JP3112584B2 - Inverter high-efficiency operation device - Google Patents

Inverter high-efficiency operation device

Info

Publication number
JP3112584B2
JP3112584B2 JP04307436A JP30743692A JP3112584B2 JP 3112584 B2 JP3112584 B2 JP 3112584B2 JP 04307436 A JP04307436 A JP 04307436A JP 30743692 A JP30743692 A JP 30743692A JP 3112584 B2 JP3112584 B2 JP 3112584B2
Authority
JP
Japan
Prior art keywords
inverter
output
current
inverters
efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04307436A
Other languages
Japanese (ja)
Other versions
JPH06165513A (en
Inventor
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04307436A priority Critical patent/JP3112584B2/en
Publication of JPH06165513A publication Critical patent/JPH06165513A/en
Application granted granted Critical
Publication of JP3112584B2 publication Critical patent/JP3112584B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は太陽電池や燃料電池など
の直流電源から交流電源への連系を行うインバータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter for connecting a DC power supply such as a solar cell or a fuel cell to an AC power supply.

【0002】[0002]

【従来の技術】太陽電池の直流電源をインバータで交流
に変換して系統に連系するインバータ方式について説明
する。
2. Description of the Related Art An inverter system in which a DC power supply of a solar cell is converted into AC by an inverter and connected to a system will be described.

【0003】従来のインバータ方式も2種類ある。第1
の方式は直流電源からブリッジ形インバータをPWM
(パルス幅変調)制御して交流電源に同期した交流電流
を出力し、商用周波変圧器で絶縁する方式である。この
方式の出力に対する効率曲線を図5の(2)に示す。商
用周波変圧器の励磁損のため低出力範囲で効率が低下し
ている。
There are two types of conventional inverter systems. First
Is a PWM type bridge inverter from DC power supply
(Pulse width modulation) This method controls and outputs an AC current synchronized with an AC power supply, and insulates it with a commercial frequency transformer. FIG. 5B shows an efficiency curve with respect to the output of this system. The efficiency is reduced in the low power range due to the excitation loss of the commercial frequency transformer.

【0004】太陽電池の場合、特に日本では曇りの日が
多く年間の平均的な日照を考えると30%程度の太陽電池
出力となり、さらに曇天の日などは10〜20%の出力で運
転されることが多い。
[0004] In the case of a solar cell, especially in Japan, the number of cloudy days is so large that the solar cell output is about 30% in consideration of the average sunshine during the year, and the operation is performed at an output of 10 to 20% on a cloudy day. Often.

【0005】そこで低出力時高効率が期待できる高周波
絶縁変圧器を使用した図6の方式が研究されている。こ
の方式の効率を図5の(1)に示す。変圧器が小形化さ
れ励磁損が減少する反面、半導体素子が多く銅損分が増
加する。この結果軽負荷時の効率が向上し定格負荷時は
やや効率が低下する。図6の構成を説明する。
Therefore, a system shown in FIG. 6 using a high-frequency insulating transformer that can be expected to have high efficiency at low output has been studied. The efficiency of this method is shown in FIG. Although the transformer is downsized and the excitation loss is reduced, there are many semiconductor elements and the copper loss increases. As a result, the efficiency at light load is improved, and the efficiency is slightly reduced at rated load. The configuration of FIG. 6 will be described.

【0006】太陽電池1からMOSFETのインバータ
ブリッジ2で数十KHzの高周波の交流を得てそのパル
ス幅を制御し、高周波変圧器3で絶縁する。変圧器出力
をダイオードブリッジ4で整流し、リアクトル5とコン
デンサ6でフィルタ効果を持たせ復調しトランジスタブ
リッジ7で商用周波に変換して交流電源8に電力を供給
する。ダイオードブリッジ4の出力電流は電流検出器9
で検出する。太陽電池1の出力が最大点で動作するため
簡易形として定電圧制御方式が採用される。
A high frequency alternating current of several tens of KHz is obtained from the solar cell 1 by the MOSFET inverter bridge 2, the pulse width thereof is controlled, and the high frequency transformer 3 insulates it. The output of the transformer is rectified by a diode bridge 4, a filter effect is provided by a reactor 5 and a capacitor 6, demodulated, converted to a commercial frequency by a transistor bridge 7, and supplied to an AC power supply 8. The output current of the diode bridge 4 is a current detector 9
To detect. Since the output of the solar cell 1 operates at the maximum point, a constant voltage control method is adopted as a simple type.

【0007】電圧基準VR 11と太陽電池電圧を電圧検出
器10で検出し、両者を比較して増幅器12で増幅した出力
12と交流電源8を両波整流回路13を通した波形V13
掛算器14で掛算した出力V14をダイオードブリッジ4の
電流基準とし、電流検出器9の出力i9 とを比較して増
幅器15で増幅した出力をPWM回路16でPWM信号を作
りMOSFETブリッジ2を駆動する。交流電源8に同
期した信号を作る同期駆動回路17でトランジスタブリッ
ジ7を駆動して交流電流に変換する。この時の動作波形
を図3(a)に示す。
The voltage reference V R11 and the solar cell voltage are detected by the voltage detector 10, the two are compared, and the output V 12 amplified by the amplifier 12 and the waveform V 13 obtained by passing the AC power supply 8 through the double-wave rectifier circuit 13 the output V 14 that is multiplied by the multiplier 14 and the current reference of the diode bridge 4, MOSFET bridge 2 made a PWM signal output amplified by the amplifier 15 by comparing the output i 9 of the current detector 9 in the PWM circuit 16 Drive. The transistor bridge 7 is driven by a synchronous drive circuit 17 for generating a signal synchronized with the AC power supply 8 and converted into an AC current. The operation waveform at this time is shown in FIG.

【0008】[0008]

【発明が解決しようとする課題】図5(1)に示した方
法でも、曇天日の太陽電池出力10〜20%ではインバータ
効率が悪く更なる改良が望まれていた。本発明の目的は
太陽電池出力が10〜20%でも高効率で高出力の範囲でも
高効率で運転出来るインバータの高効率運転装置を提供
することにある。
Even with the method shown in FIG. 5A, the inverter efficiency is poor at a solar cell output of 10 to 20% on a cloudy day, and further improvement has been desired. An object of the present invention is to provide a high-efficiency operation device of an inverter that can operate with high efficiency even in the range of high output and high efficiency even when the solar cell output is 10 to 20%.

【0009】[0009]

【課題を解決するための手段】本発明の請求項1に係る
インバータの高効率運転装置では、インバータ運転台数
の切換時点をインバータ出力電流のゼロ位相にほぼ同期
して行なう。また、請求項2に係るインバータの高効率
運転装置では、インバータ運転台数の切換指令に先行し
てインバータ制御電源のオン切換が行われる。
Means for Solving the Problems According to claim 1 of the present invention.
For high-efficiency inverter operation devices, the number of inverters operated
Switching time is almost synchronized with zero phase of inverter output current
And do it. In addition, the high efficiency of the inverter according to claim 2
In the operation device, the inverter
Thus, the inverter control power supply is switched on.

【0010】[0010]

【作用】本発明の請求項1に係るインバータの高効率運
転装置では、電流がゼロの点でインバータの切換を行な
うので、系統へのショック無く切換えることができる。
また、請求項2に係るインバータの高効率運転装置で
は、インバータが切換えられることが決定した段階でイ
ンバータの制御電源を立ち上げることができる。
The inverter according to claim 1 of the present invention operates with high efficiency.
The inverter switches the inverter at the point where the current is zero.
Therefore, switching can be performed without a shock to the system.
Further, in the high-efficiency operation device for an inverter according to claim 2,
At the stage when the inverter is determined to be switched
The control power for the inverter can be turned on.

【0011】[0011]

【実施例】本発明の実施例の構成を図1に示し、説明す
る。図6と同一部分は同一番号を記し説明を省略する。
図1では2台のインバータを並列運転している様子を示
す。インバータ主回路7〜17部品をインバータ回路19A
とインバータ回路19Bで示し、太陽電池1を共通直流電
源とし、交流電源8を共通として並列に接続してある。
FIG. 1 shows the configuration of an embodiment of the present invention. 6 are denoted by the same reference numerals and description thereof is omitted.
FIG. 1 shows a state in which two inverters are operating in parallel. Inverter main circuit 7 to 17 parts for inverter circuit 19A
And an inverter circuit 19B, in which the solar cell 1 is used as a common DC power supply and the AC power supply 8 is used in common and connected in parallel.

【0012】増幅器12の出力は抵抗23,24により1/2
に分圧された出力と両波整流回路13Aの出力を掛算器14
Aで掛算してダイオードブリッジ4Aの電流基準として
出力しインバータ出力をこの基準に合致するよう制御す
る。
The output of the amplifier 12 is halved by resistors 23 and 24.
A multiplier 14 multiplies the divided output by the output of the double-wave rectifier circuit 13A.
A is multiplied by A and output as a current reference of the diode bridge 4A, and the inverter output is controlled so as to match this reference.

【0013】一方、インバータ回路19Bの電流基準は接
点25bを介して出力した値と両波整流回路13Bとを掛算
器14Bを通して掛算し、電流基準としている。15A,15
B,16A,16BはA号器、B号器用で図6と同様な回路
である。
On the other hand, the current reference of the inverter circuit 19B is obtained by multiplying the value output via the contact 25b and the double-wave rectifier circuit 13B through the multiplier 14B to obtain a current reference. 15A, 15
B, 16A, and 16B are the same circuits as those in FIG.

【0014】インバータ回路Aの電流基準(直流)とイ
ンバータ回路Bの電流基準(直流)とを加算器20で加算
し全出力電流を求め、レベル検出器21で出力電流のレベ
ルを判断して同期切換回路22により交流電源のゼロクロ
ス点に同期して接点25aと25bを切換える。A号器のみ
運転中は25aは閉となっている。次に、実施例の作用を
図2と図3(b)に従って説明する。図2の(c)はイ
ンバータ1台で全出力範囲を運転した場合で出力電流40
%以下で効率が低下する。
The current reference (DC) of the inverter circuit A and the current reference (DC) of the inverter circuit B are added by the adder 20 to obtain the total output current, and the level detector 21 determines the level of the output current and synchronizes. The switching circuit 22 switches the contacts 25a and 25b in synchronization with the zero cross point of the AC power supply. 25a is closed when only the A-unit is operating. Next, the operation of the embodiment will be described with reference to FIGS. 2 and 3B. FIG. 2C shows the case where one inverter operates in the entire output range and the output current is 40%.
%, The efficiency is reduced.

【0015】(b)の曲線はインバータ2台を切換運転
した場合である。出力電力(電流)を加算器20で求め切
換点を45%としてレベル検出器21で検出し出力電流が45
%以上を2台運転それ以下を1台運転にすることにより
見かけ上の効率を(b)の様にして低出力の効率を向上
させている。(a)は3台運転の場合で、3台、2台、
1台運転の切換を行うことで更に低出力範囲まで高効率
運転できる。接点25a,25bの作用は図3(b)に従っ
て説明する。
The curve (b) shows the case where two inverters are switched. The output power (current) is obtained by the adder 20 and the switching point is set to 45%.
By operating two units at% or more and operating one unit at% or less, the apparent efficiency is improved as shown in FIG. (A) is a case of three-unit operation, three units, two units,
Switching between single-unit operation enables high-efficiency operation up to a lower output range. The operation of the contacts 25a and 25b will be described with reference to FIG.

【0016】インバータ1台運転の場合は接点25aは閉
となっているので掛算器14Aの出力V14A (ダイオード
ブリッジ電流基準)は時刻t1 より左の波形となってい
る。次にインバータ2台に切換える場合は電流がゼロ点
のt0 ,t1 などの点に同期して接点25aを開とし25b
を閉とすると、電流基準V14A は1/2の大きさ(抵抗
23,24で分圧されるので)となり電流基準V14B も1/
2の大きさとなりインバータ2台での電流合計は変化せ
ず、しかも電流がゼロの点で切換えるので系統へのショ
ックは無いことになる。
[0016] When one inverter operation contact 25a serves as an output V 14A (diode bridge current reference) of the left of the waveform from time t 1 of the multiplier 14A therefore in the closed. Next, when switching to two inverters, the contact 25a is opened in synchronization with the point where the current is zero, such as t 0 , t 1 , and 25 b
Is closed, the current reference V 14A is 1 / the size (resistance
Since the voltage is divided by 23 and 24), the current reference V 14B is 1 /
2, the total current of the two inverters does not change, and since the current is switched at a zero point, there is no shock to the system.

【0017】以上説明したように本発明によれば複数台
のインバータをショックなしで切換え、連続的に制御し
ているように見せながらインバータ効率の高効率部分を
使うことにより見かけ上出力の広い範囲を高効率化でき
るので日本のように曇天が多く太陽電池の出力が小さい
範囲でも高効率な運転が可能となる。
As described above, according to the present invention, a plurality of inverters can be switched without shock, and a high output portion of the inverter efficiency can be obtained by using a high efficiency portion of the inverter while making it appear that the inverters are controlled continuously. Therefore, high-efficiency operation is possible even in the range where the output of the solar cell is small, such as in Japan, where there is a lot of cloudy weather as in Japan.

【0018】また、図1のような主回路方式では変圧器
の励磁損はインバータ側から供給されるのでインバータ
の運転切換のみで、スタティクに変圧器の台数切換が行
われることになる利点がある。
Further, in the main circuit system as shown in FIG. 1, since the excitation loss of the transformer is supplied from the inverter side, there is an advantage that the number of transformers is statically switched only by switching the operation of the inverter. .

【0019】また、インバータの制御電源をインバータ
毎に設ける方式では、インバータ台数切換時に制御電源
も切換えることが望ましい。この場合の例を図4に示
す。インバータ回路19Bの制御電源は接点28を介してD
C/DCコンバータ29に太陽電池1から供給し、レベル
検出器21で台数切換判定をしたら駆動回路27により接点
28をオンする。次にオンデイレイ回路26を介して制御電
源が確立した時間を見はからって同期切換回路22により
インバータBの運転を行う。
In a system in which a control power supply for an inverter is provided for each inverter, it is desirable to switch the control power supply when switching the number of inverters. FIG. 4 shows an example in this case. The control power supply of the inverter circuit 19B is connected to D
The power is supplied from the solar cell 1 to the C / DC converter 29, and when the number of units is determined to be switched by the level detector 21, a contact is made by the drive circuit 27.
Turn on 28. Next, the time when the control power supply is established via the on-delay circuit 26 is checked, and the inverter B is operated by the synchronous switching circuit 22.

【0020】なおインバータ台数は2台に限定すること
なく3台以上でも同様であり、切換判別やインバータの
制御はマイコンを利用したり、シリアル通信などを利用
して行うことは応用面で当然考えられる。
Note that the number of inverters is not limited to two, and the same applies to three or more inverters. It is naturally considered from an application point of view that switching determination and inverter control are performed using a microcomputer or serial communication. Can be

【0021】さらにインバータは高周波絶縁方式以外の
変圧器無し方式でもそのまま応用が可能であり、商用変
圧器方式でも変圧器のオンオフを行えば可能であること
は説明するまでもない。また最大電力制御は他の方式で
も全く同様に応用できる。なお、切換の判別はDC側又
はAC側の電力や電流の平均値を利用しても作用は同じ
である。
Further, it is needless to say that the inverter can be applied to a transformer-less system other than the high-frequency insulation system as it is, and that the inverter can be applied to a commercial transformer system by turning on and off the transformer. Further, the maximum power control can be applied to other methods in the same manner. The switching operation is the same even if the average value of the power or current on the DC or AC side is used.

【0022】[0022]

【発明の効果】以上説明したように本発明によればイン
バータを複数台並列にして、出力電流レベルに応じ最も
効率が高くなるよう台数を選ぶことにより見かけ上広い
範囲で高効率なインバータが実現でき日本のように曇天
が多く太陽電池の出力が低い範囲で動作する場合には極
めて経済的に有効となる。台数切換はゼロ電流点で行う
ので全くショックはない。
As described above, according to the present invention, a plurality of inverters are arranged in parallel, and the number is selected so that the efficiency becomes highest in accordance with the output current level, thereby realizing an inverter having a high efficiency in an apparently wide range. It is extremely economically effective when operating in a range with a lot of cloudy weather and a low solar cell output as in Japan. Since the switching of the number is performed at the zero current point, there is no shock at all.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す構成図。FIG. 1 is a configuration diagram showing one embodiment of the present invention.

【図2】本発明の動作を説明するための特性図。FIG. 2 is a characteristic diagram for explaining the operation of the present invention.

【図3】本発明の動作を説明するための波形図。FIG. 3 is a waveform chart for explaining the operation of the present invention.

【図4】本発明の他の実施例の要部の構成図。FIG. 4 is a configuration diagram of a main part of another embodiment of the present invention.

【図5】従来装置の効率を説明するための特性図。FIG. 5 is a characteristic diagram for explaining the efficiency of the conventional device.

【図6】従来装置の構成図。FIG. 6 is a configuration diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1…太陽電池、2…MOSFETブリッジ、3…変圧
器、4…ダイオードブリッジ、5…リアクトル、6…コ
ンデンサ、7…トランジスタブリッジ、8…交流電源、
9…電流検出器、10…電圧検出器、11…電圧基準、12,
15…増幅器、13…両波整流回路、14…掛算器、16…PW
M回路、17…同期駆動回路、19…インバータ回路、20…
加算器、21…レベル検出器、22…同期切換回路、23,24
…抵抗器、25…切換接点、26…オンディレイ回路、27…
駆動回路、28…a接点、29…DC/DCコンバータ。
DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... MOSFET bridge, 3 ... Transformer, 4 ... Diode bridge, 5 ... Reactor, 6 ... Capacitor, 7 ... Transistor bridge, 8 ... AC power supply,
9: current detector, 10: voltage detector, 11: voltage reference, 12,
15 amplifier, 13 double-wave rectifier circuit, 14 multiplier, 16 PW
M circuit, 17… Synchronous drive circuit, 19… Inverter circuit, 20…
Adder, 21: Level detector, 22: Synchronous switching circuit, 23, 24
... Resistor, 25 ... Switching contact, 26 ... On delay circuit, 27 ...
Drive circuit, 28 contact a, 29 DC / DC converter.

フロントページの続き (56)参考文献 特開 昭56−86035(JP,A) 特開 昭61−135365(JP,A) 特開 平4−54838(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/48 G05F 1/67 H02J 3/46 Continuation of front page (56) References JP-A-56-86035 (JP, A) JP-A-61-135365 (JP, A) JP-A-4-54838 (JP, A) (58) Fields studied (Int .Cl. 7 , DB name) H02M 7/48 G05F 1/67 H02J 3/46

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数台の電流制御形のインバータを交流
電源に接続して並列運転を行い、インバータの入力又は
出力の電流または電力を検出する回路と、この出力をレ
ベル検出器により判定し、前記インバータの台数を切換
えて最も効率が良くなる台数を選定して運転するインバ
ータの高効率運転装置において、インバータ運転台数の
切換時点をインバータ出力電流のゼロ位相にほぼ同期し
て行なうことを特徴とするインバータの高効率運転装
置。
1. A circuit for connecting a plurality of current control type inverters to an AC power supply to perform parallel operation, detect a current or power of an input or output of the inverter, and determine the output by a level detector. In an inverter high efficiency operation device that switches the number of the inverters and selects and operates the number with the highest efficiency ,
The switching time is almost synchronized with the zero phase of the inverter output current.
High-efficiency operation equipment for inverters
Place.
【請求項2】 複数台の電流制御形のインバータを交流
電源に接続して並列運転を行い、インバータの入力又は
出力の電流または電力を検出する回路と、この出力をレ
ベル検出器により判定し、前記インバータの台数を切換
えて最も効率が良くなる台数を選定して運転するインバ
ータの高効率運転装置において、インバータ運転台数の
切換指令に先行してインバータ制御電源のオン切換が行
われることを特徴とするインバータの高効率運転装置。
2. A plurality of current control type inverters are connected to an alternating current.
Connect to a power supply to perform parallel operation.
A circuit that detects the current or power at the output and
Judge by bell detector and switch the number of inverters
Inverter that selects and operates the most efficient unit
In high-efficiency operation equipment for
The inverter control power is switched on prior to the switching command.
A high-efficiency operation device for an inverter.
JP04307436A 1992-11-18 1992-11-18 Inverter high-efficiency operation device Expired - Fee Related JP3112584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04307436A JP3112584B2 (en) 1992-11-18 1992-11-18 Inverter high-efficiency operation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04307436A JP3112584B2 (en) 1992-11-18 1992-11-18 Inverter high-efficiency operation device

Publications (2)

Publication Number Publication Date
JPH06165513A JPH06165513A (en) 1994-06-10
JP3112584B2 true JP3112584B2 (en) 2000-11-27

Family

ID=17969054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04307436A Expired - Fee Related JP3112584B2 (en) 1992-11-18 1992-11-18 Inverter high-efficiency operation device

Country Status (1)

Country Link
JP (1) JP3112584B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3402533B2 (en) * 1994-08-10 2003-05-06 シャープ株式会社 Teletext broadcast special playback device and teletext broadcast special playback device
DE19805926A1 (en) * 1998-02-13 1999-08-19 Bosch Gmbh Robert Device and method for the controlled parallel operation of DC / DC converters
JP3545203B2 (en) * 1998-05-22 2004-07-21 三洋電機株式会社 Inverter operation method and power supply system
US6285572B1 (en) * 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
JP2000341959A (en) * 1999-05-31 2000-12-08 Kawasaki Steel Corp Power generating system
JP2001016859A (en) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd Power converter
JP3829317B2 (en) * 1999-10-18 2006-10-04 株式会社ジーエス・ユアサコーポレーション System-connected inverter operating device and method, and computer-readable recording medium recording a program for operating the system-connected inverter
CN101111988B (en) * 2005-01-28 2010-05-26 皇家飞利浦电子股份有限公司 X ray tube modularized power supply and method
JP4948881B2 (en) * 2006-04-19 2012-06-06 東芝燃料電池システム株式会社 Fuel cell system
US7710752B2 (en) * 2006-05-23 2010-05-04 Xantrex Technology Inc. Transformerless utility-grid-interactive inverter
DE102006024482A1 (en) * 2006-05-26 2007-12-06 Powerlynx A/S Electrical system`s power transformer controlling method, involves providing power transformer with two output circuits, and selecting number of controlled output circuits depending on available power
DE102007049774B3 (en) * 2007-10-17 2009-07-02 Siemens Ag Inverters, in particular solar inverters, with load balancing control
KR100922537B1 (en) * 2007-11-20 2009-10-21 카코뉴에너지 주식회사 Power management system of renewable energy
JP5300404B2 (en) * 2008-10-14 2013-09-25 株式会社Nttファシリティーズ Power conversion system, power conversion control device, power conversion control method, and program
JP2011087398A (en) 2009-10-15 2011-04-28 Fuji Electric Holdings Co Ltd Unit inverter system
EP2355170A3 (en) * 2010-02-09 2012-05-02 Markus Emmert Control for photovoltaic systems
JPWO2013094396A1 (en) * 2011-12-19 2015-04-27 パナソニックIpマネジメント株式会社 Charge / discharge device and charge / discharge system using the same
CN102593867B (en) * 2012-02-24 2014-08-20 华为技术有限公司 Solar grid-connected inverter
JP6440067B2 (en) * 2015-01-08 2018-12-19 パナソニックIpマネジメント株式会社 Power converter
KR102572424B1 (en) * 2016-04-08 2023-08-29 엘에스일렉트릭(주) Method for controlling of inverter system
CN110896228A (en) * 2018-09-12 2020-03-20 国家能源投资集团有限责任公司 SOFC power generation system

Also Published As

Publication number Publication date
JPH06165513A (en) 1994-06-10

Similar Documents

Publication Publication Date Title
JP3112584B2 (en) Inverter high-efficiency operation device
US6058035A (en) Method and apparatus for supplying AC power to commercial power line by using sunlight
US8519655B2 (en) DC bus boost method and system for regenerative brake
US5625539A (en) Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
US5519306A (en) Constant voltage circuit and a stabilized power supply unit
US6836416B2 (en) Multi-output power conversion circuit
US5894414A (en) Three phase rectifier using three single phase converters and a single DC/DC converter
US4672520A (en) Current-source power converting apparatus with self-extinction devices
US5483433A (en) Voltage control circuit for a multiple stage DC power supply, and applications thereof
US6023416A (en) DC power supply apparatus including boosting/lowering converter unit and control
JPH0728538A (en) System interconnection type inverter controller
JP2002142458A (en) Rectification circuit and its control method
JP3530359B2 (en) Three-phase power factor improving converter
JP3478700B2 (en) Three-phase power factor improving converter
US6175510B1 (en) Direct conversion uninterruptible power supply
JPH07163153A (en) Control method for single-phase three-wire inverter
JP3670955B2 (en) Power factor correction circuit
JPH0744834B2 (en) Pulse width control power converter
JPH06141536A (en) Low-loss power supply device including dc/dc converter
JPH10155273A (en) Switching mode rectifying circuit
JPH10304663A (en) Three-phase power factor improved converter
JPH06197541A (en) Inverter device
JPH05928B2 (en)
JPS63314176A (en) Variable voltage/variable frequency power apparatus
JPH0564451A (en) Power source apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees