JP2021505429A5 - - Google Patents

Download PDF

Info

Publication number
JP2021505429A5
JP2021505429A5 JP2020529530A JP2020529530A JP2021505429A5 JP 2021505429 A5 JP2021505429 A5 JP 2021505429A5 JP 2020529530 A JP2020529530 A JP 2020529530A JP 2020529530 A JP2020529530 A JP 2020529530A JP 2021505429 A5 JP2021505429 A5 JP 2021505429A5
Authority
JP
Japan
Prior art keywords
composite material
material system
feature
shape
dimensional geometry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020529530A
Other languages
Japanese (ja)
Other versions
JP2021505429A (en
Filing date
Publication date
Priority claimed from US16/151,186 external-priority patent/US10833318B2/en
Application filed filed Critical
Priority claimed from PCT/US2018/063306 external-priority patent/WO2019226195A2/en
Publication of JP2021505429A publication Critical patent/JP2021505429A/en
Publication of JP2021505429A5 publication Critical patent/JP2021505429A5/ja
Pending legal-status Critical Current

Links

Claims (37)

複合材料システムであって、
モノリシックかつ決定論的である構築化三次元ジオメトリを有する構造と、
前記構造を少なくとも部分的に含浸するマトリックス相と、
を備えることを特徴とする複合材料システム。
It ’s a composite material system.
Structures with constructed 3D geometry that are monolithic and deterministic,
A matrix phase that at least partially impregnates the structure and
A composite material system characterized by being equipped with.
前記三次元ジオメトリはナノまたはマイクロ構築化三次元ジオメトリである、請求項1に記載の複合材料システム。 The composite material system of claim 1, wherein the three-dimensional geometry is a nano or micro-constructed three-dimensional geometry. 前記構造は、2×10J/m〜4×10J/mの範囲から選択される面積正規化エネルギー緩和メトリック(Ψ)によって特徴付けられる、または前記構造は、1.9×10 J/kg〜4×10 J/kgの範囲から選択される密度正規化エネルギー緩和メトリック(Ψ)によって特徴付けられる、請求項1または2に記載の複合材料システム。 The structure is characterized by an area normalized energy relaxation metric (Ψ) selected from the range 2 × 10 4 J / m 2 to 4 × 10 5 J / m 2 , or the structure is 1.9 ×. characterized by 10 6 J / kg~4 × 10 6 J / kg density normalized energy relaxation metric selected from the range of ([psi), composite system according to claim 1 or 2. 前記構造は、0.8〜0.3の範囲から選択される跳ね返り係数によって特徴付けられる、請求項1〜のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 3 , wherein the structure is characterized by a bounce coefficient selected from the range of 0.8 to 0.3. 前記構造は少なくとも1つの振動周波数バンドギャップによって特徴付けられる、請求項1〜のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 4 , wherein the structure is characterized by at least one vibration frequency bandgap. 前記少なくとも1つの振動周波数バンドギャップは決定論的である、請求項に記載の複合材料システム。 The composite material system of claim 5 , wherein the at least one vibration frequency bandgap is deterministic. 前記少なくとも1つの振動周波数バンドギャップは0.1MHz〜200MHzの範囲内にある、請求項1〜6のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 6, wherein the at least one vibration frequency bandgap is in the range of 0.1 MHz to 200 MHz. 少なくとも1.2%の減衰比によって特徴付けられる、請求項1〜のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 7 , characterized by a damping ratio of at least 1.2%. 前記三次元ジオメトリが少なくとも1つの表面特徴を備える、請求項1〜のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 8 , wherein the three-dimensional geometry has at least one surface feature. 記少なくとも1つの表面特徴の少なくとも部分が非ゼロのガウス曲率によって特徴付けられる、前記少なくとも1つの表面特徴の少なくとも部分が非ゼロの平均曲率によって特徴付けられる、前記少なくとも1つの表面特徴の少なくとも部分がゼロ平均曲率によって特徴付けられる、前記少なくとも1つの表面特徴の少なくとも部分が不均一なガウス曲率または不均一な平均曲率によって特徴付けられる、前記少なくとも1つの表面特徴の少なくとも部分が均一なガウス曲率または均一な平均曲率によって特徴付けられる、前記少なくとも1つの表面特徴の厚み寸法は前記少なくとも1つの表面特徴全体で一様でない、または前記少なくとも1つの表面特徴の厚み寸法は前記少なくとも1つの表面特徴全体で一様である、請求項1〜のいずれか一項に記載の複合材料システム。 At least part of the prior SL at least part of at least one surface feature is characterized by a Gaussian curvature of the non-zero, at least part of said at least one surface feature is characterized by the mean curvature of the non-zero, the at least one surface feature Is characterized by a zero mean curvature, at least a portion of the at least one surface feature is characterized by a non-uniform Gaussian curvature or a non-uniform mean curvature, at least a portion of the at least one surface feature is a uniform Gaussian curvature or The thickness dimension of the at least one surface feature, characterized by a uniform mean curvature, is not uniform across the at least one surface feature, or the thickness dimension of the at least one surface feature is across the at least one surface feature. The composite material system according to any one of claims 1 to 9 , which is uniform. 前記三次元ジオメトリはスピノーダルジオメトリとして特徴付けられる、請求項1〜10のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 10 , wherein the three-dimensional geometry is characterized as a spinodal geometry. 前記構造は、1〜1.3の範囲から選択される、正規化有効弾性率対相対密度の勾配によって特徴付けられる、請求項1〜11のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 11 , wherein the structure is characterized by a gradient of normalized effective modulus vs. relative density, selected from the range 1-1.3. 前記三次元ジオメトリは共振器を備える、請求項1〜12のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 12 , wherein the three-dimensional geometry comprises a resonator. 前記三次元ジオメトリは、共振器を有するユニットセルジオメトリによって特徴付けられる、請求項1〜13のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 13 , wherein the three-dimensional geometry is characterized by a unit cell geometry having a resonator. 前記共振器は、マイクロ慣性特徴を有する、請求項1〜14のいずれか一項に記載の複合材料システム。 It said resonator has a Ma Micro inertia characteristics, composite system according to any one of claims 1 to 14. 前記共振器はカンチレバービーム特徴と、前記カンチレバービーム特徴の端部に接続されたマイクロ慣性特徴とを備える、請求項1315のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 13 to 15 , wherein the resonator comprises a cantilever beam feature and a micro-inertial feature connected to the end of the cantilever beam feature. 前記構造は、第2の方向に沿ってよりも第1の方向に沿って少なくとも1%大きくダンピングすることに特徴付けられる決定論的異方性減衰によって特徴付けられる、請求項1〜16のいずれか一項に記載の複合材料システム。 The structure is characterized by deterministic anisotropy decay characterized in that at least 1% larger damping along the first direction than along the second direction, one of the claim 1-16 The composite material system according to one item. 前記構造は、振動ブラック散乱を示し、前記構造は振動局所共鳴を示さない、請求項1〜17のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 17 , wherein the structure exhibits oscillating black scattering and the structure does not exhibit oscillating local resonance. 前記構造は炭素同素体材料、ポリマーセラミック材料、金属材料またはそれらの組み合わせを有する、請求項1〜18のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 18 , wherein the structure comprises a carbon allotrope material, a polymer ceramic material, a metal material or a combination thereof. 前記三次元ジオメトリはノードのないジオメトリである、請求項1〜19のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 19 , wherein the three-dimensional geometry is a geometry without nodes. 前記構造は少なくとも1つの中空の特徴を有する、請求項1〜20のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 20 , wherein the structure has at least one hollow feature. 前記三次元ジオメトリは少なくとも1つの縦方向特徴を有し、かつ前記少なくとも1つの縦方向特徴の少なくとも部分は、前記特徴の縦方向に沿った非ゼロの曲率によって特徴付けられ、
前記少なくとも1つの縦方向特徴は、前記特徴の縦方向に沿った非一様の曲率によって特徴付けられる、または前記少なくとも1つの縦方向特徴は、前記特徴の縦方向に沿って非均一である少なくとも1つの断面寸法を有する、請求項1〜21のいずれか一項に記載の複合材料システム。
It said three-dimensional geometry having at least one longitudinal features, and wherein at least part of the at least one longitudinal features characterized et is the curvature of the non-zero along the longitudinal direction of the feature,
The at least one longitudinal feature is characterized by a non-uniform curvature along the longitudinal direction of the feature, or the at least one longitudinal feature is at least non-uniform along the longitudinal direction of the feature. The composite material system according to any one of claims 1 to 21 , which has one cross-sectional dimension.
前記三次元ジオメトリは、非一様な断面形状を有する少なくとも1つの特徴を備える、請求項1〜22のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 22 , wherein the three-dimensional geometry has at least one feature having a non-uniform cross-sectional shape. 前記構造は、三次元外方境界形状を規定し、前記三次元ジオメトリは、1点のみまたはゼロ点で前記境界に交差する少なくとも1つの特徴を備える、請求項1〜23のいずれか一項に記載の複合材料システム。 The structure defines a three-dimensional outer boundary shape, the three-dimensional geometry, comprising at least one feature crossing the boundary only one point or zero point, in any one of claims 1 to 23 The composite material system described. 前記構造の三次元外方境界形状は前記複合材料システムの形状に対応する、請求項1〜24のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 24 , wherein the three-dimensional outer boundary shape of the structure corresponds to the shape of the composite material system. 前記構造によって規定される三次元外方境界形状は中空である、請求項1〜25のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 25 , wherein the three-dimensional outer boundary shape defined by the structure is hollow. 前記三次元ジオメトリは、少なくともプライマリ三次元ジオメトリとセカンダリ三次元ジオメトリとを備える全体三次元ジオメトリであり、前記プライマリ三次元ジオメトリと前記セカンダリ三次元ジオメトリとが異なっている、請求項1〜26のいずれか一項に記載の複合材料システム。 The three-dimensional geometry is an overall three-dimensional geometry including at least a primary three-dimensional geometry and a secondary three-dimensional geometry, and any of claims 1 to 26, wherein the primary three-dimensional geometry and the secondary three-dimensional geometry are different. Or the composite material system described in paragraph 1. 前記構造は、前記マトリックス領域のない閉じた領域を有する、請求項1〜27のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 27 , wherein the structure has a closed region without the matrix region. 前記構造は前記マトリックス相に内包されており、前記構造のどの部分も前記マトリックス層の外部境界を越えて存在していない、請求項1〜28のいずれか一項に記載の複合材料システム。 The structure is contained in the matrix phase, which part is also not present beyond the outer boundary of the matrix layer, the composite system according to any one of claims 1 to 28 in the structure. 前記三次元ジオメトリの少なくとも一部は、四面体十面体、ウィア−フェラン形状、ハニカム形状、オーセチック形状、オクテットトラス形状、八面体、ダイヤモンド格子、3Dカゴメ形状、正方形状、立方体形状、四面体、空間充填多面体、周期的最小表面、三重周期的最小表面形状、スピノーダル形状、カイラル形状、またはこれらの組み合わせとして特徴付けされている、請求項1〜29のいずれか一項に記載の複合材料システム。 At least part of the three-dimensional geometry is a tetrahedral decahedron, Weaire-Phelan shape, honeycomb shape, auxetic shape, octet truss shape, octahedron, diamond lattice, 3D cage shape, square shape, cube shape, tetrahedron shape, space. The composite material system according to any one of claims 1 to 29 , characterized as a filled polyhedron, a periodic minimum surface, a triple periodic minimum surface shape, a spinodal shape, a chiral shape, or a combination thereof. 前記特徴は1または複数の支柱、ビーム、タイ、トラス、シート、サーフェス、球、楕円、およびシェルを備える、請求項1〜30のいずれか一項に記載の複合材料システム。 The feature one or more posts, beams, Thailand, comprising trusses, sheet, surface, sphere, ellipse, and the shell, composite system according to any one of claims 1 to 30. FIG. 前記構造は、5%〜99.9%の範囲から選択された相対密度によって特徴付けされている、請求項1〜31のいずれか一項に記載の複合材料システム。 The structure is 5% to 99.9% of which is characterized by a relative density selected from the range, the composite system according to any one of claims 1 to 31. 前記構造は弾性によって特徴付けされており、前記構造の前記弾性は決定論的である、請求項1〜32のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 32 , wherein the structure is characterized by elasticity and the elasticity of the structure is deterministic. 前記構造は、曲げ支配モードまたは伸張支配モードを有するとして特徴付けされている、請求項1〜33のいずれか一項に記載の複合材料システム。 The structure is characterized as having a flexural dominant mode or stretching dominant mode, composite system according to any one of claims 1 to 33. 前記構造はコーティングを含む、請求項1〜34のいずれか一項に記載の複合材料システム。 The composite material system according to any one of claims 1 to 34 , wherein the structure comprises a coating. 前記マトリックス相は、ポリマー、エポキシ、炭素同素体、セラミック、金属、粘性流体またはそれらの組み合わせからなる群から選択された1または複数の材料を含む、請求項1〜35のいずれか一項に記載の複合材料システム。 The matrix phase polymer, epoxy, carbon allotrope, ceramics, metals, including viscous fluids or one or more materials selected from the group consisting of, according to any one of claims 1 to 35 Composite material system. 複合材料システムを作製する方法であって、該方法は、
積層造形プロセスによって構造を用意するステップであって、前記構造は構築化三次元ジオメトリを有し、前記三次元ジオメトリはモノリシックかつ決定論的である、ステップと、
前記構造をマトリックス相で含浸するステップであって、前記構造が前記マトリックス相によって少なくとも部分的に含浸されている、ステップと、
それによって前記複合材料システムを作製するステップと、
を含む方法。
A method of making a composite material system, the method of which is
A step of preparing a structure by a layered modeling process, wherein the structure has a constructed 3D geometry, and the 3D geometry is monolithic and deterministic.
A step of impregnating the structure with a matrix phase, wherein the structure is at least partially impregnated with the matrix phase.
The step of making the composite material system thereby and
How to include.
JP2020529530A 2017-12-01 2018-11-30 Manufacture and design of composites with build-up layers Pending JP2021505429A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762593768P 2017-12-01 2017-12-01
US62/593,768 2017-12-01
US16/151,186 US10833318B2 (en) 2017-10-03 2018-10-03 Three-dimensional architected pyrolyzed electrodes for use in secondary batteries and methods of making three-dimensional architected electrodes
US16/151,186 2018-10-03
PCT/US2018/063306 WO2019226195A2 (en) 2017-12-01 2018-11-30 Fabrication and design of composites with architected layers

Publications (2)

Publication Number Publication Date
JP2021505429A JP2021505429A (en) 2021-02-18
JP2021505429A5 true JP2021505429A5 (en) 2022-01-06

Family

ID=68615907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529530A Pending JP2021505429A (en) 2017-12-01 2018-11-30 Manufacture and design of composites with build-up layers

Country Status (7)

Country Link
EP (1) EP3718159A4 (en)
JP (1) JP2021505429A (en)
KR (1) KR20200084358A (en)
AU (1) AU2018424951A1 (en)
CA (1) CA3082841A1 (en)
IL (1) IL274970A (en)
WO (1) WO2019226195A2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230203951A1 (en) * 2020-04-15 2023-06-29 Siemens Energy Global GmbH & Co. KG Auxetic three-dimensional structure utilized in additive manufacturing applications
CN111996435B (en) * 2020-08-31 2021-09-28 重庆理工大学 High-entropy alloy composite powder and method for reinforcing magnesium alloy through ultrahigh-speed laser cladding
KR102443715B1 (en) * 2020-09-11 2022-09-14 계명대학교 산학협력단 A manufacturing method of metastructures for improving variablestiffness properties and wearable suit using it
US20220281164A1 (en) 2021-03-05 2022-09-08 nFugue Tiled porous architected compositions, methods of their making and methods of their use
CN113524658B (en) * 2021-06-22 2022-12-09 西安交通大学 Additive manufacturing method of light shielding body with multi-ray shielding and self-generating functions
IT202100024641A1 (en) * 2021-09-27 2023-03-27 Torino Politecnico POROUS THREE-DIMENSIONAL HIERARCHICAL MATERIALS INCLUDING A RETICULAR STRUCTURE WITH FLOATING INSERTS WITHIN THE POROSITIES
CN113705061B (en) * 2021-10-28 2022-01-07 西南交通大学 Design method of digital flexible protection system considering multiple nonlinearities
CN114495884B (en) * 2022-01-13 2023-06-27 四川大学 Lightweight design method for acoustic metamaterial and train low-frequency noise reduction composite floor
CN115198912A (en) * 2022-06-30 2022-10-18 国网甘肃省电力公司建设分公司 UHPC-PUC combined assembled wall adopting Spinodal configuration
CN115351298B (en) * 2022-10-21 2023-01-03 沈阳铸造研究所有限公司 Near-zero expansion lattice metal based on additive manufacturing, and preparation method and application thereof
CN116030923B (en) * 2023-03-28 2023-06-02 深圳大学 Method, device, equipment and storage medium for acquiring dynamic constitutive relation of material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5384171A (en) * 1991-12-05 1995-01-24 Prucher; Bryan P. Structurally networked matrix ceramic composite material
GB2421920B (en) * 2003-11-07 2007-12-27 Ki Ju Kang Three-dimensional cellular light structures directly woven by continuous wires and the manufacturing method of the same
US8079549B2 (en) * 2008-06-30 2011-12-20 EMBRAER—Empresa Brasileira de Aeronautica S.A. Monolithic integrated structural panels especially useful for aircraft structures
US9147874B2 (en) * 2012-06-11 2015-09-29 Nanotek Instruments, Inc. Rechargeable lithium cell having a meso-porous conductive material structure-supported phthalocyanine compound cathode
US20140141224A1 (en) * 2012-11-08 2014-05-22 William Marsh Rice University Fabrication of carbon foams through solution processing in superacids
US9021414B1 (en) * 2013-04-15 2015-04-28 Monolithic 3D Inc. Automation for monolithic 3D devices
JP2018501173A (en) * 2014-10-31 2018-01-18 レプソル,ソシエダッド アノニマ Hierarchical composite structures based on graphene foam or graphene-like foam
US10253836B2 (en) * 2015-04-01 2019-04-09 The Johns Hopkins University Three dimensional lattice weaves with tailored damping properties
US10232549B2 (en) * 2015-09-10 2019-03-19 The Boeing Company Geometric sound absorption via additive manufacturing
US10661513B2 (en) * 2015-12-01 2020-05-26 The Boeing Company Multi-planar fiber matrix tool-less preform for resin infusion
CN114226755B (en) * 2021-12-21 2023-04-07 清华大学 Metal-ceramic composite lattice manufacturing method and metal-ceramic composite lattice structure

Similar Documents

Publication Publication Date Title
JP2021505429A5 (en)
Ren et al. Auxetic metamaterials and structures: a review
Kolken et al. Auxetic mechanical metamaterials
Jiang et al. Manufacturing, characteristics and applications of auxetic foams: A state-of-the-art review
Wang et al. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance
Chen et al. Lattice metamaterials with mechanically tunable Poisson’s ratio for vibration control
San Ha et al. A review of recent research on bio-inspired structures and materials for energy absorption applications
Saxena et al. Three decades of auxetics research− materials with negative Poisson's ratio: a review
Christensen et al. Vibrant times for mechanical metamaterials
Hou et al. Metamaterials with negative poisson’s ratio: A review of mechanical properties and deformation mechanisms
Wei et al. New advances in fiber-reinforced composite honeycomb materials
US9076429B2 (en) Acoustic metamaterials
Neville et al. A Kirigami shape memory polymer honeycomb concept for deployment
WO1999033641A9 (en) Foam scaffold materials
Behera et al. Impact-resistant materials inspired by the mantis shrimp's dactyl club
CN111836722B (en) Method for producing an ordered array of interconnected acoustic microchannels
US20110059291A1 (en) Structured materials with tailored isotropic and anisotropic poisson's ratios including negative and zero poisson's ratios
Kundalwal et al. Smart damping of laminated fuzzy fiber reinforced composite shells using 1–3 piezoelectric composites
Günaydın et al. In-plane compression behavior of anti-tetrachiral and re-entrant lattices
Tao et al. A novel re-entrant honeycomb metamaterial with tunable bandgap
Hu et al. Superior compressive properties of 3D printed plate lattice mechanical metamaterials
CN108642640B (en) Preparation method and application of rigidity gradient auxetic material
Hao et al. Novel dual-platform lightweight metamaterials with auxeticity
Kishore et al. A review on latest acoustic noise mitigation materials
Sharma et al. In-plane and out-plane flexural properties of the bird feather-inspired panels: Experimental, digital image correlation, and finite element study