装置の出力の電圧の和が交流
電源の接地線の電位と同じになるように電力変換装置の
入力の電位を制御し、出力から浮遊容量を通って筐体に
流れる電流の合計がゼロになるようにして接地に対する
筐体の電圧を低減し、感電を防止するものである。
According to a second aspect of the present invention, there is provided an electric shock prevention circuit for controlling an electric potential of an input of a power conversion device such that a sum of voltages output from the power conversion device is equal to a potential of a ground line of an AC power supply. Then, the sum of the currents flowing from the output to the housing through the stray capacitance becomes zero to reduce the voltage of the housing with respect to the ground, thereby preventing electric shock.

【0011】請求項3の発明にかかる電気機器における
感電防止回路は、電力変換装置の出力側の出力線から浮
遊容量を通って筐体に流れた電流を、電力変換装置の入
の接地線と筐体間に接続したコンデンサを通り電力
変換装置に戻るようにして、接地に対する筐体の電圧を
低減し、感電を防止するものである。
According to a third aspect of the present invention, there is provided an electric shock prevention circuit for an electric appliance, comprising: a current flowing from an output line on the output side of a power converter to a housing through a stray capacitance to a ground line on an input side of the power converter. In this case, the voltage of the housing with respect to the ground is reduced by returning to the power conversion device through a capacitor connected between the housing and the housing, thereby preventing an electric shock.

【0012】[0012]

【発明の実施の形態】この発明の電気機器における感電
防止回路は、筐体1内に高周波でスイッチングする電力
変換装置2とこれに接続した浮遊容量を有する負荷3を
備えた電気機器4において、第1、2実施例は電力変換
装置2の出力と交流電源5の接地線との間の電圧を反転
し、前記反転出力と筐体との間に接続したコンデンサに
流れる電流を負荷の浮遊容量に流れる漏洩電流と逆方向
で同一の電流値とし、両者の電流の合計がゼロになるよ
うにして接地に対する筐体の電圧を低減し、感電を防止
するものである。また、第3、4実施例は電力変換装置
の出力の電圧の和が交流電源の接地線の電位と同じにな
るように電力変換装置の入力の電位を制御し、出力から
浮遊容量を通って筐体に流れる電流の合計がゼロになる
ようにして接地に対する筐体の電圧を低減し、感電を防
止するものである。また、第5実施例は電力変換装置の
出力から浮遊容量を通って筐体に流れた電流は、電力変
換装置の入力の接地線と筐体間に接続したコンデンサを
通り電力変換装置に戻るようにして、接地に対する筐体
の電圧を低減し、感電を防止するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electric shock prevention circuit in an electric device according to the present invention is an electric device 4 including a power converter 2 for switching at a high frequency in a housing 1 and a load 3 having a stray capacitance connected thereto. In the first and second embodiments, the voltage between the output of the power converter 2 and the ground line of the AC power supply 5 is inverted, and the current flowing through the capacitor connected between the inverted output and the housing is changed to the stray capacitance of the load. The same current value is used in the opposite direction to the leakage current flowing through the casing, and the sum of the two currents is made zero to reduce the voltage of the housing with respect to the ground, thereby preventing electric shock. In the third and fourth embodiments, the potential of the input of the power converter is controlled so that the sum of the voltage of the output of the power converter becomes the same as the potential of the ground line of the AC power supply. The sum of the currents flowing through the housing is reduced to zero to reduce the voltage of the housing with respect to the ground, thereby preventing electric shock. In the fifth embodiment, the current flowing from the output of the power converter to the housing through the stray capacitance returns to the power converter through the capacitor connected between the input ground line and the housing. Thus, the voltage of the housing with respect to the ground is reduced to prevent electric shock.

【0013】[0013]

【実施例】以下、この発明の実施例を図について説明す
る。 〈第1実施例〉図1に示す電気機器4に適用した電気機
器における感電防止回路は、この発明の第1の実施例で
ある。図において、トランス46、47、48の1次側
をそれぞれ出力U1、V1、W1と電力変換装置2の入
力の接地線S2間に接続する。トランス46、47、4
8の2次側の電圧を極性を逆に接続することにより反転
させ、それぞれ端子X、Y、Zと電力変換装置2の入力
の接地線S2間に接続する。端子X、Y、Zと筐体1間
にはそれぞれコンデンサC1、C2、C3を接続する。
トランス46、47、48の一次と二次の巻数比を1:
1とすればコンデンサC1、C2、C3の静電容量は浮
遊容量Cu、Cv、Cwと同じ値に設定する。第1実施
例の電気機器における感電防止回路は以上のように構成
されている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. <First Embodiment> An electric shock prevention circuit in an electric device applied to the electric device 4 shown in FIG. 1 is a first embodiment of the present invention. In the figure, the primary sides of transformers 46, 47, 48 are respectively connected between outputs U1, V1, W1 and the ground line S2 of the input of the power converter 2. Transformers 46, 47, 4
The voltage on the secondary side of the power conversion device 8 is inverted by connecting the polarity in reverse, and connected between the terminals X, Y, and Z and the ground line S2 of the input of the power conversion device 2, respectively. Capacitors C1, C2, and C3 are connected between the terminals X, Y, and Z and the housing 1, respectively.
The primary to secondary turns ratio of the transformers 46, 47, 48 is 1:
If it is set to 1, the capacitance of the capacitors C1, C2, C3 is set to the same value as the stray capacitances Cu, Cv, Cw. The electric shock prevention circuit in the electric apparatus according to the first embodiment is configured as described above.

【0014】電力変換装置2の出力U1、V1、W1の
電圧は図7(b)のプラス側Pの電位33と、マイナス
側Nの電位34の間を高い周波数のPWM制御によるス
イッチングで電圧が変化する。すなわち、低周波と高周
波の電圧変化が重なっている。この電圧を図8(a)に
示す。この電圧変化により浮遊容量Cu、Cv、Cwに
流れる電流iu、iv、iwは(b)に示す通りであ
る。この第1の実施例によるトランス46、47、48
で反転した端子X、Y、Zの電圧を(c)44に示す。
この端子X、Y、Zに接続されているコンデンサC1ま
たはC2またはC3に流れる電流ix、iy、izを
(d)45に示す。この電流は(b)の42と同じ電流
値で極性が逆になっている。すなわち(b)の42と
(d)の45の電流を合成すると(e)46に示すよう
に電流は打ち消し合ってゼロになる。
The voltages of the outputs U1, V1, and W1 of the power converter 2 are switched between the potential 33 on the plus side P and the potential 34 on the minus side N in FIG. Change. That is, the low-frequency and high-frequency voltage changes overlap. This voltage is shown in FIG. The currents iu, iv, iw flowing through the stray capacitances Cu, Cv, Cw due to this voltage change are as shown in FIG. Transformers 46, 47, 48 according to the first embodiment
The voltages at the terminals X, Y, and Z inverted at (c) are shown in FIG.
The currents ix, iy, iz flowing through the capacitors C1, C2, or C3 connected to the terminals X, Y, Z are shown in (d) 45. This current has the same current value as 42 in (b) and the polarity is reversed. That is, when the currents of 42 in (b) and 45 in (d) are combined, the currents cancel each other and become zero as shown in (e) 46.

