JP3115310B2 - 2 stator induction synchronous motor - Google Patents

2 stator induction synchronous motor

Info

Publication number
JP3115310B2
JP3115310B2 JP02324133A JP32413390A JP3115310B2 JP 3115310 B2 JP3115310 B2 JP 3115310B2 JP 02324133 A JP02324133 A JP 02324133A JP 32413390 A JP32413390 A JP 32413390A JP 3115310 B2 JP3115310 B2 JP 3115310B2
Authority
JP
Japan
Prior art keywords
rotor
windings
stator
winding
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02324133A
Other languages
Japanese (ja)
Other versions
JPH04193082A (en
Inventor
利彦 佐竹
幸男 大野木
Original Assignee
株式会社佐竹製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社佐竹製作所 filed Critical 株式会社佐竹製作所
Priority to JP02324133A priority Critical patent/JP3115310B2/en
Publication of JPH04193082A publication Critical patent/JPH04193082A/en
Application granted granted Critical
Publication of JP3115310B2 publication Critical patent/JP3115310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Motor And Converter Starters (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は起動機を必要としない起動トルクの大きい誘
導同期電動機に関する。
The present invention relates to an induction synchronous motor having a large starting torque that does not require a starter.

【従来の技術】[Prior art]

一般に同期電動機は、その回転子を固定子巻線の作る
回転磁界の回転速度すなわち同期速度近くまで加速する
起動機と、回転子巻線の直流励磁が必要である。 この起動機を省略して同期電動機自体に起動トルクを
持たせるように考案されたのが誘導同期電動機で、これ
は起動時には回転子巻線を短絡して誘導電動機として起
動するために起動機は必要としないが、同期運転に必要
な回転子巻線の直流励磁のために、ブラシを必要とす
る。すなわち、回転子の回転速度が同期速度に近づくと
回転子巻線の短絡を開放して外部の直流電源からブラシ
を介して回転子巻線に直流電流を流して回転子に磁極を
作り、この磁極が固定子巻線の作る回転磁界に引張られ
て回転子は同期速度で回転する。このブラシは保守点検
を必要とすることから保守費が嵩み、ブラシレス構造の
同期電動機の開発が望まれている。 このブラシレス構造の同期電動機としては、従来から
永久磁石形やリラクタンス形があるが、誘導機起動が不
可能なために起動トルクが小さい欠点があるため小容量
のものに限られている。またランデル形やインダクタ形
の同期電動機は磁路の構成が複雑で大型となる欠点があ
った。また交流励磁器と回転整流器を用いる方法も同様
である。また回転子巻線にダイオードを接続してインバ
ーターの方形波電圧による高調波磁界を利用するブラシ
レス自励形三相同期電動機は回転子の界磁起磁力が不足
で十分な出力が得られない欠点がある。更には三相の固
定子巻線の一相にダイオードを挿入して固定子の作る正
相分回転磁界に静止磁界を重畳して、同期速度で回転す
る回転子巻線に静止磁界による交流電圧を誘起させて、
これをダイオードで整流することによって回転子巻線を
直流励磁して、正相分回転磁界を作用させて同期トルク
を発生するブラシレス自励形三相同期電動機があるが、
これは誘導機始動が不可能なために、回転子鉄心の渦電
流による起動となり起動トルクが小さい欠点がある。 また特公昭54−34124には起動を誘導機の原理によっ
て行い、同期運転は軸方向の直流磁界を作ってこれによ
って回転子コアに磁極を形成して行うものがあるが、こ
れは発生トルクが回転軸に対して非対称となるために軸
の振動の原因になる欠点がある。 以上のように、自己起動が可能であっても起動トルク
が小さいために、特に、慣性負荷の起動には必ず別の起
動機を必要とした。
In general, a synchronous motor requires a starter that accelerates the rotor to near the rotational speed of the rotating magnetic field generated by the stator winding, that is, near the synchronous speed, and DC excitation of the rotor winding. Induction synchronous motors have been devised to omit this starter and give the synchronous motor itself a start-up torque.This is because the starter is short-circuited at start-up to start the induction motor as an induction motor. Although not required, a brush is required for DC excitation of the rotor windings required for synchronous operation. That is, when the rotation speed of the rotor approaches the synchronous speed, the short circuit of the rotor winding is opened, and a DC current is supplied from an external DC power supply to the rotor winding via a brush to create a magnetic pole in the rotor. The magnetic poles are pulled by the rotating magnetic field created by the stator winding, and the rotor rotates at a synchronous speed. Since this brush requires maintenance and inspection, maintenance costs are increased, and development of a brushless synchronous motor is desired. As the synchronous motor having the brushless structure, there are a permanent magnet type and a reluctance type conventionally. However, since the starting torque of the induction motor is small because the induction motor cannot be started, it is limited to a small capacity motor. In addition, the synchronous motor of the Landel type or the inductor type has a drawback that the configuration of the magnetic path is complicated and large. The same applies to a method using an AC exciter and a rotary rectifier. In addition, a brushless self-excited three-phase synchronous motor that uses a harmonic magnetic field generated by the square wave voltage of an inverter by connecting a diode to the rotor winding has the disadvantage that sufficient output cannot be obtained due to insufficient field magnetomotive force of the rotor. There is. Furthermore, a diode is inserted in one phase of the three-phase stator winding, and a static magnetic field is superimposed on the positive-phase rotating magnetic field generated by the stator, and the AC voltage due to the static magnetic field is applied to the rotor winding rotating at the synchronous speed. To induce
There is a brushless self-excited three-phase synchronous motor that rectifies this with a diode, excites the rotor windings with direct current, and applies a positive-phase rotating magnetic field to generate synchronous torque.
This is because it is impossible to start the induction machine, so that the rotor is started by the eddy current of the rotor core and the starting torque is small. In Japanese Patent Publication No. 54-34124, starting is performed by the principle of an induction machine, and synchronous operation is performed by creating a DC magnetic field in the axial direction and thereby forming a magnetic pole on a rotor core. There is a disadvantage that the shaft is oscillated because it is asymmetric with respect to the rotating shaft. As described above, even when self-starting is possible, since the starting torque is small, another starting machine is always required especially for starting the inertial load.

【発明が解決しようとする課題】[Problems to be solved by the invention]

したがって起動トルクが大きく、更に同期トルクも大
きく、しかもブラシを必要とせず、保守点検が容易で構
造が簡単で専用の起動機も必要としない慣性負荷にも対
応できる同期電動機の提供を技術的課題とするものであ
る。
Therefore, a technical problem is to provide a synchronous motor that has a large starting torque, a large synchronous torque, does not require a brush, is easy to maintain, has a simple structure, and can cope with an inertial load that does not require a dedicated starter. It is assumed that.

【課題を解決するための手段】[Means for Solving the Problems]

同一の回転軸上に任意の間隔を置いて設けた2個の回
転子コアのそれぞれに第1の回転子巻線と第2の回転子
巻線を巻装し、前記第1の回転子巻線相互間を直列に接
続し該接続点間に連絡抵抗を接続し、さらに前記第2の
回転子巻線相互間を交叉接続した回転子と、前記2個の
回転子コアのそれぞれに対峙して周設し前記第1と第2
の回転子巻線と磁気的結合をなすようそれぞれ固定子巻
線を装設した2個の固定子と、該2個の固定子のうち特
定の一方の固定子がこれに対峙する一方の回転子コアの
周囲に生じる回転磁界と、他方の固定子がこれに対峙す
る他方の回転子コアの周囲に生じる回転磁界との間に0
゜と180゜の二つの位相差のうち何れか一方の位相差を
選択的に生じさせる電圧移相装置と、前記回転軸上に設
けられ、その直流出力を前記第2の回転子巻線の交叉接
続点間に並列に供給することにより前記回転子に磁極を
生じさせる回転電機子形交流発電機とを備え、起動時は
前記電圧移相装置により位相差180゜を選択することに
より、前記第1の回転子巻線及び前記第2の回転子巻線
と前記2個の固定子が発生する回転磁界との間の電磁作
用により誘導電動機として起動し、同期引き入れ時は前
記電圧移相装置により位相差0゜を選択すると同時に前
記回転電機子形交流発電機を作動させることで、前記2
個の固定子が発生する回転磁界と前記第2の回転子巻線
を流れる直流により前記回転子に生じる磁極との間の電
磁作用により同期電動機として運転することにより前記
課題を解決するための手段とした。 更に本発明によると、同一の回転軸上に任意の間隔を
置いて設けた2個の回転子コアの外周上に2個の回転子
コアに連通した導体を複数個設け、その両端を短絡環で
連結すると共に、該複数個の導体間を前記2個の回転子
コア間の中央部において連絡抵抗で短絡したかご形導体
と、前記2個の回転子コアのそれぞれに巻装した回転子
巻線を有し、該回転子巻線相互間を交叉接続した回転子
と、前記2個の回転子コアのそれぞれに対峙して周設し
前記かご形導体及び回転子巻線と磁気的結合をなすよう
それぞれ固定子巻線を装設した2個の固定子と、該2個
の固定子のうち特定の一方の固定子がこれに対峙する一
方の回転子コアの周囲に生じる回転磁界と、他方の固定
子がこれに対峙する他方の回転子コアの周囲に生じる回
転磁界との間に0゜と180゜の二つの位相差のうち何れ
か一方の位相差を選択的に生じさせる電圧移相装置と、
前記回転軸上に設けられ、その直流出力を前記回転子巻
線の交叉接続点間に並列に供給することにより前記回転
子に磁極を生じさせる回転電機子形交流発電機とを備
え、起動時は前記電圧移相装置により位相差180゜を選
択することにより、前記かご形導体及び前記回転子巻線
と前記2個の固定子が発生する回転磁界との間の電磁作
用により誘導電動機として起動し、同期引き入れ時は前
記電圧移相装置により位相差0゜を選択すると同時に前
記回転電機子形交流発電機を作動させることで、前記2
個の固定子が発生する回転磁界と前記回転子巻線を流れ
る直流により前記回転子に生じる磁極との間の電磁作用
により同期電動機として運転することにより前記課題を
解決するための手段とした。
A first rotor winding and a second rotor winding are wound around each of two rotor cores provided at an arbitrary interval on the same rotating shaft, and the first rotor winding is wound. The two rotor cores are connected in series with each other, a connecting resistor is connected between the connection points, and each of the two rotor cores faces each other with the rotor cross-connected between the second rotor windings. And the first and second
And two stators each having a stator winding so as to be magnetically coupled with the rotor winding of the rotor, and a specific one of the two stators facing one of the rotors. Between the rotating magnetic field generated around the rotor core and the rotating magnetic field generated around the other rotor core facing the other stator.
And a voltage phase shifter for selectively generating one of the two phase differences of ゜ and 180 °. The voltage phase shifter is provided on the rotating shaft, and its DC output is supplied to the second rotor winding. A rotating armature type alternator for generating a magnetic pole in the rotor by supplying the rotor in parallel between the crossover points, and selecting a phase difference of 180 ° by the voltage phase shifter at the time of startup, It starts as an induction motor by an electromagnetic action between the first and second rotor windings and the rotating magnetic field generated by the two stators, and the voltage phase shifter is used when synchronizing is performed. By selecting the phase difference 0 ° at the same time and operating the rotating armature type alternator at the same time,
Means for solving the above problem by operating as a synchronous motor by an electromagnetic action between a rotating magnetic field generated by a plurality of stators and a magnetic pole generated in the rotor by a direct current flowing through the second rotor winding. And Further, according to the present invention, a plurality of conductors communicating with the two rotor cores are provided on the outer periphery of two rotor cores provided at an arbitrary interval on the same rotating shaft, and both ends thereof are short-circuited. And a cage-shaped conductor in which the plurality of conductors are short-circuited by a connection resistor at a central portion between the two rotor cores, and a rotor winding wound around each of the two rotor cores. A rotor having wires and cross-connecting the rotor windings, and a magnetic coupling between the cage-shaped conductor and the rotor windings, which are circumferentially opposed to each of the two rotor cores. Two stators each provided with a stator winding, and a rotating magnetic field generated around one rotor core in which a specific one of the two stators is opposed to the two stators; 0 ° between the other stator and the rotating magnetic field generated around the other rotor core opposed thereto. A voltage phase shifting device produce selectively one of a phase difference any one of the 180 ° two phase differences,
A rotating armature type alternator, which is provided on the rotating shaft and supplies the DC output thereof in parallel between the intersections of the rotor windings to generate magnetic poles in the rotor, Selects a phase difference of 180 ° by the voltage phase shifter, thereby starting up as an induction motor due to the electromagnetic action between the cage conductor and the rotor winding and the rotating magnetic field generated by the two stators. At the time of synchronizing, the phase difference of 0 ° is selected by the voltage phase shifter and the rotating armature type alternator is operated at the same time.
The means for solving the above-mentioned problem is achieved by operating as a synchronous motor by an electromagnetic action between a rotating magnetic field generated by a plurality of stators and a magnetic pole generated in the rotor by a direct current flowing through the rotor winding.

【作 用】[Operation]

固定子側に2組の固定子巻線を有し、回転子側では第
1の2組の回転子巻線相互を直列に接続すると共に該接
続点間に並列に連絡抵抗を接続し、また前記第2の2組
の回転子巻線相互を交叉接続すると共に、回転軸に直結
した回転電機子形交流発電機の出力を整流回路によって
整流し、この整流した直流出力を前記第2の回転子巻線
の交叉接続点間に並列に入力する場合の作用を説明す
る。 まず、起動時には、第1の回転子巻線及び第2の回転
子巻線のそれぞれにおいて、回転磁界による誘起電圧の
位相差角θが、θ=180゜になるように電圧移相装置を
操作して固定子への電源を投入して起動する。このよう
にすると2個の固定子間で180゜の位相差となる異なる
2つの回転磁界が生じ、回転子巻線にそれぞれの回転磁
界に応じた電圧が誘起されるが、この場合の2個の回転
子巻線間の誘起電圧の位相差角θはθ=180゜であるか
ら、第1の回転子巻線のそれぞれの回転子巻線に誘起さ
れる電圧によって流れる電流は互いに逆方向の電流とな
るので回転子巻線に並列に設けた連絡抵抗を通じて流れ
るものとなる。また第2の回転子巻線それぞれに誘起さ
れる電圧によって流れる電流は、巻線が交叉接続してあ
るので互いに同方向の電流となり両巻線間を環流するよ
うに流れる。 この第1の回転子巻線及び第2の回転子巻線に流れる
電流と固定子巻線の作る回転磁界によるトルクは、第1
の回転子巻線による、すべりS=1においてトルクの大
きい従来の2次高抵抗型誘導電動機のトルク特性と、第
2の回転子巻線による、すべりSが小さい領域において
トルクが大きくなる従来の2次低抵抗型誘導電動機のト
ルク特性を合成したものになる。 起動後、回転速度が上昇して、すべりSがS=0.05に
近づいた時に同期運転に引き入れる。これは次のように
して行う。 先ず電圧移相装置によって、2つの固定子巻線の作る
2つの回転磁界の位相差角θをθ=0゜になるようにす
る。このようにすると、第1の回転子巻線及び第2の回
転子巻線の誘起電圧の位相差角θがθ=0゜となり、第
1の回転子巻線のそれぞれの回転子巻線に流れる電流は
同じ方向となり両巻線を環流するように流れ、連絡抵抗
には電流が流れなくなるので、2次低抵抗型誘導電動機
と同一のトルクを生じるようになる。従ってS=0.05に
おける同期引き入れトルクは大きい。また第2の回転子
巻線に流れる電流は巻線が交叉接続してあるので逆方向
となり環流電流が流れなくなって、並列に接続した整流
回路を介して電流が流れるようになる。しかしながら、
整流回路を介して流れるこの電流は極めて小さいので、
第1の回転子巻線による同期引き入れトルクに影響を及
ぼすことはない。 ここで同期トルクは次のようにして発生させる。すな
わち回転軸に直結した回転電機子形交流発電機を作動さ
せると、その出力が整流回路によって整流されて、その
直流出力が第2の回転子巻線の交叉接続点間に並列に入
力されるので、第2の回転子巻線に直流電流が流れて回
転子コアに磁極を形成する。この磁極は、回転子コアの
周辺の同一の位置に同一の極性に形成される。一方2つ
の回転磁界の位相差角θはθ=0゜であるから、2つの
回転磁界によって形成される回転子コアに対峙する固定
子の周辺の磁極は、同一の位置に同一の極性に形成され
る。従って回転子は回転磁界に拘束されて同期トルクを
生じ、回転子は同期速度で回転する。同期に引き入れる
と、第1の回転子巻線及び第2の回転子巻線は回転磁界
と同じ速度で回転しているので回転磁界と鎖交すること
はなく、両巻線には回転磁界に基づく電圧は誘起され
ず、したがって電流は流れないので、回転磁界と回転電
機子形交流発電機による直流磁化との間の作用による同
期運転には何ら影響を与えるものではない。 この同期トルクは1固定子と1回転子で構成する同期
電動機の2倍のトルクになる。すなわち本発明の2固定
子誘導同期電動機は2固定子ではあるが、この2固定子
がすべて有効に作用することになる。 次に、2個の固定子に対峙して、2つの回転子コアを
設け、この2つの回転子コアの外周上に装着した複数個
の回転子導体のそれぞれを連通状に連結してその両端部
において導体を短絡する短絡環を設けて回転子導体をカ
ゴ状に構成すると共に、該複数個の回転子導体間を前記
2個の回転子コアの間の中央部において連絡抵抗で短絡
し、さらに2つの回転子コアのそれぞれに回転子巻線を
巻装し、該回転子巻線相互を交叉接続すると共に、回転
軸に直結して回転電機子形交流発電機を設け、その出力
を整流回路によって整流し該整流回路の直流出力を回転
子巻線の交叉接続点から並列に入力した場合の作用を説
明する。 まず、起動時には、2個の回転磁界による回転子導体
及び回転子巻線の誘起電圧の位相差角θが、θ=180゜
になるように電圧移相装置を操作して固定子巻線への電
源を投入して起動する。このようにすると2個の固定子
巻線間に180゜位相の異なる2つの回転磁界が生じ、回
転子導体及び回転子巻線に電圧が誘起されるが、この場
合の誘起電圧の位相差角θはθ=180゜であるから、か
ご形の回転子導体に流れる電流は、回転子コア相互にお
いて電流が逆方向となり共に連絡抵抗を通じて流れ、ま
た回転子巻線に流れる電流は、巻線が交叉接続してある
ので互いに同方向となり両巻線を環流するように流れ
る。この回転子導体及び回転子巻線に流れる電流と固定
子巻線の作る回転磁界によるトルクは、かご形回転子導
体による、すべてS=1においてトルクの大きい従来の
2次高抵抗型誘導電動機のトルク特性と、回転子巻線に
よる、すべりSが小さい領域においてトルクが大きくな
る従来の2次低抵抗型誘導電動機のトルク特性を合成し
たものになる。従って起動電流は小さく起動トルクが大
きく、特別の別個の起動機を必要としない。 起動後、回転速度が上昇して、すべりSがS=0.05に
近づいた時に同期運転に引き入れる。これは次のように
して行う。 先ず電圧移相装置によって2つの固定子巻線の作る2
つの回転磁界の位相差角θをθ=0゜になるようにす
る。このようにすると、回転子導体及び回転子巻線の誘
起電圧の位相差角θがθ=0゜となり、2個の回転子コ
アのそれぞれのかご形回転子導体には同方向の電流とな
って両導体を環流するように流れ、連結抵抗には電流が
流れなくなる。また回転子巻線は交叉接続してあるの
で、かご形回転子導体とは逆に環流電流が流れなくなっ
て、並列に接続した整流回路を介して電流が流れるよう
になる。 ここで同期トルクは次のようにして発生させる。すな
わち回転軸に直結した回転電機子形交流発電機を作動さ
せると、その出力が整流回路によって整流されて、その
直流出力が回転子巻線の交叉接続点から並列に入力され
るので、回転子巻線に直流電流が流れて、回転子コアに
磁極を形成する。この磁極はN,S極を対にして、回転子
コアの周辺の同一の位置に同一の極性に形成される。一
方2つの固定子間の回転磁界の位相差角θはθ=0゜で
あるから、2つの回転磁界によって形成される回転子コ
アに対峙する固定子の周辺の磁極は、同一の位置に同一
の極性に形成される。従って回転子は回転磁界に拘束さ
れて同期トルクを生じ、回転子は同期速度で回転する。
この同期トルクは、1固定子と1回転子で構成する同期
電動機の2倍のトルクになる。同期に引き入れると、か
ご形回転子導体には電圧は誘起されず電流も流れること
なく同期運転に支障はない。
On the stator side, there are two sets of stator windings, and on the rotor side, the first two sets of rotor windings are connected in series and a connection resistor is connected in parallel between the connection points; The second two sets of rotor windings are cross-connected to each other, and the output of the rotary armature AC generator directly connected to the rotary shaft is rectified by a rectifier circuit. The operation in the case of inputting in parallel between the cross connection points of the child windings will be described. First, at the time of startup, the voltage phase shifter is operated such that the phase difference angle θ of the induced voltage due to the rotating magnetic field in each of the first rotor winding and the second rotor winding becomes θ = 180 °. And turn on the power to the stator to start. In this case, two different rotating magnetic fields having a phase difference of 180 ° are generated between the two stators, and voltages corresponding to the respective rotating magnetic fields are induced in the rotor windings. The phase difference angle θ of the induced voltage between the rotor windings is θ = 180 °, so that the currents flowing by the voltages induced in the respective rotor windings of the first rotor winding are opposite to each other. Since it becomes a current, it flows through a contact resistor provided in parallel with the rotor winding. Further, the currents flowing by the voltages induced in the respective second rotor windings become currents in the same direction because the windings are cross-connected, and flow so as to circulate between the two windings. The current flowing through the first rotor winding and the second rotor winding and the torque caused by the rotating magnetic field generated by the stator winding are the first torque.
The torque characteristics of the conventional secondary high resistance type induction motor having a large torque at slip S = 1 due to the rotor winding and the conventional torque increasing torque in the region where the slip S is small due to the second rotor winding. This is a combination of the torque characteristics of the secondary low resistance induction motor. After start-up, when the rotation speed increases and the slip S approaches S = 0.05, the operation is drawn into the synchronous operation. This is performed as follows. First, the phase difference angle θ between the two rotating magnetic fields created by the two stator windings is set to θ = 0 ° by the voltage phase shifter. In this way, the phase difference angle θ of the induced voltages of the first rotor winding and the second rotor winding becomes θ = 0 °, and the respective rotor windings of the first rotor winding The flowing current flows in the same direction so as to circulate through both windings, and no current flows through the connection resistance, so that the same torque as that of the secondary low-resistance induction motor is generated. Therefore, the synchronous pull-in torque at S = 0.05 is large. Also, the current flowing through the second rotor winding is reversed because the windings are cross-connected, so that the circulating current stops flowing and the current flows through the rectifier circuit connected in parallel. However,
Since this current flowing through the rectifier circuit is extremely small,
It does not affect the synchronous pull-in torque by the first rotor winding. Here, the synchronous torque is generated as follows. That is, when the rotating armature AC generator directly connected to the rotating shaft is operated, its output is rectified by the rectifier circuit, and its DC output is input in parallel between the cross connection points of the second rotor windings. Therefore, DC current flows through the second rotor winding to form a magnetic pole on the rotor core. The magnetic poles are formed at the same position around the rotor core and at the same polarity. On the other hand, since the phase difference angle θ between the two rotating magnetic fields is θ = 0 °, the magnetic poles around the stator facing the rotor core formed by the two rotating magnetic fields are formed at the same position and with the same polarity. Is done. Therefore, the rotor is locked by the rotating magnetic field and generates a synchronous torque, and the rotor rotates at a synchronous speed. When synchronized, the first and second rotor windings rotate at the same speed as the rotating magnetic field, so that they do not interlink with the rotating magnetic field. Since no base voltage is induced and therefore no current flows, there is no effect on the synchronous operation due to the action between the rotating magnetic field and the DC magnetization by the rotating armature alternator. This synchronous torque is twice the torque of a synchronous motor composed of one stator and one rotor. That is, although the two-stator induction synchronous motor of the present invention is a two-stator, all of these two stators work effectively. Next, two rotor cores are provided in opposition to the two stators, and a plurality of rotor conductors mounted on the outer periphery of the two rotor cores are connected to each other in a communicating manner to connect both ends thereof. Providing a short-circuiting ring for short-circuiting the conductors in the portion, forming the rotor conductors in a cage shape, and short-circuiting the plurality of rotor conductors with a communication resistor at a central portion between the two rotor cores, Further, a rotor winding is wound around each of the two rotor cores, the rotor windings are cross-connected to each other, and a rotating armature type AC generator is directly connected to the rotating shaft to rectify the output. The operation when the rectification is performed by a circuit and the DC output of the rectification circuit is input in parallel from the cross connection point of the rotor windings will be described. First, at start-up, the voltage phase shifter is operated so that the phase difference angle θ between the induced voltages of the rotor conductor and the rotor winding due to the two rotating magnetic fields becomes θ = 180 °. Turn on the power and start up. In this way, two rotating magnetic fields having a phase difference of 180 ° are generated between the two stator windings, and a voltage is induced in the rotor conductor and the rotor winding. In this case, the phase difference angle of the induced voltage is generated. Since θ is θ = 180 °, the current flowing through the cage-shaped rotor conductor flows in the opposite direction between the rotor cores, and flows through the contact resistance. Since they are cross-connected, they flow in the same direction as each other so as to circulate through both windings. The current flowing through the rotor conductor and the rotor windings and the torque due to the rotating magnetic field generated by the stator windings are the same as those of the conventional secondary high-resistance induction motor having a large torque at S = 1 due to the cage rotor conductor. This is a combination of the torque characteristic and the torque characteristic of the conventional secondary low-resistance induction motor in which the torque increases in a region where the slip S is small due to the rotor winding. Therefore, the starting current is small and the starting torque is large, and no special separate starter is required. After start-up, when the rotation speed increases and the slip S approaches S = 0.05, the operation is drawn into the synchronous operation. This is performed as follows. First, two stator windings are formed by a voltage phase shifter.
The phase difference angle θ between the two rotating magnetic fields is set to θ = 0 °. In this case, the phase difference angle θ of the induced voltages of the rotor conductor and the rotor winding becomes θ = 0 °, and the current in the same direction is applied to the cage rotor conductors of the two rotor cores. As a result, the current flows in such a way as to circulate through both conductors, and no current flows through the connection resistance. Further, since the rotor windings are cross-connected, a circulating current does not flow contrary to the cage rotor conductor, and a current flows through a rectifier circuit connected in parallel. Here, the synchronous torque is generated as follows. In other words, when the rotating armature type alternator directly connected to the rotating shaft is operated, its output is rectified by the rectifier circuit, and its DC output is input in parallel from the intersection of the rotor windings. DC current flows through the windings to form magnetic poles on the rotor core. The magnetic poles are formed with the same polarity at the same position around the rotor core with the N and S poles being paired. On the other hand, since the phase difference angle θ of the rotating magnetic field between the two stators is θ = 0 °, the magnetic poles around the stator facing the rotor core formed by the two rotating magnetic fields are the same at the same position. It is formed in the polarity of. Therefore, the rotor is locked by the rotating magnetic field and generates a synchronous torque, and the rotor rotates at a synchronous speed.
This synchronous torque is twice the torque of a synchronous motor composed of one stator and one rotor. When synchronized, no voltage is induced in the squirrel-cage rotor conductor, no current flows, and there is no problem in synchronous operation.

【実施例】【Example】

第1図により本発明の第1の実施例を説明する。まず
第1図において符号20は2固定子誘導同期電動機の固定
子側を示す。また符号30は同じく回転子側を示す。固定
子側20はスター結線した2つの固定子巻線21,22が並列
に3相交流電源R,S,Tに接続されている。 一方回転子側30の回転軸10に2つの回転子コア81,82
が設けてあり、この回転子コア81,82にはそれぞれ第1
の回転子巻線31,32と第2の回転子巻線33,34が巻装され
ている。前記第1の回転子巻線31と32は、相互に直列に
接続されると共に並列に連絡抵抗35が接続されている。
また前記第2の回転子巻線33と34は相互に交叉接続され
ると共に、前記回転軸10に直結された既知の回転電機子
形交流発電機の電機子70の出力を整流回路36によって整
流した直流出力が前記第2の回転子巻線33と34に並列に
入力されている。 ここで固定子巻線21に対峙する回転子コア81に巻装さ
れた第1の回転子巻線31に誘起する電圧を第1図の図示
の方向にE1とし、同じく第2の回転子巻線33のそれをE2
とする。また固定子巻線22に対峙する回転子コア82に巻
装された第1の回転子巻線32に誘起する電圧を第1図の
図示の方向にE1εjθとし、同じく第2の回転子巻線34
のそれをE2εjθとする。ここでθは電圧の位相差角で
ある。 以上の構成による作用を説明する。まず、起動時に
は、第1の回転子巻線31,32及び第2の回転子巻線33,34
の、回転磁界により誘起する電圧の位相差角θが、θ=
180゜になるように固定子巻線21,22を結線した状態で電
源に投入して起動する。このようにすると固定子巻線2
1,22に電源から3相電流が流れて、180゜位相の異なる
2つの回転磁界が生じ、第1の回転子巻線31,32及び第
2の回転子巻線33,34に電圧が誘起されるが、この場合
の誘起電圧の位相差角θはθ=180゜であるから、第1
の回転子巻線31,32に流れる電流はその電圧がE1とE1ε
j180゜となりベクトルが逆方向であり共に連絡抵抗35を
通じて流れ、また第2の回転子巻線33と34に流れる電流
は交叉接続してあるのでその電圧がE2とE2εj180゜では
あるが両巻線を環流するように流れる。 この第1の回転子巻線31,32及び第2の回転子巻線33,
34に流れる電流と固定子巻線21,22の作る回転磁界によ
るトルクは、第2図に示す曲線(a)のように、すべり
S=1においてトルクの大きい従来の2次高抵抗型誘導
電動機のトルク特性と、すべりSが小さい領域において
トルクが大きくなる従来の2次低抵抗型誘導電動機のト
ルク特性を合成したものになる。従って起動電流は小さ
く起動トルクが大きく、特別の起動機を必要としない。 起動後、回転速度が上昇して、すべりSがS=0.05に
近づいた時に同期運転に引き入れる。これは次のように
して行う。 先ず電圧移相装置によって2つの固定子巻線21,22の
一方、例えば固定子巻線22の位置を、回転軸のまわりに
回動させることによって変えて、2つの固定子巻線21,2
2の作る2つの回転磁界の位相差角θをθ=0゜になる
ようにする。このようにすると、第1の回転子巻線31,3
2及び第2の回転子巻線33,34の誘起電圧の位相差角θが
θ=0゜となり、第1の回転子巻線31と32に流れる電流
はその電圧がE1とE1εjθとなって両巻線を環流するよ
うに流れ、連絡抵抗35には電流が流れなくなる。また第
2の回転子巻線33と34に流れる電流は、その電圧がE2
E2εjθとなるが交叉接続してあるので環流電流は流れ
なくなる。従って第2図に示す曲線(b)のような、従
来の誘導電動機と同一のトルクを生じる、従ってS=0.
05における同期引き入れトルクは大きい。 ここで同期トルクは次のようにして発生させる。すな
わち回転軸10に直結した回転電機子形交流発電機の電機
子70を作動させると、その出力が整流回路36によって整
流されて、その直流出力が第2の回転子巻線33,34に並
列に入力されるので、第2の回転子巻線33,34に直流電
流が流れて回転子コア81,82に磁極を形成する。この磁
極は、N,S極を対にして、回転子コア81と82の周辺の同
一の位置に同一の極性に形成される。一方2つの回転磁
界の位相差角θはθ=0゜であるから、2つの回転磁界
によって形成される回転子コア81,82に対峙する固定子
の周辺の磁極は、同一の位置に同一の極性に形成され
る。従って回転子は回転磁界に拘束されて同期トルクを
生じ、回転子は同期速度で回転する。 この同期トルクは第2図の直線(c)に示すとおり
で、1固定子と1回転子で構成する同期電動機の2倍の
トルクになる。すなわち本発明の2固定子誘導同期電動
機は2固定子ではあるが、この2固定子がすべて有効に
作用することになる。 次に第3図乃至第4図により本発明の第2の実施例を
説明する。まず第3図において符号20は2固定子誘導同
期電動機の固定子側を示す。また符号40は同じく回転子
側を示す。固定子側20はスター結線した2つの固定子巻
線21,22が並列に3相交流電源R,S,Tに接続されている。 一方回転子側40の回転軸10に2つの回転子コア83,84
が設けてあり、この2つの回転子コア83,84の外周上に
装着した複数個の回転子導体41,42のそれぞれを連通状
に連結してその両端部において導体を短絡する短絡環45
を設けて回転子導体をカゴ状に構成すると共に、該複数
個の回転子導体間を前記2個の回転子コア83,84の間の
中央部において連絡抵抗35で短絡してある。さらに第4
図に示すように2つの回転子コア83,84のそれぞれに回
転子巻線43,44を巻装し、該回転子巻線43,44を交叉接続
してある。また回転軸10に直結して既知の回転電機子形
交流発電機の電機子70が設けてあり、その出力を整流回
路36によって整流し該整流回路36の直流出力を回転子巻
線43,44のそれぞれに交叉接続点を介して並列に入力し
てある。 ここで固定子巻線21に対峙する回転子導体41に誘起す
る電圧を第3図の図示の方向にE1とし、同じく回転子巻
線43のそれをE2とする。また固定子巻線22に対峙する回
転子導体42に誘起する電圧を図示の方向にE1εjθ
し、同じく回転子巻線44のそれをE2εjθとする。ここ
でθは電圧の位相差角である。 以上の構成による作用を説明する。まず、起動時に
は、回転子導体41,42及び回転子巻線43,44の回転磁界に
よる誘起電圧の位相差角θが、θ=180゜になるように
固定子巻線21,22が結線された状態で電源に投入して起
動する。このようにすると固定子巻線21,22に電源から
3相電流が流れて、位相差が180゜異なる2つの回転磁
界が生じ、回転子導体41,42及び回転子巻線43,44に電圧
が誘起されるが、この場合の誘起電圧の位相差角θはθ
=180゜であるから、回転子導体41と42に流れる電流は
共に連絡抵抗35を通じて流れ、また回転子巻線43と44に
流れる電流は両巻線を環流するように流れる。この回転
子導体41,42及び回転子巻線43,44に流れる電流と固定子
巻線21,22の作る回転磁界によるトルクは、第2図に示
す曲線(a)のように、すべりS=1においてトルクの
大きい従来の2次高抵抗型誘導電動機のトルク特性と、
すべりSが小さい領域においてトルクが大きくなる従来
の2次低抵抗型誘導電動機のトルク特性を合成したもの
になる。従って起動電流は小さく起動トルクが大きく、
特別の別個の起動機を必要としない。 起動後、回転速度が上昇して、すべりSがS=0.05に
近づいた時に同期運転に引き入れる。これは次のように
して行う。 先ず電圧移相装置によって2つの固定子巻線21,22の
一方、例えば固定子巻線22の位置を回転軸のまわりに回
動させることによって変えて、2つの固定子巻線21,22
の作る2つの回転磁界の位相差角θをθ=0゜になるよ
うにする。このようにすると、回転子導体41,42及び回
転子巻線43,44の誘起電圧の位相差角θがθ=0゜とな
り、回転子導体41と42に流れる電流は両導体を環流する
ように流れ、連結抵抗35には電流が流れなくなる。また
回転子巻線43と44には環流電流が流れなくなる。従って
第2図に示す曲線(b)のような、従来の誘導電動機と
同一のトルクを生じる。従ってS=0.05における同期引
き入れトルクは大きい。ここで同期トルクは次のように
して発生させる。すなわち回転軸10に直結した回転電機
子形交流発電機の電機子70を作動させると、その出力が
整流回路36によって整流されて、その直流出力が回転子
巻線43,44に並列に入力されるので、回転子巻線43,44に
直流電流が流れて、回転子コア83,84に磁極を形成す
る。この磁極はN,S極を対にして、回転子コア83と84の
周辺の同一の位置に同一の極性に形成される。一方2つ
の回転磁界の位相差角θはθ=0゜であるから、2つの
回転磁界によって形成される回転子コア83,84に対峙す
る固定子の周辺の磁極は、同一の位置に同一の極性に形
成される。従って回転子は回転磁界に拘束されて同期ト
ルクを生じ、回転子は同期速度で回転する。この同期ト
ルクは、第2図の直線(c)に示すとおりで、1固定子
と1回転子で構成する同期電動機の2倍のトルクにな
る。すなわち本発明の2固定子誘導同期電動機は2固定
子であるが、この2固定子がすべて有効に作用すること
になる。
A first embodiment of the present invention will be described with reference to FIG. First, in FIG. 1, reference numeral 20 denotes a stator side of a two-stator induction synchronous motor. Reference numeral 30 also indicates the rotor side. On the stator side 20, two star-connected stator windings 21, 22 are connected in parallel to three-phase AC power supplies R, S, T. On the other hand, two rotor cores 81 and 82 are attached to the rotation shaft 10 on the rotor side 30.
Are provided on the rotor cores 81 and 82, respectively.
, And the second rotor windings 33, 34 are wound. The first rotor windings 31 and 32 are connected in series with each other and connected with a connecting resistor 35 in parallel.
The second rotor windings 33 and 34 are cross-connected to each other, and the output of the armature 70 of the known rotary armature AC generator directly connected to the rotary shaft 10 is rectified by the rectifier circuit 36. The obtained DC output is input to the second rotor windings 33 and 34 in parallel. Here the voltage induced to the first rotor winding 31 wound around the rotor core 81 facing the stator windings 21 and E 1 in the direction of the illustrated Figure 1, also the second rotor it of winding 33 E 2
And Further, the voltage induced in the first rotor winding 32 wound around the rotor core 82 facing the stator winding 22 is set to E 1 ε jθ in the direction shown in FIG. Child winding 34
Let it be E 2 ε . Here, θ is the phase difference angle of the voltage. The operation of the above configuration will be described. First, at the time of starting, the first rotor windings 31, 32 and the second rotor windings 33, 34
The phase difference angle θ of the voltage induced by the rotating magnetic field is θ =
When the stator windings 21 and 22 are connected so as to be 180 °, the power is turned on and the system is started. In this way, stator winding 2
A three-phase current flows from the power supply to the first and the second 22 to generate two rotating magnetic fields having phases different from each other by 180 °, and voltages are induced in the first rotor windings 31 and 32 and the second rotor windings 33 and 34. However, the phase difference angle θ of the induced voltage in this case is 180 °,
The current flowing through the rotor windings 31 and 32 has voltages of E 1 and E 1 ε
J180 ° next vector is reverse flow both through contact resistance 35, also the current flowing through the second rotor winding 33 and 34 and the voltage so are cross connection is in the E 2 and E 2 epsilon J180 ° Flows so as to recirculate through both windings. The first rotor windings 31, 32 and the second rotor windings 33,
The torque caused by the current flowing through the motor 34 and the rotating magnetic field generated by the stator windings 21 and 22 is, as shown by the curve (a) shown in FIG. And the torque characteristics of a conventional secondary low-resistance induction motor in which the torque increases in a region where the slip S is small. Therefore, the starting current is small and the starting torque is large, and no special starting device is required. After start-up, when the rotation speed increases and the slip S approaches S = 0.05, the operation is drawn into the synchronous operation. This is performed as follows. First, the position of one of the two stator windings 21, 22, for example, the stator winding 22, is changed by rotating it around a rotation axis by a voltage phase shifter to change the two stator windings 21, 2.
The phase difference angle θ between the two rotating magnetic fields created by 2 is set to θ = 0 °. By doing so, the first rotor windings 31, 3
The phase difference angle θ of the induced voltages of the second and second rotor windings 33 and 34 becomes θ = 0 °, and the current flowing through the first rotor windings 31 and 32 has the voltages E 1 and E 1 ε. It becomes and flows so as to circulate through both windings, and no current flows through the connection resistor 35. The current flowing through the second rotor windings 33 and 34 has a voltage of E 2
Although it becomes E 2 ε , no circulating current flows because it is cross-connected. Therefore, as shown by the curve (b) in FIG. 2, the same torque as that of the conventional induction motor is generated, so that S = 0.
The synchronous pull-in torque at 05 is large. Here, the synchronous torque is generated as follows. That is, when the armature 70 of the rotating armature type AC generator directly connected to the rotating shaft 10 is operated, its output is rectified by the rectifier circuit 36, and its DC output is paralleled to the second rotor windings 33, 34. , A DC current flows through the second rotor windings 33, 34 to form magnetic poles on the rotor cores 81, 82. The magnetic poles are formed at the same position around the rotor cores 81 and 82 with the same polarity, with the N and S poles being paired. On the other hand, since the phase difference angle θ between the two rotating magnetic fields is θ = 0 °, the magnetic poles around the stator facing the rotor cores 81 and 82 formed by the two rotating magnetic fields are the same at the same position. It is formed to be polar. Therefore, the rotor is locked by the rotating magnetic field and generates a synchronous torque, and the rotor rotates at a synchronous speed. This synchronous torque is as shown by the straight line (c) in FIG. 2, and is twice as large as that of the synchronous motor composed of one stator and one rotor. That is, although the two-stator induction synchronous motor of the present invention is a two-stator, all of these two stators work effectively. Next, a second embodiment of the present invention will be described with reference to FIGS. First, in FIG. 3, reference numeral 20 indicates the stator side of a two-stator induction synchronous motor. Reference numeral 40 also indicates the rotor side. On the stator side 20, two star-connected stator windings 21, 22 are connected in parallel to three-phase AC power supplies R, S, T. On the other hand, two rotor cores 83 and 84 are attached to the rotating shaft 10 on the rotor side 40.
And a short-circuit ring 45 for connecting the plurality of rotor conductors 41 and 42 mounted on the outer periphery of the two rotor cores 83 and 84 in a communicating manner and short-circuiting the conductors at both ends thereof.
And the rotor conductors are formed in a cage shape, and the plurality of rotor conductors are short-circuited at the central portion between the two rotor cores 83 and 84 by the communication resistor 35. And the fourth
As shown in the figure, rotor windings 43 and 44 are wound around two rotor cores 83 and 84, respectively, and the rotor windings 43 and 44 are cross-connected. Further, an armature 70 of a known rotating armature type AC generator is provided directly connected to the rotating shaft 10, and its output is rectified by the rectifier circuit 36 and the DC output of the rectifier circuit 36 is supplied to the rotor windings 43 and 44. Are input in parallel via the cross connection points. Here the voltage induced in the rotor conductors 41 facing the stator windings 21 and E 1 in the direction of the illustrated Figure 3, similarly to that of the rotor winding 43 and E 2. The voltage induced in the rotor conductor 42 facing the stator winding 22 is E 1 ε in the illustrated direction, and the voltage of the rotor winding 44 is E 2 ε . Here, θ is the phase difference angle of the voltage. The operation of the above configuration will be described. First, at the time of startup, the stator windings 21 and 22 are connected such that the phase difference angle θ of the induced voltage due to the rotating magnetic field of the rotor conductors 41 and 42 and the rotor windings 43 and 44 becomes θ = 180 °. Turn on the power and start up. In this way, a three-phase current flows from the power supply to the stator windings 21 and 22 to generate two rotating magnetic fields having a phase difference of 180 °, and voltage is applied to the rotor conductors 41 and 42 and the rotor windings 43 and 44. Is induced, and the phase difference angle θ of the induced voltage in this case is θ
Since 180 = 180 °, the currents flowing through the rotor conductors 41 and 42 both flow through the communication resistor 35, and the currents flowing through the rotor windings 43 and 44 flow so as to circulate through both windings. The currents flowing through the rotor conductors 41 and 42 and the rotor windings 43 and 44 and the torque due to the rotating magnetic field generated by the stator windings 21 and 22 are represented by a curve S = Slip as shown by a curve (a) in FIG. 1, the torque characteristics of the conventional secondary high resistance type induction motor having a large torque;
This is a combination of the torque characteristics of a conventional secondary low-resistance induction motor in which the torque increases in a region where the slip S is small. Therefore, the starting current is small and the starting torque is large,
No special separate starter is required. After start-up, when the rotation speed increases and the slip S approaches S = 0.05, the operation is drawn into the synchronous operation. This is performed as follows. First, the position of one of the two stator windings 21, 22, for example, the stator winding 22, is changed by rotating it around a rotation axis by a voltage phase shifter to change the two stator windings 21, 22.
Is set so that the phase difference angle θ between the two rotating magnetic fields formed by θ becomes θ = 0 °. In this way, the phase difference angle θ of the induced voltages of the rotor conductors 41 and 42 and the rotor windings 43 and 44 becomes θ = 0 °, and the current flowing through the rotor conductors 41 and 42 recirculates through both conductors. And the current stops flowing through the connection resistor 35. Also, no circulating current flows through the rotor windings 43 and 44. Therefore, the same torque as that of the conventional induction motor is generated as shown by a curve (b) in FIG. Therefore, the synchronous pull-in torque at S = 0.05 is large. Here, the synchronous torque is generated as follows. That is, when the armature 70 of the rotary armature type AC generator directly connected to the rotating shaft 10 is operated, its output is rectified by the rectifier circuit 36, and its DC output is input to the rotor windings 43 and 44 in parallel. Therefore, DC current flows through the rotor windings 43 and 44 to form magnetic poles on the rotor cores 83 and 84. The magnetic poles are formed with the same polarity at the same position around the rotor cores 83 and 84 with the N and S poles being paired. On the other hand, since the phase difference angle θ between the two rotating magnetic fields is θ = 0 °, the magnetic poles around the stator facing the rotor cores 83 and 84 formed by the two rotating magnetic fields are the same at the same position. It is formed to be polar. Therefore, the rotor is locked by the rotating magnetic field and generates a synchronous torque, and the rotor rotates at a synchronous speed. This synchronous torque is as shown by the straight line (c) in FIG. 2 and is twice as large as that of the synchronous motor composed of one stator and one rotor. That is, although the two-stator induction synchronous motor of the present invention is a two-stator, all the two stators work effectively.

【効 果】[Effect]

以上の構成から本発明の2固定子誘導同期電動機は、
特に慣性負荷に対しても起動時は従来の2次高抵抗型誘
導電動機と同様のトルク特性で行い、すべりSがたとえ
ばS=0.05付近から同期速度に移行して同期電動機のト
ルク特性で運転するものである。また、同期トルクに引
き入れる時は2次低抵抗形誘導電動機と同様のトルク特
性で行うので同期引き入れトルクは大きい。この2固定
子誘導同期電動機は、起動機やブラシを必要としないか
らその構造、構成が簡単となるだけでなく、従来の2次
高抵抗型の誘導電動機と同様のトルク特性で起動できる
ので重負荷がかかったままで起動と同期運転が可能とな
る。 ところで、本発明の2固定子誘導同期電動機は、誘導
電動機と同期電動機との両方のトルク特性を備えるか
ら、どちらかの電動機のトルク特性でも使用可能であ
る。このことは、同期速度で運転中、何らかの原因で脱
調した場合でも、同期電動機トルク特性から誘導電動機
のトルク特性に切換え可能であるから、一般の同期電動
機のように電動機が急激に停止することがない。 以上のようにブラシがなく複雑な構成を必要としない
から保守点検も容易であり、起動トルクが大きく同期ト
ルクも大きい同期電動機の提供が可能となった。
From the above configuration, the two-stator induction synchronous motor of the present invention
In particular, the inertia load is started with the same torque characteristics as those of the conventional secondary high-resistance type induction motor, and the slip S shifts from, for example, around S = 0.05 to the synchronous speed, and the motor is operated with the synchronous motor's torque characteristics. Things. In addition, when the synchronous torque is introduced, the torque characteristic is the same as that of the secondary low resistance type induction motor, so that the synchronous intake torque is large. This two-stator induction synchronous motor does not require a starter or a brush, so that its structure and configuration are simplified, and since it can be started with the same torque characteristics as a conventional secondary high-resistance type induction motor, it is heavy. Start-up and synchronous operation are possible with a load applied. By the way, the two-stator induction synchronous motor of the present invention has both the torque characteristics of the induction motor and the synchronous motor, and therefore can be used with the torque characteristics of either motor. This means that even if the motor loses synchronism for some reason during operation at the synchronous speed, the torque characteristic of the induction motor can be switched from the torque characteristic of the induction motor to the torque characteristic of the induction motor. There is no. As described above, since there is no brush and no complicated structure is required, maintenance and inspection are easy, and a synchronous motor having a large starting torque and a large synchronous torque can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の固定子巻線側と回転子側の簡単な構成
図、第2図は本発明による2固定子誘導同期電動機のト
ルク特性の一例を示す図、第3図は第2の発明の固定子
巻線側と回転子側の一部を示す図、第4図は第3図にお
ける回転子側の一部を示す図である。 10……回転軸、20……固定子側、21……固定子巻線、22
……固定子巻線、30……回転子側、31……回転子巻線,3
2……回転子巻線、33……回転子巻線、34……回転子巻
線、35……連絡抵抗、36……整流回路、40……回転子
側、41……回転子導体、42……回転子導体、43……回転
子巻線、44……回転子巻線、45……短絡環,70……回転
電機子形交流発電機の電機子、81……回転子コア、82…
…回転子コア、83……回転子コア、84……回転子コア。
FIG. 1 is a simplified configuration diagram of a stator winding side and a rotor side of the present invention, FIG. 2 is a diagram showing an example of a torque characteristic of a two-stator induction synchronous motor according to the present invention, and FIG. FIG. 4 is a view showing a part of the stator winding side and a part of the rotor side according to the invention, and FIG. 4 is a view showing a part of the rotor side in FIG. 10 ... rotating shaft, 20 ... stator side, 21 ... stator winding, 22
... stator winding, 30 ... rotor side, 31 ... rotor winding, 3
2 ... rotor winding, 33 ... rotor winding, 34 ... rotor winding, 35 ... contact resistance, 36 ... rectifier circuit, 40 ... rotor side, 41 ... rotor conductor, 42 ... rotor conductor, 43 ... rotor winding, 44 ... rotor winding, 45 ... short-circuit ring, 70 ... armature of rotating armature type AC generator, 81 ... rotor core, 82…
... rotor core, 83 ... rotor core, 84 ... rotor core.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】同一の回転軸上に任意の間隔を置いて設け
た2個の回転子コアのそれぞれに第1の回転子巻線と第
2の回転子巻線を巻装し、前記第1の回転子巻線相互間
を直列に接続し該接続点間に連絡抵抗を接続し、さらに
前記第2の回転子巻線相互間を交叉接続した回転子と、
前記2個の回転子コアのそれぞれに対峙して周設し前記
第1と第2の回転子巻線と磁気的結合をなすようそれぞ
れ固定子巻線を装設した2個の固定子と、該2個の固定
子のうち特定の一方の固定子がこれに対峙する一方の回
転子コアの周囲に生じる回転磁界と、他方の固定子がこ
れに対峙する他方の回転子コアの周囲に生じる回転磁界
との間に0゜と180゜の二つの位相差のうち何れか一方
の位相差を選択的に生じさせる電圧移相装置と、前記回
転軸上に設けられ、その直流出力を前記第2の回転子巻
線の交叉接続点間に並列に供給することにより前記回転
子に磁極を生じさせる回転電機子形交流発電機とを備
え、起動時は前記電圧移相装置により位相差180゜を選
択することにより、前記第1の回転子巻線及び前記第2
の回転子巻線と前記2個の固定子が発生する回転磁界と
の間の電磁作用により誘導電動機として起動し、同期引
き入れ時は前記電圧移相装置により位相差0゜を選択す
ると同時に前記回転電機子形交流発電機を作動させるこ
とで、前記2個の固定子が発生する回転磁界と前記第2
の回転子巻線を流れる直流により前記回転子に生じる磁
極との間の電磁作用により同期電動機として運転するこ
とを特徴とする2固定子誘導同期電動機。
1. A first rotor winding and a second rotor winding are wound around two rotor cores provided at an arbitrary interval on the same rotating shaft, respectively. A rotor in which the first rotor windings are connected in series, a connection resistor is connected between the connection points, and the second rotor windings are cross-connected;
Two stators which are provided around the two rotor cores and are provided with stator windings so as to be magnetically coupled with the first and second rotor windings, respectively; One of the two stators has a rotating magnetic field generated around one of the rotor cores facing it, and the other stator has a rotating magnetic field generated around the other rotor core facing it. A voltage phase shifter for selectively generating any one of two phase differences of 0 ° and 180 ° between the rotating magnetic field, and a voltage phase shifter provided on the rotating shaft and directing its DC output to the A rotating armature type AC generator for generating magnetic poles in the rotor by supplying the rotor in parallel between the cross-connecting points of the two rotor windings. By selecting the first rotor winding and the second rotor winding.
The motor starts as an induction motor due to the electromagnetic action between the rotor windings and the rotating magnetic fields generated by the two stators. At the time of pull-in, when the phase difference of 0 ° is selected by the voltage phase shifter, the rotation is simultaneously performed. By operating the armature type alternator, the rotating magnetic field generated by the two stators and the second
A two-stator induction synchronous motor, which operates as a synchronous motor by an electromagnetic action between the rotor and a magnetic pole generated by the direct current flowing through the rotor winding.
【請求項2】同一の回転軸上に任意の間隔を置いて設け
た2個の回転子コアの外周上に2個の回転子コアに連通
した導体を複数個設け、その両端を短絡環で連結すると
共に、該複数個の導体間を前記2個の回転子コア間の中
央部において連絡抵抗で短絡したかご形導体と、前記2
個の回転子コアのそれぞれに巻装した回転子巻線を有
し、該回転子巻線相互間を交叉接続した回転子と、前記
2個の回転子コアのそれぞれに対峙して周設し前記かご
形導体及び回転子巻線と磁気的結合をなすようそれぞれ
固定子巻線を装設した2個の固定子と、該2個の固定子
のうち特定の一方の固定子がこれに対峙する一方の回転
子コアの周囲に生じる回転磁界と、他方の固定子がこれ
に対峙する他方の回転子コアの周囲に生じる回転磁界と
の間に0゜と180゜の二つの位相差のうち何れか一方の
位相差を選択的に生じさせる電圧移相装置と、前記回転
軸上に設けられ、その直流出力を前記回転子巻線の交叉
接続点間に並列に供給することにより前記回転子に磁極
を生じさせる回転電機子形交流発電機とを備え、起動時
は前記電圧移相装置により位相差180゜を選択すること
により、前記かご形導体及び前記回転子巻線と前記2個
の固定子が発生する回転磁界との間の電磁作用により誘
導電動機として起動し、同期引き入れ時は前記電圧移相
装置により位相差0゜を選択すると同時に前記回転電機
子形交流発電機を作動させることで、前記2個の固定子
が発生する回転磁界と前記回転子巻線を流れる直流によ
り前記回転子に生じる磁極との間の電磁作用により同期
電動機として運転することを特徴とする2固定子誘導同
期電動機。
2. A plurality of conductors connected to two rotor cores are provided on the outer periphery of two rotor cores provided at an arbitrary interval on the same rotation axis, and both ends thereof are short-circuited. A squirrel-cage conductor which is connected and short-circuited between the plurality of conductors at a central portion between the two rotor cores by a communication resistor;
A rotor winding wound around each of the two rotor cores, and a rotor having the rotor windings cross-connected to each other, and a rotor wound around each of the two rotor cores. Two stators each having a stator winding provided so as to magnetically couple with the cage conductor and the rotor winding, and a specific one of the two stators facing the stator. Between the rotating magnetic field generated around one rotor core and the rotating magnetic field generated around the other rotor core opposed by the other stator. A voltage phase shifter for selectively generating any one of the phase differences, and a DC phase shifter provided on the rotating shaft, the DC output of which is supplied in parallel between the cross-connection points of the rotor windings. And a rotating armature type AC generator for generating magnetic poles, and at the time of startup, the voltage phase shifter By selecting a phase difference of 180 °, the cage-shaped conductor and the rotor winding start up as an induction motor due to the electromagnetic action between the rotor windings and the rotating magnetic fields generated by the two stators. By selecting the phase difference 0 ° by the voltage phase shifter and operating the rotating armature type AC generator at the same time, the rotating magnetic field generated by the two stators and the DC flowing through the rotor windings cause A two-stator induction synchronous motor, which operates as a synchronous motor by electromagnetic action between a magnetic pole generated in a rotor and the rotor.
JP02324133A 1990-11-26 1990-11-26 2 stator induction synchronous motor Expired - Fee Related JP3115310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02324133A JP3115310B2 (en) 1990-11-26 1990-11-26 2 stator induction synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02324133A JP3115310B2 (en) 1990-11-26 1990-11-26 2 stator induction synchronous motor

Publications (2)

Publication Number Publication Date
JPH04193082A JPH04193082A (en) 1992-07-13
JP3115310B2 true JP3115310B2 (en) 2000-12-04

Family

ID=18162508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02324133A Expired - Fee Related JP3115310B2 (en) 1990-11-26 1990-11-26 2 stator induction synchronous motor

Country Status (1)

Country Link
JP (1) JP3115310B2 (en)

Also Published As

Publication number Publication date
JPH04193082A (en) 1992-07-13

Similar Documents

Publication Publication Date Title
EP0467517B1 (en) Dual-stator induction synchronous motor
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
JP3033621B2 (en) Brushless induction synchronous motor
EP3422541B1 (en) Self-exciting synchronous reluctance generators
JP2015509697A (en) Synchronous electrical machine
US5796233A (en) Multiple-stator induction synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JP2009142130A (en) Rotating electric machine and drive device for rotating electric machine
JP2927855B2 (en) Multiple stator induction synchronous motor
CN112136269A (en) Brushless self-excitation synchronous field winding machine
JP2893352B2 (en) Two stator induction synchronous motor
JP2828319B2 (en) Two stator induction synchronous motor
JPH06335271A (en) Synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP2989881B2 (en) 2 stator induction synchronous motor
JP2893353B2 (en) Two stator induction synchronous motor
JP2975400B2 (en) 2 stator induction synchronous motor
JPH09135545A (en) Electric motor
JP3358666B2 (en) Synchronous motor
JPH06245450A (en) Synchronous motor
JP3413816B2 (en) Synchronous motor
JPH06253513A (en) Synchronuous motor
JPH05336716A (en) Brushless single-phase half speed synchronous motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees