JP2024000473A - Single-phase three-wire ac power conversion device - Google Patents

Single-phase three-wire ac power conversion device Download PDF

Info

Publication number
JP2024000473A
JP2024000473A JP2022109338A JP2022109338A JP2024000473A JP 2024000473 A JP2024000473 A JP 2024000473A JP 2022109338 A JP2022109338 A JP 2022109338A JP 2022109338 A JP2022109338 A JP 2022109338A JP 2024000473 A JP2024000473 A JP 2024000473A
Authority
JP
Japan
Prior art keywords
signal
capacitor
switch element
circuit
switch circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109338A
Other languages
Japanese (ja)
Inventor
守男 佐藤
Morio Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohira Electronics Co Ltd
Original Assignee
Ohira Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohira Electronics Co Ltd filed Critical Ohira Electronics Co Ltd
Priority to JP2022109338A priority Critical patent/JP2024000473A/en
Publication of JP2024000473A publication Critical patent/JP2024000473A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve an effect by reducing power loss generated in a conventional circuit which creates a single-phase three-wire AC power source from a DC power source.
SOLUTION: An inverter circuit is formed of first to fourth switch elements, a first reactor, and a second reactor. In the inverter circuit, a bidirectional switch circuit is connected between a connection point between the first and second switch elements and a connection point between the third and fourth switch elements, a drive signal of a prescribed cycle, a prescribed phase, and a prescribed pulse width is applied to the first to fourth switch elements and a control terminal of the bidirectional switch circuit, and excitation energy in the first reactor and the second reactor is discharged via the bidirectional switch circuit.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、直流電源と交流電源を互いに変換できる電源装置に関する。 The present invention relates to a power supply device that can mutually convert DC power and AC power.

電気自動車(EV)のバッテリから交流電源を作る装置が停電時に利用されることが増えている。また、災害発生時に避難する建物全体に交流電力を供給するために建物の配電盤にEVから作った交流を接続することも行われている。
配電盤に交流を接続する場合は系統からの接続をいったん切り、単相3線式交流を供給する必要がある。
単相3線式交流のインバータは3つの出力端子を持っており、それらの名称をL1、N、L2とすると、L1-N間とN-L2間には100V、L1-L2間には200Vが発生する。また、Nは保護接地される。
単相3線式交流インバータは1つの交流電圧を発生する単相2線式交流インバータとは異なる回路を採用し、異なる制御方式を採用している。
Devices that generate AC power from electric vehicle (EV) batteries are increasingly being used during power outages. Additionally, in order to supply AC power to the entire building evacuated to in the event of a disaster, AC generated from EVs is also connected to the building's power distribution board.
When connecting alternating current to a switchboard, it is necessary to disconnect from the grid once and supply single-phase three-wire alternating current.
A single-phase three-wire AC inverter has three output terminals, and if they are named L1, N, and L2, the voltage is 100V between L1 and N and N and L2, and 200V between L1 and L2. occurs. Further, N is protectively grounded.
A single-phase three-wire AC inverter uses a different circuit and a different control method from a single-phase two-wire AC inverter that generates one AC voltage.

特許文献1には単相3線式交流を作るインバータ回路が開示されている。開示されている回路によれば、直流電圧を直列接続された2つのコンデンサにより分圧し、各々の電圧からインバータ回路を介して単相3線式交流を作っている。 Patent Document 1 discloses an inverter circuit that generates single-phase three-wire alternating current. According to the disclosed circuit, a direct current voltage is divided by two capacitors connected in series, and a single-phase three-wire alternating current is generated from each voltage via an inverter circuit.

特開2014-79133号公報JP 2014-79133 Publication

特許文献1の図2には放電動作1の電流の経路が示されている。図において、Q1とQ4がオン状態になるとコンデンサC1の電荷はQ1とL1を介して一方の負荷に流れ、コンデンサC2の電荷はQ4とL2を介して他方の負荷に流れる。 FIG. 2 of Patent Document 1 shows a current path in discharge operation 1. In the figure, when Q1 and Q4 are turned on, the charge in capacitor C1 flows to one load via Q1 and L1, and the charge in capacitor C2 flows to the other load via Q4 and L2.

次にQ1とQ4がオフして、Q2とQ3がオン状態になるとL1の励磁エネルギは一方の負荷を通りコンデンサC2に回生され、L2の励磁エネルギは他方の負荷を通りコンデンサC1に回生される。 Next, when Q1 and Q4 are turned off and Q2 and Q3 are turned on, the excitation energy of L1 passes through one load and is regenerated to capacitor C2, and the excitation energy of L2 passes through the other load and is regenerated to capacitor C1. .

すなわち、コンデンサC1とC2から放電された電荷エネルギは負荷に供給されると同時にL1とL2の励磁エネルギとして蓄積されるが、その蓄積されたエネルギの一部がコンデンサC1とC2に戻ることになるのでコンデンサ(C1とC2)とリアクトル(L1とL2)の間にエネルギのキャッチボールが生じて電力を損失している。 In other words, the charge energy discharged from capacitors C1 and C2 is supplied to the load and at the same time is stored as excitation energy for L1 and L2, but part of the stored energy is returned to capacitors C1 and C2. Therefore, an energy catch-up occurs between the capacitors (C1 and C2) and the reactors (L1 and L2), resulting in power loss.

そこで本発明は、従来の単相3線式交流インバータに見られるエネルギのキャッチボールが生じない高効率のインバータを提供することを目的としている。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a highly efficient inverter that does not cause the energy catch-and-play that occurs in conventional single-phase three-wire AC inverters.

従来の単相3線式交流インバータは出力が無負荷または軽負荷になったときに電圧が上昇し波形が正弦波から外れる。 In a conventional single-phase three-wire AC inverter, when the output is under no load or light load, the voltage increases and the waveform deviates from a sine wave.

そこで本発明の別の目的は負荷が無負荷または軽負荷になっても電圧の上昇がなく、かつ、交流電圧波形が正弦波から外れることのない単相3線式交流インバータを提供することを目的としている。 Another object of the present invention is to provide a single-phase three-wire AC inverter in which the voltage does not rise even when the load becomes no load or light load, and the AC voltage waveform does not deviate from a sine wave. The purpose is

上記の目的を達成するために本発明は、第1の直流電源と、第1の直流電源に並列に接続された第1のコンデンサと第2のコンデンサからなる直列回路と、第1の直流電源に並列に接続された第1のスイッチ素子と第2のスイッチ素子からなる直列回路と、第1の直流電源に並列に接続された第3のスイッチ素子と第4のスイッチ素子からなる直列回路と、第1のスイッチ素子と第2のスイッチ素子の接続点と第3のスイッチ素子と第4のスイッチ素子の接続点の間に接続された双方向スイッチ回路と、その双方向スイッチ回路の一方の端子と第1のコンデンサと第2のコンデンサの接続点の間に接続された第3のコンデンサと、双方向スイッチ回路の他方の端子と第1のコンデンサと第2のコンデンサの接続点の間に接続された第4のコンデンサと、第3のコンデンサの双方向スイッチ回路側の端子に直列に挿入された第1のリアクトルと、第4のコンデンサの双方向スイッチ回路側の端子に直列に挿入された第2のリアクトルと、第3のコンデンサに並列に接続された第1の負荷と、第4のコンデンサに並列に接続された第2の負荷と、第3のコンデンサの第1のリアクトル側の端子と第4のコンデンサの第2のリアクトル側の端子の間に接続された第3の負荷を備え、第1ないし第4のスイッチ素子と双方向スイッチ回路の各々の制御電極に所定の周期と位相とパルス幅を持った駆動信号を加え、これによって第1の直流電源の電力を交流電力に変換して第1ないし第3の負荷に供給することを特徴とする。 In order to achieve the above object, the present invention includes a first DC power supply, a series circuit including a first capacitor and a second capacitor connected in parallel to the first DC power supply, and a first DC power supply. A series circuit consisting of a first switch element and a second switch element connected in parallel to the first DC power supply, and a series circuit consisting of a third switch element and a fourth switch element connected in parallel to the first DC power supply. , a bidirectional switch circuit connected between the connection point of the first switch element and the second switch element and the connection point of the third switch element and the fourth switch element, and one of the bidirectional switch circuits. A third capacitor connected between the terminal and the connection point of the first capacitor and the second capacitor, and a third capacitor connected between the other terminal of the bidirectional switch circuit and the connection point of the first capacitor and the second capacitor. a fourth capacitor connected to the first reactor, a first reactor inserted in series to the bidirectional switch circuit side terminal of the third capacitor, and a first reactor inserted in series to the bidirectional switch circuit side terminal of the fourth capacitor; the second reactor, the first load connected in parallel to the third capacitor, the second load connected in parallel to the fourth capacitor, and the first reactor side of the third capacitor. a third load connected between the terminal and the terminal on the second reactor side of the fourth capacitor; It is characterized in that a drive signal having a phase and a pulse width is applied, thereby converting the power of the first DC power source into AC power and supplying it to the first to third loads.

本発明によれば単相3線式交流インバータとして従来より高い効率を得ることができる。 According to the present invention, higher efficiency than conventional single-phase three-wire AC inverters can be obtained.

本発明の実施例を示す回路図である。1 is a circuit diagram showing an embodiment of the present invention. FIG. 本発明の別の実施例を示す回路図である。FIG. 3 is a circuit diagram showing another embodiment of the present invention. 本発明の別の実施例を示す回路図である。FIG. 3 is a circuit diagram showing another embodiment of the present invention. 本発明の回路の動作を説明するための波形図である。FIG. 3 is a waveform diagram for explaining the operation of the circuit of the present invention. 本発明の回路の動作を説明するための波形図である。FIG. 3 is a waveform diagram for explaining the operation of the circuit of the present invention. 本発明の放電電流を示す回路図である。FIG. 3 is a circuit diagram showing the discharge current of the present invention. 従来の放電電流を示す回路図である。FIG. 2 is a circuit diagram showing a conventional discharge current.

図1は本発明の実施例を示す電力変換装置の回路である。直流電源1の電圧はコンデンサ2と3によって分圧される。MOSFET4と7には第1の信号である交流電圧の正の半波に相当する期間だけハイになるパルス(以降「交流正」と表記する)と第3の信号である交流電圧の振幅に比例するデューティ比のパルス(以降「DT」と表記する)のAND信号(以降「&」と表記する)が加わる。スイッチ素子5と6には第2の信号源である交流電圧の負の半波に相当する期間だけハイになるパルス(以降「交流負」と表記する)とDTの&が加わる。MOSFET8と9のゲートには第4の信号であるDTの相補信号

Figure 2024000473000002
る信号であるため、MOSFET4ないし7とMOSFET8と9が同時にオン状態になることはない。FIG. 1 shows a circuit of a power conversion device showing an embodiment of the present invention. The voltage of DC power supply 1 is divided by capacitors 2 and 3. MOSFETs 4 and 7 have a first signal, a pulse that is high only for a period corresponding to the positive half wave of the AC voltage (hereinafter referred to as "AC positive"), and a third signal, which is proportional to the amplitude of the AC voltage. An AND signal (hereinafter referred to as "&") of pulses (hereinafter referred to as "DT") having a duty ratio of 1 is added. A pulse (hereinafter referred to as "AC negative") that is high only during a period corresponding to the negative half wave of the AC voltage, which is the second signal source, and & of DT are applied to the switching elements 5 and 6. The gates of MOSFETs 8 and 9 receive a fourth signal, a complementary signal of DT.
Figure 2024000473000002
Therefore, MOSFETs 4 to 7 and MOSFETs 8 and 9 are not turned on at the same time.

交流波形と交流正及び交流負の信号の関係を図4に示した。 The relationship between the AC waveform and the AC positive and AC negative signals is shown in FIG.

Figure 2024000473000003
Figure 2024000473000003

交流正&DTがハイになって、MOSFET4と7のゲートに加わると、コンデンサ2の電荷がMOSFET4とリアクトル12とコンデンサ10を流れ、コンデンサ3の電荷がMOSFET7とリアクトル13とコンデンサ11を流れる。 When AC positive &DT becomes high and is applied to the gates of MOSFETs 4 and 7, the charge in capacitor 2 flows through MOSFET 4, reactor 12, and capacitor 10, and the charge in capacitor 3 flows through MOSFET 7, reactor 13, and capacitor 11.

交流正のパルスがハイでもDTがローになるとMOSFET4と7がオフになる。一

Figure 2024000473000004
T8と9を通りコンデンサ10と11を充電する。Even if the AC positive pulse is high, when DT becomes low, MOSFETs 4 and 7 are turned off. one
Figure 2024000473000004
It passes through T8 and 9 and charges capacitors 10 and 11.

図1におけるリアクトル12と13を励磁する電流と、その励磁エネルギが放出すときの電流の経路を図6に示した。 FIG. 6 shows the current that excites the reactors 12 and 13 in FIG. 1 and the current path when the excitation energy is released.

図7は従来方式の回路構成の1つである特許文献1の図2の等価回路である。

Figure 2024000473000005
1とL2を励磁する電流は図6の回路と同じであるが、Q1とQ4がオフして、Q2とQ3がオンになるとリアクトルL1とL2の励磁エネルギの一部は入力コンデンサC1とC2に戻るが、図6の回路ではリアクトル(12と13)の励磁エネルギは出力コンデンサ(10と11)だけを充電する。すなわち、図6と図7では励磁エネルギの放出の電流経路が異なっている。FIG. 7 is an equivalent circuit of FIG. 2 of Patent Document 1, which is one of the conventional circuit configurations.
Figure 2024000473000005
The current that excites 1 and L2 is the same as the circuit in Figure 6, but when Q1 and Q4 are turned off and Q2 and Q3 are turned on, part of the excitation energy of reactors L1 and L2 is transferred to input capacitors C1 and C2. Returning to the circuit of FIG. 6, the excitation energy of the reactors (12 and 13) charges only the output capacitors (10 and 11). That is, the current paths for emitting excitation energy are different between FIGS. 6 and 7.

図7に示した従来方式では励磁エネルギの一部がC1とC2に戻るため変換効率が悪くなる。また、C3とC4から取り出す交流電力に差があると、C1とC2の電圧に差が生じるので特許文献1の図1に示されているようにQ5とQ6とL3で構成されている電圧バランス回路が必要になり、このバランス回路によっても電力の損失が生じる。 In the conventional method shown in FIG. 7, part of the excitation energy returns to C1 and C2, resulting in poor conversion efficiency. Furthermore, if there is a difference in the AC power extracted from C3 and C4, a difference will occur between the voltages of C1 and C2, so as shown in FIG. circuit is required, and this balance circuit also causes power loss.

Figure 2024000473000006
の振幅に比例するデューティ比であるが、従来方式ではDTの値は交流電圧に単純に比例
Figure 2024000473000007
Figure 2024000473000006
The duty ratio is proportional to the amplitude of DT, but in the conventional method, the value of DT is simply proportional to the AC voltage.
Figure 2024000473000007

図2は本発明の別の実施例を示す電力変換装置である。図1との違いは双方向スイッチ回路を構成するMOSFET8と9のゲートが別々になっており、各々に交流正と交流負の信号が加えられている点である。 FIG. 2 shows a power conversion device showing another embodiment of the present invention. The difference from FIG. 1 is that the gates of MOSFETs 8 and 9 constituting the bidirectional switch circuit are separate, and AC positive and AC negative signals are applied to each.

図2において、MOSFET4と7に交流正&DTが加えられ、MOSFET8と9が構成する双方向スイッチ回路のMOSFET9のゲートに交流正が加えられている。交流正のパルスがハイの間は双方向スイッチ回路の図の下から上に向かう方向だけ導通する。 In FIG. 2, AC positive &DT is applied to MOSFETs 4 and 7, and AC positive is applied to the gate of MOSFET 9 of the bidirectional switch circuit constituted by MOSFETs 8 and 9. While the AC positive pulse is high, conduction occurs only in the direction from the bottom to the top of the diagram of the bidirectional switch circuit.

交流正のパルスがハイで、かつ、DTがハイのときはスイッチ素子4と7はオンになり、電流はリアクトル12と13を通り両リアクトルを励磁しながらコンデンサ10と11を充電する。交流正のパルスがハイの間でもDTがローになるとMOSFET4と7はオフになり、リアクトル12と13の励磁エネルギは励磁エネルギの放出の方向が導通状態になるMOSFET9とMOSFET8のボディダイオードを流れて放出される。 When the AC positive pulse is high and DT is high, switch elements 4 and 7 are turned on, and the current passes through reactors 12 and 13, exciting both reactors and charging capacitors 10 and 11. When DT becomes low even while the AC positive pulse is high, MOSFETs 4 and 7 are turned off, and the excitation energy of reactors 12 and 13 flows through the body diodes of MOSFET 9 and MOSFET 8, which become conductive in the direction of excitation energy release. released.

交流負のパルスがハイで、かつ、DTがハイのときはMOSFET6と5がオンになり、電流はリアクトル13と12を通り両リアクトルを励磁しながらコンデンサ11と10を充電する。交流負のパルスがハイの間でもDTがローになるとMOSFET6と5はオフになり、リアクトル13と12の励磁エネルギは励磁エネルギの放出の方向が導通状態になるMOSFET8とMOSFET9のボディダイオードを流れて放出される。 When the AC negative pulse is high and DT is high, MOSFETs 6 and 5 are turned on, and the current passes through reactors 13 and 12, exciting both reactors and charging capacitors 11 and 10. When DT becomes low even while the AC negative pulse is high, MOSFETs 6 and 5 are turned off, and the excitation energy of reactors 13 and 12 flows through the body diodes of MOSFET 8 and MOSFET 9, which become conductive in the direction of excitation energy release. released.

Figure 2024000473000008
オンオフするか、または交流正と交流負の周期でオンオフするかという点にある。
Figure 2024000473000008
It depends on whether it turns on and off, or whether it turns on and off in cycles of positive AC and negative AC.

Figure 2024000473000009
方がローの状態であるデッドタイムを設けるが、それが効率を下げる原因の1つになる。
Figure 2024000473000009
However, dead time is provided, which is a low state, which is one of the causes of lower efficiency.

図2において、MOSFET8と9のいずれか一方はボディダイオードに電流が流れるのでダイオードの順方向ドロップ電圧(VF)によるロスが発生し、効率を下げる原因の1つになる。 In FIG. 2, current flows through the body diode of one of MOSFETs 8 and 9, so a loss occurs due to the forward drop voltage (VF) of the diode, which is one of the causes of lower efficiency.

図3は上記図1ないし図2の各々のロスを改善する回路例であり、双方向スイッチ回路

Figure 2024000473000010
R信号を加える。FIG. 3 is an example of a circuit for improving each of the losses shown in FIGS. 1 and 2, and is a bidirectional switch circuit.
Figure 2024000473000010
Add R signal.

図1ないし図3において、全部または一部のMOSFETをIGBTにダイオードを逆並列接続して置き換えても良い。 In FIGS. 1 to 3, all or part of the MOSFETs may be replaced by IGBTs and diodes connected in antiparallel.

本発明の単相3線式交流インバータにおいて、DTを交流電圧の振幅に比例させるだけでいいという点は、従来の単相2線式交流インバータと同じである。従って、3つの負荷に供給する交流電圧は安定しており、交流波形も負荷に関係なく正弦波を保っている。 The single-phase three-wire AC inverter of the present invention is the same as the conventional single-phase two-wire AC inverter in that it is only necessary to make DT proportional to the amplitude of the AC voltage. Therefore, the AC voltage supplied to the three loads is stable, and the AC waveform also maintains a sine wave regardless of the load.

1 直流電源
2、3、10、11 コンデンサ
4~9 MOSFET
12、13 リアクトル
14、15、16 負荷
17 信号源
1 DC power supply 2, 3, 10, 11 Capacitor 4 to 9 MOSFET
12, 13 Reactor 14, 15, 16 Load 17 Signal source

Claims (4)

第1の直流電源と前記第1の直流電源に並列に接続された第1のコンデンサと第2のコンデンサからなる直列回路と前記第1の直流電源に並列に接続された第1のスイッチ素子と第2のスイッチ素子からなる直列回路と前記第1の直流電源に並列に接続された第3のスイッチ素子と第4のスイッチ素子からなる直列回路と前記第1のスイッチ素子と前記第2のスイッチ素子の接続点と前記第3のスイッチ素子と前記第4のスイッチ素子の接続点の間に接続された双方向スイッチ回路と前記双方向スイッチ回路の一方の端子と前記第1のコンデンサと前記第2のコンデンサの接続点の間に接続された第3のコンデンサと前記双方向スイッチ回路の他方の端子と前記第1のコンデンサと前記第2のコンデンサの接続点の間に接続された第4のコンデンサと前記第3のコンデンサの前記双方向スイッチ回路側の端子に直列に挿入された第1のリアクトルと前記第4のコンデンサの前記双方向スイッチ回路側の端子に直列に挿入された第2のリアクトルと前記第3のコンデンサに並列に接続された第1の負荷と前記第4のコンデンサに並列に接続された第2の負荷と前記第3のコンデンサの前記第1のリアクトル側の端子と前記第4のコンデンサの前記第2のリアクトル側の端子の間に接続された第3の負荷と前記第1ないし第4のスイッチ素子と前記双方向スイッチ回路の各々の制御電極に所定の周期と位相とパルス幅を持った駆動信号を加える信号源からなり、これによって前記第1の直流電源の電力を交流電力に変換して前記第1ないし第3の負荷に供給することを特徴とする単相3線式交流の電力変換装置。 a first DC power supply; a series circuit including a first capacitor and a second capacitor connected in parallel to the first DC power supply; and a first switch element connected in parallel to the first DC power supply; a series circuit consisting of a second switch element, a series circuit consisting of a third switch element and a fourth switch element connected in parallel to the first DC power supply, the first switch element and the second switch; a bidirectional switch circuit connected between a connection point of the element and a connection point of the third switch element and the fourth switch element, one terminal of the bidirectional switch circuit, the first capacitor, and the fourth switch element; a third capacitor connected between the connection point of the second capacitor, the other terminal of the bidirectional switch circuit, and a fourth capacitor connected between the connection point of the first capacitor and the second capacitor; a first reactor inserted in series with a terminal of the bidirectional switch circuit side of the capacitor and the third capacitor; and a second reactor inserted in series with the terminal of the fourth capacitor on the bidirectional switch circuit side. a first load connected in parallel to the reactor and the third capacitor; a second load connected in parallel to the fourth capacitor; a terminal of the third capacitor on the first reactor side; A third load connected between terminals of the fourth capacitor on the second reactor side, a predetermined period and phase for each control electrode of the first to fourth switch elements and the bidirectional switch circuit. and a signal source that applies a drive signal having a pulse width, thereby converting the power of the first DC power source into AC power and supplying the AC power to the first to third loads. 3-wire AC power converter. 前記双方向スイッチ回路が一つの方向の導通を制御する第1の制御電極と別のもう一つの方向の導通を制御する第2の制御電極を備え、前記信号源が交流電圧の正の半波に相当する期間だけパルスを出力する第1の信号と前記交流電圧の負の半波に相当する期間だけパルスを出力する第2の信号と前記交流電圧の正弦波の振幅に比例するデューティ比のパルスを出力する第3の信号と前記第3の信号の相補信号を出力する第4の信号を備え、前記第1のスイッチ素子と前記第4のスイッチ素子の制御電極に前記第1の信号と前記第3の信号のAND信号を加え、前記第2のスイッチ素子と前記第3のスイッチ素子の制御電極に前記第2の信号と前記第3の信号のAND信号を加え、前記双方向スイッチ回路の第1と第2の制御電極に前記第4の信号を加えた請求項1記載の単相3線式交流の電力変換装置。 The bidirectional switch circuit includes a first control electrode that controls conduction in one direction and a second control electrode that controls conduction in another direction, and the signal source is a positive half-wave of an alternating current voltage. a first signal that outputs a pulse for a period corresponding to the negative half wave of the AC voltage, a second signal that outputs a pulse for a period corresponding to the negative half wave of the AC voltage, and a duty ratio that is proportional to the amplitude of the sine wave of the AC voltage. A third signal that outputs a pulse and a fourth signal that outputs a complementary signal of the third signal, and the control electrodes of the first switch element and the fourth switch element are connected to the first signal An AND signal of the third signal is added, an AND signal of the second signal and the third signal is applied to the control electrodes of the second switch element and the third switch element, and the bidirectional switch circuit 2. The single-phase three-wire AC power converter according to claim 1, wherein said fourth signal is applied to said first and second control electrodes. 前記双方向スイッチ回路の第1の制御電極に前記第4の信号に替えて前記第1の信号を加え、前記双方向スイッチ回路の第2の制御電極に前記第4の信号に替えて前記第2の信号を加えた請求項2記載の単相3線式交流の電力変換装置。 The first signal is applied to the first control electrode of the bidirectional switch circuit instead of the fourth signal, and the first signal is applied to the second control electrode of the bidirectional switch circuit instead of the fourth signal. 3. The single-phase three-wire AC power converter according to claim 2, wherein two signals are added. 前記双方向スイッチ回路の第1の制御電極に前記第1の信号に前記第4の信号をORで加え、前記双方向スイッチ回路の第2の制御電極に前記第2の信号に前記第4の信号をORで加えた請求項2記載の単相3線式交流の電力変換装置。 The first signal and the fourth signal are ORed to a first control electrode of the bidirectional switch circuit, and the second signal and the fourth signal are ORed to a second control electrode of the bidirectional switch circuit. 3. The single-phase three-wire AC power converter according to claim 2, wherein the signals are added by OR.
JP2022109338A 2022-06-20 2022-06-20 Single-phase three-wire ac power conversion device Pending JP2024000473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109338A JP2024000473A (en) 2022-06-20 2022-06-20 Single-phase three-wire ac power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022109338A JP2024000473A (en) 2022-06-20 2022-06-20 Single-phase three-wire ac power conversion device

Publications (1)

Publication Number Publication Date
JP2024000473A true JP2024000473A (en) 2024-01-05

Family

ID=89384621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022109338A Pending JP2024000473A (en) 2022-06-20 2022-06-20 Single-phase three-wire ac power conversion device

Country Status (1)

Country Link
JP (1) JP2024000473A (en)

Similar Documents

Publication Publication Date Title
US10263429B2 (en) Bidirectional DC-DC converter, power conditioner, and distributed power system
JP5800130B2 (en) DC power supply system
US7729139B2 (en) Current source inverter with energy clamp circuit and controlling method thereof having relatively better effectiveness
CN101383514B (en) Ups device
US8508965B2 (en) Inverter and method for operating the inverter
RU2738965C1 (en) Power supply device
JP5250818B1 (en) Full bridge power converter
US8493760B2 (en) Electric circuit for converting direct current into alternating current
JP2010518806A (en) Inverter
Hosseini et al. A multilevel boost converter based on a switched-capacitor structure
Ponkumar et al. Realization of cascaded multilevel inverter
KR20150140966A (en) Cascaded H-bridge Inverter Capable of Operating in Bypass Mode
JP6140007B2 (en) Power converter
KR101426696B1 (en) Grid-connected module type photovoltaic power conversion apparatus
Mohamad et al. The effects of number of conducting switches in a cascaded multilevel inverter output
JP2018198478A (en) Power supply device
JP5963197B2 (en) AC / AC bidirectional power converter
US20230253877A1 (en) Power factor correction and dc-dc multiplexing converter and uninterruptible power supply including the same
US20220173652A1 (en) Power conversion system and virtual dc voltage generator circuit
JP2012191761A (en) Ac-dc conversion circuit
JP2024000473A (en) Single-phase three-wire ac power conversion device
Ramamurthi et al. High step-up DC-DC converter with switched capacitor-coupled inductor and voltage multiplier module
US9343995B2 (en) Power conversion device
Chevinly et al. A novel single-phase flying-inductor buck-boost inverter
KR101155986B1 (en) Multi-phase dc-dc converter using integrated y-y connection transformer for fuel-cell system