【0015】筐体1の接地端子Eに流れる漏洩電流ie
はiu、iv、iw、ix、iy、izの和である。i
uとivとiwはそれぞれixとiyとizと同一電流
で極性が逆であるからこれを全て合計した漏洩電流ie
はゼロである。このようにトランス46、47、48に
より出力の電圧を反転させ、浮遊容量Cu、Cv、Cw
に流れる電流と同じ値で極性が逆の電流を流すことによ
って漏洩電流をゼロにすることができる。従って、筐体
1が接地されていない場合でも筐体1の電圧はゼロであ
り、筐体に人体が接触して感電することはなく、電気機
器における感電防止回路が得られる。
Leakage current ie flowing through ground terminal E of housing 1
Is the sum of iu, iv, iw, ix, iy, iz. i
u, iv, and iw have the same current as ix, iy, and iz, respectively, and have opposite polarities.
Is zero. In this way, the output voltages are inverted by the transformers 46, 47, and 48, and the stray capacitances Cu, Cv, Cw
The leakage current can be made zero by flowing a current having the same value as that of the current flowing in the opposite direction and having the opposite polarity. Therefore, even when the housing 1 is not grounded, the voltage of the housing 1 is zero, and no electric shock is caused by the contact of the human body with the housing, and an electric shock prevention circuit in the electric device can be obtained.

【0016】また、この実施例では単相トランス46、
47、48を使用したが、3相トランスを使用しても同
等の効果が得られる。また、これらのトランスは低周波
と高周波が同時に流れるので一次と二次間の結合度が高
く、高周波特性の良いものが良い結果が得られる。具体
的にはフェライトコアに一次と二次を接近して巻いたト
ランスが実用的である。また、図1の電力変換装置2の
ダイオード12と13にそれぞれコンデンサ17と18
を並列に接続すると電気機器における感電防止回路の効
果が高くなる。
In this embodiment, a single-phase transformer 46,
Although 47 and 48 were used, the same effect can be obtained by using a three-phase transformer. In addition, since low-frequency and high-frequency currents flow simultaneously in these transformers, the degree of coupling between the primary and the secondary is high, and good results are obtained with good high-frequency characteristics. Specifically, a transformer in which a primary and a secondary are wound close to a ferrite core is practical. The capacitors 17 and 18 are connected to the diodes 12 and 13 of the power converter 2 of FIG. 1, respectively.
Are connected in parallel, the effect of the electric shock prevention circuit in the electric equipment is enhanced.

【0017】以上のようにこの発明による電気機器にお
ける感電防止回路はトランスとコンデンサによる簡単な
構成で漏洩電流をゼロにすることができ、また筐体が接
地されていない場合でも筐体の電圧はゼロであり、筐体
に人体が接触して感電することはないという優れた効果
を奏する。
As described above, the electric shock prevention circuit in the electric device according to the present invention can reduce the leakage current to zero with a simple configuration using a transformer and a capacitor, and the voltage of the housing can be reduced even when the housing is not grounded. This is an excellent effect that no electric shock is caused by contact of the housing with the human body.

【0018】〈第2実施例〉図2に示す電気機器4に適
用した電気機器における感電防止回路は、この発明の第
2の実施例である。図において抵抗Ru、Rv、Rwの
一方をそれぞれ出力U1、V1、W1に接続し、他方を
全て増幅器26の負入力端子27に接続する。増幅器2
6の出力50と負入力端子27間に抵抗Roを接続す
る。増幅器26の正入力端子28を電力変換装置2の入
力の接地線S2に接続する。増幅器26の出力50と筐
体1間にコンデンサCoを接続する。抵抗Ru、Rv、
Rw、Roが同じ値の時コンデンサCoの静電容量は浮
遊容量Cu、Cv、Cwと同じ値に設定する。第2実施
例の電気機器における感電防止回路は以上のように構成
されている。
<Second Embodiment> An electric shock prevention circuit in an electric device applied to the electric device 4 shown in FIG. 2 is a second embodiment of the present invention. In the figure, one of the resistors Ru, Rv, Rw is connected to the outputs U1, V1, W1, respectively, and the other is connected to the negative input terminal 27 of the amplifier 26. Amplifier 2
6 is connected between the output 50 and the negative input terminal 27. The positive input terminal 28 of the amplifier 26 is connected to the input ground line S2 of the power converter 2. A capacitor Co is connected between the output 50 of the amplifier 26 and the housing 1. The resistances Ru, Rv,
When Rw and Ro have the same value, the capacitance of the capacitor Co is set to the same value as the stray capacitances Cu, Cv and Cw. The electric shock prevention circuit in the electric device of the second embodiment is configured as described above.

【0019】電力変換装置2の出力U1、V1、W1の
電圧は図7(b)のプラス側Pの電位33と、マイナス
側Nの電位34の間を高い周波数のPWM制御によるス
イッチングで電圧が変化する。すなわち、低周波と高周
波の電圧変化が重なっている。この電圧を図8(a)に
示す。この電圧変化により浮遊容量Cu、Cv、Cwに
流れる電流iu、iv、iwは(b)に示す通りであ
る。この第2の実施例による増幅器26で反転した出力
電圧Voを(c)44に示す。この電圧44に接続され
ているコンデンサCoに流れる電流ioを(d)45に
示す。この電流は(b)の42と同じ電流値で極性が逆
になっている。すなわち(b)の42と(d)の45の
電流を合成すると(e)46に示すように電流は打ち消
し合ってゼロになる。
The voltages of the outputs U1, V1, and W1 of the power conversion device 2 are switched between the potential 33 on the positive side P and the potential 34 on the negative side N in FIG. Change. That is, the low-frequency and high-frequency voltage changes overlap. This voltage is shown in FIG. The currents iu, iv, iw flowing through the stray capacitances Cu, Cv, Cw due to this voltage change are as shown in FIG. The output voltage Vo inverted by the amplifier 26 according to the second embodiment is shown in FIG. The current io flowing through the capacitor Co connected to the voltage 44 is shown in (d) 45. This current has the same current value as 42 in (b) and the polarity is reversed. That is, when the currents of 42 in (b) and 45 in (d) are combined, the currents cancel each other and become zero as shown in (e) 46.

【0020】筐体1の接地端子Eに流れる漏洩電流ie
は浮遊容量Cu、Cv、Cwに流れる電流iu、iv、
iwとコンデンサCoに流れる電流ioの和であり、同
一電流で極性が逆であるからこれを全て合計した漏洩電
流ieはゼロである。このように増幅器26により出力
の電圧を反転させ、浮遊容量Cu、Cv、Cwに流れる
電流と同じ値で極性が逆の電流を流し漏洩電流をゼロに
することができる。従って、筐体1が接地されていない
場合でも筐体1の電圧はゼロであり、筐体に人体が接触
して感電することはなく、電気機器における感電防止回
路が得られる。
Leakage current ie flowing through ground terminal E of housing 1
Are the currents iu, iv, flowing through the stray capacitances Cu, Cv, Cw.
This is the sum of iw and the current io flowing through the capacitor Co. Since the same current has the opposite polarity, the leakage current ie obtained by summing all of them is zero. As described above, the output voltage is inverted by the amplifier 26, and a current having the same value as the current flowing through the stray capacitances Cu, Cv, and Cw and having the opposite polarity flows, thereby making the leakage current zero. Therefore, even when the housing 1 is not grounded, the voltage of the housing 1 is zero, and no electric shock is caused by the contact of the human body with the housing, and an electric shock prevention circuit in the electric device can be obtained.

【0021】またこの実施例では抵抗Ru、Rv、Rw
の電流を合計し一つの増幅器26と一つのコンデンサC
oで構成したが、抵抗Ru、Rv、Rwのそれぞれに対
し増幅器26とコンデンサCoを3回路使用しても同等
の効果が得られる。
In this embodiment, the resistors Ru, Rv, Rw
, And one amplifier 26 and one capacitor C
However, the same effect can be obtained by using three circuits of the amplifier 26 and the capacitor Co for each of the resistors Ru, Rv, and Rw.

【0022】以上のようにこの発明による電気機器にお
ける感電防止回路はインダクタンスやトランス等の磁性
体を使用せずに、抵抗と増幅器及びコンデンサによる簡
単な構成で接地に対する筐体の電圧をゼロにすることが
でき、磁性体が飽和することがなく、小型、軽量、低価
格のものが得られるという優れた効果を奏する。
As described above, the electric shock prevention circuit in the electric equipment according to the present invention does not use a magnetic material such as an inductance or a transformer, and reduces the voltage of the housing with respect to the ground to zero with a simple configuration using a resistor, an amplifier and a capacitor. Therefore, there is an excellent effect that the magnetic material is not saturated, and a compact, lightweight, and inexpensive product can be obtained.

【0023】〈第3実施例〉図3に示す電気機器4に適
用した電気機器における感電防止回路は、この発明の第
3の実施例である。図において、3相交流電源5と電力
変換装置2との間にコモンモードチョークコイル29
と、電力変換装置2の入力R2、S2、T2間にコンデ
ンサ30、31、32を接続する。抵抗Ru、Rv、R
wの一方をそれぞれU1、V1、W1に接続し、他方を
全て増幅器26の負入力端子27に接続する。増幅器2
6の出力50と負入力端子27間に抵抗Rpを接続す
る。抵抗Rpは抵抗Ru、Rv、Rwより十分大きい値
とする。例えば10倍の抵抗値に選ぶ。増幅器26の正
入力端子28を3相交流電源5の接地線S1に接続す
る。増幅器26の出力50を電力変換装置2の入力の接
地線S2に接続する。第3実施例の電気機器における感
電防止回路は以上のように構成されている。
Third Embodiment An electric shock prevention circuit in an electric device applied to the electric device 4 shown in FIG. 3 is a third embodiment of the present invention. In the figure, a common mode choke coil 29 is provided between the three-phase AC power supply 5 and the power converter 2.
And the capacitors 30, 31, and 32 are connected between the inputs R2, S2, and T2 of the power converter 2. Resistance Ru, Rv, R
One of w is connected to U1, V1, and W1, respectively, and the other is connected to the negative input terminal 27 of the amplifier 26. Amplifier 2
6, a resistor Rp is connected between the output 50 and the negative input terminal 27. The resistance Rp is a value sufficiently larger than the resistances Ru, Rv, and Rw. For example, a resistance value that is 10 times is selected. The positive input terminal 28 of the amplifier 26 is connected to the ground line S1 of the three-phase AC power supply 5. The output 50 of the amplifier 26 is connected to the ground line S2 of the input of the power converter 2. The electric shock prevention circuit in the electric device according to the third embodiment is configured as described above.

【0024】電力変換装置2の出力U1、V1、W1の
電圧は図7(b)のプラス側Pの電位33と、マイナス
側Nの電位34の間を高い周波数のPWM制御によるス
イッチングで電圧が変化する。すなわち、低周波と高周
波の電圧変化が重なっている。この第3の実施例による
増幅器26で反転増幅した出力50の電圧Vpは、出力
U1、V1、W1の電圧の和が3相交流電源5の接地線
S1の電位すなわちゼロになるように電力変換装置2の
入力の接地線S2の電位を制御する。この結果出力U
1、V1、W1の電圧の和がゼロになるので、この電圧
変化により浮遊容量Cu、Cv、Cwに流れる電流i
u、iv、iwの合計はゼロになる。筐体1の接地端子
Eに流れる漏洩電流ieは浮遊容量Cu、Cv、Cwに
流れる電流iu、iv、iwの和であり、この電流はゼ
ロであるから漏洩電流ieはゼロである。従って、筐体
1が接地されていない場合でも筐体1の電圧はゼロであ
り、筐体に人体が接触して感電することはなく、電気機
器における感電防止回路が得られる。
The voltages of the outputs U1, V1, and W1 of the power conversion device 2 are switched between the potential 33 on the plus side P and the potential 34 on the minus side N in FIG. Change. That is, the low-frequency and high-frequency voltage changes overlap. The voltage Vp of the output 50 inverted and amplified by the amplifier 26 according to the third embodiment is converted into a power so that the sum of the voltages of the outputs U1, V1, and W1 becomes the potential of the ground line S1 of the three-phase AC power supply 5, that is, zero. The potential of the input ground line S2 of the device 2 is controlled. This result output U
Since the sum of the voltages of 1, V1, and W1 becomes zero, the current i flowing through the stray capacitances Cu, Cv, and Cw due to this voltage change
The sum of u, iv and iw becomes zero. The leakage current ie flowing through the ground terminal E of the housing 1 is the sum of the currents iu, iv and iw flowing through the stray capacitances Cu, Cv and Cw. Since this current is zero, the leakage current ie is zero. Therefore, even when the housing 1 is not grounded, the voltage of the housing 1 is zero, and no electric shock is caused by the contact of the human body with the housing, and an electric shock prevention circuit in the electric device can be obtained.

【0025】このように増幅器26により出力の電圧を
反転増幅し、電力変換装置の入力の接地線の電位を、反
転増幅した出力で制御することにより、接地に対する筐
体の電圧を低減し、感電を防止することができる電気機
器における感電防止回路が得られる。
As described above, the output voltage is inverted and amplified by the amplifier 26, and the potential of the ground line at the input of the power converter is controlled by the inverted and amplified output. Thus, an electric shock prevention circuit in an electric device capable of preventing the occurrence of electric shock can be obtained.

【0026】また、入力S2に接続しているダイオード
12、13にコンデンサ17、18を接続することによ
りダイオード12、13が導通していない位相の期間に
おいても増幅器26の出力により出力U1、V1、W1
の電圧の和をゼロに制御するのを容易にする。また、ダ
イオード10、11、14、15に並列にコンデンサを
接続しても同様の効果を奏する。また、増幅器26の出
力50と電力変換装置2の入力の接地線S2との間にコ
ンデンサ51を挿入し高周波の電流だけを通すことによ
り、電力変換装置2の出力U1、V1、W1の電圧の高
周波の成分のみをゼロに制御し、浮遊容量Cu、Cv、
Cwに流れる電流iu、iv、iwの高周波成分の合計
をゼロにする。低周波成分の漏洩電流は図8(b)の4
3に示したように少ないので全体の漏洩電流も少ない。
また、コモンモードチョークコイル29が低周波成分で
飽和することがなくなり、増幅器26の消費電力も少な
くて済むという効果もある。
Further, by connecting the capacitors 17 and 18 to the diodes 12 and 13 connected to the input S2, the outputs U1, V1 and W1
It is easy to control the sum of the voltages to zero. The same effect can be obtained even if a capacitor is connected in parallel with the diodes 10, 11, 14, and 15. Further, by inserting a capacitor 51 between the output 50 of the amplifier 26 and the ground line S2 of the input of the power converter 2 and passing only a high-frequency current, the voltage of the output U1, V1, W1 of the power converter 2 is reduced. Only high frequency components are controlled to zero, and stray capacitances Cu, Cv,
The sum of the high frequency components of the currents iu, iv, iw flowing through Cw is set to zero. The leakage current of the low frequency component is 4 in FIG.
As shown in FIG. 3, the total leakage current is also small.
Further, there is an effect that the common mode choke coil 29 does not saturate with a low frequency component, and the power consumption of the amplifier 26 can be reduced.

【0027】また、この図3に示す電気機器4に適用し
た電気機器における感電防止回路は負荷3が筐体1の外
に設置されていて、筐体1とは別に接地してあっても、
出力U1、V1、W1の電圧の和がゼロになるので、負
荷3の浮遊容量Cu、Cv、Cwに流れる電流iu、i
v、iwの合計はゼロである。従って負荷3が接地され
ていない場合、負荷3のケースに人体が接触しても感電
することはない。
The electric shock prevention circuit in the electric equipment applied to the electric equipment 4 shown in FIG. 3 has a structure in which the load 3 is installed outside the housing 1 and is grounded separately from the housing 1.
Since the sum of the voltages of the outputs U1, V1, and W1 becomes zero, the currents iu, i flowing through the stray capacitances Cu, Cv, and Cw of the load 3
The sum of v and iw is zero. Therefore, when the load 3 is not grounded, there is no electric shock even if a human body comes into contact with the case of the load 3.

【0028】以上のようにこの発明による電気機器にお
ける感電防止回路はコモンモードチョークコイルとコン
デンサ及び抵抗と増幅器による簡単な構成で接地に対す
る筐体の電圧を低減することができ、小型、軽量、低価
格のものが得られるという優れた効果を奏する。
As described above, the electric shock prevention circuit in the electric equipment according to the present invention can reduce the voltage of the housing with respect to the ground with a simple configuration including the common mode choke coil, the capacitor, the resistor, and the amplifier, and is small, light, and low. It has an excellent effect of obtaining a price.

【0029】〈第4実施例〉図4に示す電気機器におけ
る感電防止回路は、この発明の第4の実施例である。図
において、3相交流電源5と電力変換装置2との間にコ
モンモードチョークコイル52と、電力変換装置2の入
力R2、S2、T2間にコンデンサ30、31、32を
接続する。抵抗Ru、Rv、Rwの一方をそれぞれU
1、V1、W1に接続し、他方を全て増幅器26の負入
力端子27に接続する。増幅器26の出力50と負入力
端子27間に抵抗Rpを接続する。抵抗Rpは抵抗R
u、Rv、Rwより十分大きい値とする。例えば10倍
の抵抗値に選ぶ。増幅器26の正入力端子28を3相交
流電源5の接地線S1に接続する。コモンモードチョー
クコイル52の補助巻線53を増幅器26の出力50と
3相交流電源5の接地線S1の間に接続する。第4の実
施例の電気機器における感電防止回路は以上のように構
成されている。
<Fourth Embodiment> An electric shock prevention circuit in an electric apparatus shown in FIG. 4 is a fourth embodiment of the present invention. In the figure, a common mode choke coil 52 is connected between the three-phase AC power supply 5 and the power converter 2, and capacitors 30, 31, and 32 are connected between the inputs R2, S2, and T2 of the power converter 2. One of the resistors Ru, Rv, and Rw is set to U
1, V1 and W1 and the other is connected to the negative input terminal 27 of the amplifier 26. A resistor Rp is connected between the output 50 of the amplifier 26 and the negative input terminal 27. The resistance Rp is the resistance R
u, Rv, and Rw are values that are sufficiently larger. For example, a resistance value that is 10 times is selected. The positive input terminal 28 of the amplifier 26 is connected to the ground line S1 of the three-phase AC power supply 5. The auxiliary winding 53 of the common mode choke coil 52 is connected between the output 50 of the amplifier 26 and the ground line S1 of the three-phase AC power supply 5. The electric shock prevention circuit in the electric apparatus according to the fourth embodiment is configured as described above.

【0030】この第4の実施例による増幅器26で反転
増幅した出力50の電圧Vpは、出力U1、V1、W1
の電圧の和が3相交流電源5の接地線S1の電位すなわ
ちゼロになるように、電力変換装置2の入力の接地線S
2の電位を制御する。この結果出力U1、V1、W1の
電圧の和がゼロになるので、この電圧変化により浮遊容
量Cu、Cv、Cwに流れる電流iu、iv、iwの合
計はゼロになる。筐体1の接地端子Eに流れる漏洩電流
ieは浮遊容量Cu、Cv、Cwに流れる電流iu、i
v、iwの和であり、この電流はゼロであるから漏洩電
流ieはゼロである。従って、筐体1が接地されていな
い場合でも筐体1の電圧はゼロであり、筐体に人体が接
触して感電することはなく、電気機器における感電防止
回路が得られる。
The voltage Vp of the output 50 inverted and amplified by the amplifier 26 according to the fourth embodiment is equal to the output U1, V1, W1
Of the input of the power conversion device 2 so that the sum of the voltages of
2 is controlled. As a result, the sum of the voltages of the outputs U1, V1, and W1 becomes zero, and the sum of the currents iu, iv, and iw flowing through the stray capacitances Cu, Cv, and Cw becomes zero due to this voltage change. The leakage current ie flowing to the ground terminal E of the housing 1 is the current iu, i flowing to the stray capacitance Cu, Cv, Cw.
This is the sum of v and iw, and since this current is zero, the leakage current ie is zero. Therefore, even when the housing 1 is not grounded, the voltage of the housing 1 is zero, and no electric shock is caused by the contact of the human body with the housing, and an electric shock prevention circuit in the electric device can be obtained.

【0031】このように増幅器26により電力変換装置
の出力電圧を反転増幅し、電力変換装置の入力の接地線
の電位を、反転増幅した出力で制御することにより、接
地に対する筐体の電圧を低減することができる電気機器
における感電防止回路が得られる。
As described above, the output voltage of the power converter is inverted and amplified by the amplifier 26, and the potential of the ground line at the input of the power converter is controlled by the inverted and amplified output, thereby reducing the voltage of the housing with respect to the ground. An electric shock prevention circuit in an electric device that can perform the operation is obtained.

【0032】また、増幅器26の出力50と3相交流電
源5の接地線S1との間にコンデンサ51を挿入し高周
波の電流だけを通すことにより、電力変換装置2の出力
U1、V1、W1の電圧の高周波の成分のみをゼロに制
御し、浮遊容量Cu、Cv、Cwに流れる電流iu、i
v、iwの高周波成分の合計をゼロにする。低周波成分
の漏洩電流は図8(b)の43に示したように少ないの
で全体の漏洩電流も少ない。また、コモンモードチョー
クコイル52が低周波成分で飽和することがなくなると
いう効果もある。また、コモンモードチョークコイル5
2の補助巻線53の巻数を他の巻線と異なる巻数、例え
ば巻数を少なくすることにより、増幅器26の出力電圧
Vpの電圧は低くても良く、半導体で構成する増幅器が
容易に構成できる効果がある。
Further, by inserting a capacitor 51 between the output 50 of the amplifier 26 and the ground line S1 of the three-phase AC power supply 5 and passing only a high-frequency current, the output U1, V1, W1 of the power converter 2 is Only the high frequency components of the voltage are controlled to zero, and the currents iu, i flowing through the stray capacitances Cu, Cv, Cw
The sum of the high frequency components of v and iw is set to zero. Since the leakage current of the low frequency component is small as shown at 43 in FIG. 8B, the overall leakage current is also small. Also, there is an effect that the common mode choke coil 52 is not saturated with a low frequency component. Also, the common mode choke coil 5
By reducing the number of turns of the second auxiliary winding 53 from that of the other windings, for example, by reducing the number of turns, the voltage of the output voltage Vp of the amplifier 26 may be low, and an effect that an amplifier made of a semiconductor can be easily formed. There is.

【0033】また、この図4に示す電気機器4に適用し
た電気機器における感電防止回路は負荷3が筐体1の外
に設置されていて、筐体1とは別に接地してあっても、
出力U1、V1、W1の電圧の和がゼロになるので、負
荷3の浮遊容量Cu、Cv、Cwに流れる電流iu、i
v、iwの合計はゼロである。従って負荷3が接地され
ていない場合、負荷3のケースに人体が接触しても感電
することはない。
The electric shock prevention circuit in the electric equipment applied to the electric equipment 4 shown in FIG. 4 has a structure in which the load 3 is installed outside the housing 1 and is grounded separately from the housing 1.
Since the sum of the voltages of the outputs U1, V1, and W1 becomes zero, the currents iu, i flowing through the stray capacitances Cu, Cv, and Cw of the load 3
The sum of v and iw is zero. Therefore, when the load 3 is not grounded, there is no electric shock even if a human body comes into contact with the case of the load 3.

【0034】以上のようにこの発明による電気機器にお
ける感電防止回路はコモンモードチョークコイルとコン
デンサ及び抵抗と増幅器による簡単な構成で接地に対す
る筐体の電圧を低減することができ、小型、軽量、低価
格のものが得られるという優れた効果を奏する。
As described above, the electric shock prevention circuit in the electric equipment according to the present invention can reduce the voltage of the housing with respect to the ground with a simple configuration including the common mode choke coil, the capacitor, the resistor, and the amplifier, and is small, light, and low. It has an excellent effect of obtaining a price.

【0035】〈第5実施例〉図5に示す電気機器4に適
用した電気機器における感電防止回路は、この発明の第
5の実施例である。図において、3相交流電源5と電力
変換装置2との間にコモンモードチョークコイル29
と、電力変換装置2の入力R2、S2、T2間にコンデ
ンサ30、31、32を接続する。また、電力変換装置
2の入力の接地線S2と筐体1との間にコンデンサ37
を接続する。コンデンサ37は浮遊容量Cu、Cv、C
wの静電容量より十分大きな値に設定する。例えば0.
1〜1μFに選ぶ。第5の実施例の電気機器における感
電防止回路は以上のように構成されている。
Fifth Embodiment An electric shock prevention circuit in an electric device applied to the electric device 4 shown in FIG. 5 is a fifth embodiment of the present invention. In the figure, a common mode choke coil 29 is provided between the three-phase AC power supply 5 and the power converter 2.
And the capacitors 30, 31, and 32 are connected between the inputs R2, S2, and T2 of the power converter 2. Also, a capacitor 37 is provided between the input ground line S2 of the power converter 2 and the housing 1.
Connect. The capacitor 37 has a stray capacitance Cu, Cv, C
The value is set to a value sufficiently larger than the capacitance of w. For example, 0.
Choose between 1 and 1 μF. The electric shock prevention circuit in the electric device according to the fifth embodiment is configured as described above.

【0036】電力変換装置2の入力の接地線S2は3相
交流電源のS1が接地してあるので低周波では接地電位
である。従ってこのS2と接地端子Eで接地してある筐
体1との間をコンデンサ37で接続しても同電位である
ためほとんど低周波の電流は流れない。また、電力変換
装置2は筐体1とは絶縁されているので、電力変換装置
2の入力R2、S2、T2に対し出力U1、V1、W1
の電圧が変動することにより、浮遊容量Cu、Cv、C
wに流れる電流iu、iv、iwはコンデンサ37を通
り電力変換装置2の入力S2に流れる。電力変換装置2
の入力R2、S2、T2はコンデンサ30、31、32
により高周波的には同電位である。コンデンサ37の静
電容量は浮遊容量Cu、Cv、Cwの静電容量より十分
大きな値に設定してあるので、浮遊容量Cu、Cv、C
wに流れる電流iu、iv、iwは殆ど電流isとして
コンデンサ37を流れ電力変換装置2の内部に流れる。
The ground line S2 at the input of the power converter 2 has a ground potential at a low frequency because the three-phase AC power supply S1 is grounded. Therefore, even if S2 and the housing 1 grounded by the ground terminal E are connected by the capacitor 37, they have almost the same potential and almost no low-frequency current flows. Further, since the power converter 2 is insulated from the housing 1, the outputs U1, V1, W1 are provided for the inputs R2, S2, T2 of the power converter 2.
Of the stray capacitance Cu, Cv, C
The currents iu, iv, iw flowing through w flow through the capacitor 37 to the input S2 of the power converter 2. Power converter 2
Inputs R2, S2, T2 are capacitors 30, 31, 32
Are the same in terms of high frequency. Since the capacitance of the capacitor 37 is set to a value sufficiently larger than the capacitance of the stray capacitances Cu, Cv, Cw, the stray capacitances Cu, Cv, Cw
The currents iu, iv, iw flowing through w almost flow through the capacitor 37 as the current is and flow inside the power converter 2.

【0037】また、入力S2に接続しているダイオード
12、13にコンデンサ17、18を接続することによ
りダイオード12、13が導通していない位相の期間に
おいてコンデンサ37を流れる電流isが電力変換装置
2の直流電圧部分に流れるのを容易にし、接地に対する
筐体の電圧を低減する効果を高める。また、ダイオード
10、11、14、15に並列にコンデンサを接続して
も同様の効果を奏する。
Further, by connecting the capacitors 17 and 18 to the diodes 12 and 13 connected to the input S2, the current is flowing through the capacitor 37 during the phase in which the diodes 12 and 13 are not conducting is increased. , And the effect of reducing the voltage of the housing with respect to the ground is enhanced. The same effect can be obtained even if a capacitor is connected in parallel with the diodes 10, 11, 14, and 15.

【0038】コンデンサ37は浮遊容量Cu、Cv、C
wに比べて比較的大きな容量に設定されているので、電
流isによる端子電圧は小さい。従ってコモンモードチ
ョークコイル29のインダクタンスにより3相交流電源
5側に流れる電流は少ない。また、上記のようにコンデ
ンサ37を流れる低周波の電流も少なく、また高周波の
浮遊容量Cu、Cv、Cwに流れる電流はコンデンサ3
7、17、18を通って電力変換装置2に戻ってしまう
ので、接地端子Eに流れる漏洩電流ieは少ない。従っ
て、筐体1が接地されていない場合でも接地に対する筐
体1の電圧は低く、筐体に人体が接触して感電すること
はなく、電気機器における感電防止回路が得られる。
The capacitor 37 has stray capacitances Cu, Cv, C
Since the capacitance is set to be relatively large as compared with w, the terminal voltage due to the current is is small. Therefore, a small amount of current flows to the three-phase AC power supply 5 due to the inductance of the common mode choke coil 29. Further, as described above, the low-frequency current flowing through the capacitor 37 is small, and the current flowing through the high-frequency stray capacitances Cu, Cv, Cw is
Since it returns to the power converter 2 through 7, 17, and 18, the leakage current ie flowing to the ground terminal E is small. Therefore, even when the housing 1 is not grounded, the voltage of the housing 1 with respect to the ground is low, and no electric shock is caused by contact of the body with the housing, so that an electric shock prevention circuit in the electric device can be obtained.

【0039】以上のようにこの発明による電気機器にお
ける感電防止回路はコモンモードチョークコイルとコン
デンサによる簡単な構成で接地に対する筐体の電圧を低
減することができ、小型、軽量、低価格のものが得られ
るという優れた効果を奏する。
As described above, the electric shock prevention circuit in the electric equipment according to the present invention can reduce the voltage of the housing with respect to the ground with a simple configuration using the common mode choke coil and the capacitor. It has an excellent effect of being obtained.

【0040】以上説明した第1実施例〜第5実施例は3
相交流用の電気機器における感電防止回路で示したが、
単相交流用または単相3線式交流用等の電気機器におけ
る感電防止回路であっても同様の回路で同等の効果を奏
する。
The first to fifth embodiments described above have three
As shown in the electric shock prevention circuit in electric equipment for phase alternating current,
The same effect can be achieved with a similar circuit even in an electric shock prevention circuit in an electric device for single-phase AC or single-phase three-wire AC.

【0041】[0041]

【発明の効果】この発明は、以上説明したように構成さ
れているので、以下に記載されるような効果を奏する。
第1、2実施例の電気機器における感電防止回路は、浮
遊容量に流れる電流と同じ値で極性が逆の電流を流すこ
とによって、高周波でスイッチングする電力変換装置に
浮遊容量を有する負荷を接続した電気機器の接地に対す
る筐体の電圧を低減にすることができ、筐体が接地され
ていない場合でも、筐体に人体が接触して感電すること
はない。また、トランスとコンデンサまたは抵抗と増幅
器及びコンデンサによる簡単な構成で接地に対する筐体
の電圧を低減にすることができ、小型、軽量、低価格の
ものが得られる効果がある。
Since the present invention is configured as described above, it has the following effects.
The electric shock prevention circuit in the electric equipment of the first and second embodiments connects a load having a stray capacitance to a power converter that switches at a high frequency by flowing a current having the same value as the current flowing through the stray capacitance and having the opposite polarity. The voltage of the housing with respect to the grounding of the electric device can be reduced, and even when the housing is not grounded, there is no possibility that a human body touches the housing and receives an electric shock. In addition, the voltage of the housing with respect to the ground can be reduced with a simple configuration including a transformer and a capacitor or a resistor, an amplifier, and a capacitor.

【0042】第3、4実施例の電気機器における感電防
止回路は、電力変換装置の出力の電圧の和が交流電源の
接地線の電位と同じになるように電力変換装置の入力の
電位を制御したので、出力から浮遊容量に流れる漏洩電
流を低減することができ、筐体が接地されていない場合
でも、筐体に人体が接触して感電することはない。ま
た、負荷が筐体の外に設置されていて筐体に接続されて
いなくても、負荷3のケースに人体が接触して感電する
ことはない。また、コモンモードチョークコイルとコン
デンサ、抵抗と増幅器による簡単な構成で接地に対する
筐体の電圧を低減することができ、小型、軽量、低価格
のものが得られる効果がある。
The electric shock prevention circuit in the electric equipment of the third and fourth embodiments controls the input potential of the power converter so that the sum of the output voltages of the power converter becomes equal to the potential of the ground line of the AC power supply. Therefore, the leakage current flowing from the output to the stray capacitance can be reduced, and even if the housing is not grounded, the human body does not come into contact with the housing to receive an electric shock. Also, even if the load is installed outside the housing and is not connected to the housing, the case of the load 3 does not come into contact with the case of the human body and does not receive an electric shock. In addition, the voltage of the housing with respect to the ground can be reduced with a simple configuration including a common mode choke coil and a capacitor, and a resistor and an amplifier.

【0043】第5実施例の電気機器における感電防止回
路は、電力変換装置の出力から浮遊容量を通って筐体に
流れた電流は、電力変換装置の入力の接地線と筐体間に
接続したコンデンサを通り電力変換装置に戻るので、接
地に対する筐体の電圧を低減でき、筐体が接地されてい
ない場合でも、筐体に人体が接触して感電することはな
い。また、コモンモードチョークコイルとコンデンサに
よる簡単な構成で接地に対する筐体の電圧を低減するこ
とができ、小型、軽量、低価格のものが得られる効果が
ある。
In the electric shock prevention circuit in the electric equipment of the fifth embodiment, the current flowing from the output of the power converter to the housing through the stray capacitance is connected between the input ground line of the power converter and the housing. Since the power returns to the power conversion device through the capacitor, the voltage of the housing with respect to the ground can be reduced. Even when the housing is not grounded, the housing does not come into contact with the human body and does not cause an electric shock. Further, the voltage of the housing with respect to the ground can be reduced with a simple configuration using the common mode choke coil and the capacitor, and there is an effect that a compact, lightweight, and low-cost one can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例の電気機器における感電防止回路を
示す回路図である。
FIG. 1 is a circuit diagram showing an electric shock prevention circuit in an electric device according to a first embodiment.

【図2】第2実施例の電気機器における感電防止回路を
示す回路図である。
FIG. 2 is a circuit diagram illustrating an electric shock prevention circuit in an electric device according to a second embodiment.

【図3】第3実施例の電気機器における感電防止回路を
示す回路図である。
FIG. 3 is a circuit diagram showing an electric shock prevention circuit in an electric device according to a third embodiment.

【図4】第4実施例の電気機器における感電防止回路を
示す回路図である。
FIG. 4 is a circuit diagram illustrating an electric shock prevention circuit in an electric device according to a fourth embodiment.

【図5】第5実施例の電気機器における感電防止回路を
示す回路図である。
FIG. 5 is a circuit diagram illustrating an electric shock prevention circuit in an electric device according to a fifth embodiment.

【図6】従来の電気機器の動作を説明するための回路図
である。
FIG. 6 is a circuit diagram for explaining the operation of a conventional electric device.

【図7】図6の従来の電気機器及び実施例の動作を説明
するための各部の波形図である。
7 is a waveform diagram of each section for explaining the operation of the conventional electric device and the embodiment of FIG.

【図8】図6の従来の電気機器及び実施例の動作を説明
するための各部の波形図である。
8 is a waveform diagram of each part for explaining the operation of the conventional electric device and the embodiment of FIG. 6;

【符号の説明】[Explanation of symbols]

1 筐体 2 電力変換装置 3 負荷 4 電気機器 5 交流電源 6 漏電遮断器 7 零相変流器 8 増幅部 9 引き外しコイル 10、11、12 ダイオード 13、14、15 ダイオード 16、17、18 コンデンサ 20、21、22 スイッチング素子 23、24、25 スイッチング素子 26 増幅器 27 負入力端子 28 正入力端子 29、52 コモンモードチョークコイル 30、31、32 コンデンサ 37、51 コンデンサ 46、47、48 トランス 53 補助巻線 C1、C2、C3 コンデンサ Co コンデンサ E 接地端子 Ru、Rv、Rw 抵抗 Ro、Rp 抵抗 R2、S2、T2 入力 U1、V1、W1 出力 U2、V2、W2 入力端子 Vo、Vp 出力電圧 DESCRIPTION OF SYMBOLS 1 Housing 2 Power converter 3 Load 4 Electric equipment 5 AC power supply 6 Leakage breaker 7 Zero-phase current transformer 8 Amplification part 9 Tripping coil 10, 11, 12 Diode 13, 14, 15 Diode 16, 17, 18 Capacitor 20, 21, 22 Switching element 23, 24, 25 Switching element 26 Amplifier 27 Negative input terminal 28 Positive input terminal 29, 52 Common mode choke coil 30, 31, 32 Capacitor 37, 51 Capacitor 46, 47, 48 Transformer 53 Auxiliary winding Line C1, C2, C3 Capacitor Co Capacitor E Ground terminal Ru, Rv, Rw Resistance Ro, Rp Resistance R2, S2, T2 Input U1, V1, W1 Output U2, V2, W2 Input terminal Vo, Vp Output voltage

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】筐体内に電力変換装置と負荷を有し、いず
れか一線が接地されている交流電源を前記電力変換装置
に入力し、前記電力変換装置の出力に接続した負荷に所
望の電圧波形を出力する電気機器において、前記電力変換装置の 入力の接地線と前記電力変換装置
出力側の出力線との間の電圧を反転し、前記電力変換
装置の出力側の出力線と前記筐体間に存在する浮遊容量
および前記負荷の入力側と前記筐体間に存在する浮遊容
量から漏洩する電流の合計と同等の電流を流すコンデン
サを前記反転出力と前記筐体との間に接続することによ
り、接地に対する筐体の電圧を低減することを特徴とす
る電気機器における感電防止回路。
An AC power supply having a power converter and a load in a housing, one of which is grounded, is input to the power converter, and a desired voltage is applied to a load connected to an output of the power converter. in electrical equipment which outputs a waveform, the input side of the ground line and the power converter of the power converter
Invert the voltage between the output line of the output side and the power conversion
Stray capacitance existing between the output line on the output side of the device and the housing
And by connecting the capacitors to flow total equivalent current of the current which leaks from the floating capacitance between the input side of the load existing between the housing between the housing and the inverted output, a housing to ground An electric shock prevention circuit in an electric device, characterized by reducing a voltage of the electric shock.
【請求項2】 筐体内に電力変換装置を有し、いずれか
一線が接地されている交流電源を電力変換装置に入力
し、前記電力変換装置の出力に接続した負荷に所望の電
圧波形を出力する電気機器において、交流電源と電力変
換装置の入力との間にコモンモードチョークコイルを接
続し、また、前記電力変換装置の入力の線間にコンデン
サを接続し、前記電力変換装置の出力の電圧の和と、前
記交流電源の接地線との間の電圧差を反転増幅し、前記
電力変換装置の入力の接地線の電位を前記反転増幅した
出力で制御することにより、接地に対する筐体の電圧を
低減することを特徴とする電気機器における感電防止回
路。
2. A power conversion device having a power conversion device in a housing, one of which is grounded, is input to the power conversion device, and a desired voltage waveform is output to a load connected to an output of the power conversion device. In an electrical device, a common mode choke coil is connected between an AC power supply and an input of a power converter, and a capacitor is connected between input lines of the power converter, and a voltage of an output of the power converter is connected. And the voltage difference between the ground line of the AC power supply is inverted and amplified, and the potential of the input ground line of the power conversion device is controlled by the inverted amplified output, thereby obtaining An electric shock prevention circuit in an electric device, characterized in that the electric shock is reduced.
【請求項3】筐体内に電力変換装置と負荷を有し、いず
れか一線が接地されている交流電源を前記電力変換装置
に入力し、前記電力変換装置の出力に接続した負荷に所
望の電圧波形を出力する電気機器において、 交流電源と電力変換装置の入力との間にコンデンサを接
続し、 さらに、前記電力変換装置の入力の接地線と筐体間に
記電力変換装置の出力側の出力線と前記筐体間に存在す
る浮遊容量および前記負荷の入力側と前記筐体間に存在
する浮遊容量に比べて十分大きな静電容量のコンデンサ
を接続することにより、 接地に対する筐体の電圧を低減することを特徴とする電
気機器における感電防止回路。
3. An AC power supply having a power converter and a load in a housing, one of which is grounded, is input to the power converter, and a desired voltage is applied to a load connected to an output of the power converter. in electrical equipment which outputs a waveform, and a capacitor between the input of the AC power source and the power conversion device further before between the ground line and the housing of the input of the power converter
The power converter exists between the output line on the output side of the power converter and the housing.
Between the input side of the load and the housing
An electric shock prevention circuit in an electric device, wherein a capacitor having a capacitance sufficiently larger than a stray capacitance is connected to reduce a voltage of a housing with respect to a ground.
JP24092095A 1995-08-26 1995-08-26 Electric shock prevention circuit in electrical equipment Expired - Fee Related JP3155912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24092095A JP3155912B2 (en) 1995-08-26 1995-08-26 Electric shock prevention circuit in electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24092095A JP3155912B2 (en) 1995-08-26 1995-08-26 Electric shock prevention circuit in electrical equipment

Publications (2)

Publication Number Publication Date
JPH0965564A JPH0965564A (en) 1997-03-07
JP3155912B2 true JP3155912B2 (en) 2001-04-16

Family

ID=17066624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24092095A Expired - Fee Related JP3155912B2 (en) 1995-08-26 1995-08-26 Electric shock prevention circuit in electrical equipment

Country Status (1)

Country Link
JP (1) JP3155912B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002037674A1 (en) * 2000-10-31 2002-05-10 Tdk Corporation Power line noise filter
WO2004045054A1 (en) * 2002-11-11 2004-05-27 The Circle For The Promotion Of Science And Engineering Filter device
JP5716394B2 (en) 2010-12-28 2015-05-13 株式会社リコー High voltage inverter device and leakage detecting device thereof
CN106300356A (en) * 2016-09-26 2017-01-04 天津大学 A kind of center line Harmonic Current Suppressor and control method thereof

Also Published As

Publication number Publication date
JPH0965564A (en) 1997-03-07

Similar Documents

Publication Publication Date Title
JP3044650B2 (en) Power converter noise reduction device
US6388904B2 (en) Power supply device for electromotive railcar
KR940007081B1 (en) Pwm-controlled power supply including choke coil with 3 windings
Choi et al. New 24-pulse diode rectifier systems for utility interface of high-power AC motor drives
JP2863833B2 (en) Active common mode canceller
JP3466118B2 (en) Leakage current reduction filter for inverter type drive unit
EP0986165B1 (en) Power conversion system
US5777866A (en) Power factor control for switched mode rectifiers with improved representing of currents in EMI capacitive elements
RU2558945C2 (en) Ultra-high efficiency switching power inverter and power amplifier
KR101132055B1 (en) Method for controlling a load with a predominantly inductive character and a device applying such a method
US7142440B2 (en) Ripple-current reduction for transformers
US9887641B2 (en) Power converter
KR20030026977A (en) Active common mode filter connected in a-c line
JP4106496B2 (en) Inverter common mode voltage / current suppression method and apparatus
JPH06315267A (en) Power-factor improvement dc power supply
JP3155912B2 (en) Electric shock prevention circuit in electrical equipment
JP2002252985A (en) Noise reducing apparatus for power converter
JPH10210649A (en) Voltage-type inverter device
Kutkut et al. A dual bridge high current DC-to-DC converter with soft switching capability
JPH11299264A (en) Method and apparatus for suppressing common mode voltage of inverter
JP3159459B2 (en) Line filter to prevent electric shock in electrical equipment
Igarashi et al. Unity power factor three-phase dither rectifier using a single switching device
JP3703024B2 (en) AC / DC bidirectional buck-boost converter
JP2001045767A (en) Inverter
JPH039309Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees