JP2018078320A - Compound type reactor - Google Patents

Compound type reactor Download PDF

Info

Publication number
JP2018078320A
JP2018078320A JP2017250179A JP2017250179A JP2018078320A JP 2018078320 A JP2018078320 A JP 2018078320A JP 2017250179 A JP2017250179 A JP 2017250179A JP 2017250179 A JP2017250179 A JP 2017250179A JP 2018078320 A JP2018078320 A JP 2018078320A
Authority
JP
Japan
Prior art keywords
winding
core
coil
magnetic
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017250179A
Other languages
Japanese (ja)
Inventor
哲 橋野
Satoru Hashino
哲 橋野
暁 藤田
Akira Fujita
暁 藤田
晃義 小松崎
Akiyoshi Komatsuzaki
晃義 小松崎
倫也 山岸
Michiya Yamagishi
倫也 山岸
昌浩 島田
Masahiro Shimada
昌浩 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2017250179A priority Critical patent/JP2018078320A/en
Publication of JP2018078320A publication Critical patent/JP2018078320A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compound type reactor capable of reducing leakage magnetic flux generated at a circumference.SOLUTION: A magnetic core 11 of a compound type reactor 10 has a first core part 11a wound with winding of a first coil 12 and a second core part 11b wound with winding of a second coil 13. First and second coils having a magnetic core arranged as a common core have a first winding part 12a and a second winding part 12b, and a third winding part 13a and a fourth winding part 13b divided and wound around different winding center axes. The first winding part 12a and second winding part 12b, and the third winding part 13a and fourth winding part 13b are arranged in such directions that pieces of magnetic flux crosslinking at circumferences of the first and second coils cancel each other. The directions of the pieces of magnetic flux, by the respectively divided and wound first winding part 12a and second winding part 12b, and the third winding part 13a and fourth winding part 13b of the first and second coil, at the first core part 11a and the opposed second core part 11b are opposite.SELECTED DRAWING: Figure 3

Description

本発明は、周囲に発生する漏れ磁束が小さな複合型リアクトルに関する。   The present invention relates to a composite reactor having a small leakage magnetic flux generated around the present invention.

特許文献1には、昇圧装置用複合型リアクトル及び昇圧装置が開示されている。この昇圧装置用複合型リアクトルは、コア(第1磁脚及び第2磁脚と、中央磁脚と、第1磁継部及び第2磁継部)と、第1巻線及び第2巻線とから構成される。第1巻線はコアの第1磁継部に巻回され、第2巻線はコアの第2磁継部に巻回されている。また、第1磁継部及び第2磁継部には空隙が配設されている。   Patent Document 1 discloses a composite reactor for a booster device and a booster device. The booster composite reactor includes a core (first magnetic leg and second magnetic leg, central magnetic leg, first magnetic joint part and second magnetic joint part), first winding and second winding. It consists of. The first winding is wound around the first magnetic connection portion of the core, and the second winding is wound around the second magnetic connection portion of the core. In addition, a gap is provided in the first magnetic connection portion and the second magnetic connection portion.

当該複合型リアクトルを昇圧装置に用いて駆動した場合、第1巻線及び第2巻線の周囲には、入力電流に比例した磁束が発生する。第1巻線の周囲に発生する磁束は第1磁脚内に形成される第1磁路以外に、第2磁脚内を通過する第1漏れ磁路へも流れようとする。しかし、第1磁路に、4つの空隙が配設されているのに対し、第1漏れ磁路には、8つの空隙が配設されて、第1磁路より磁気抵抗が非常に大きく、第1漏れ磁路の磁束は、第1磁路の磁束に較べ著しく少なくなる。第2巻線の発生する磁束においても、第2磁路に対して第2漏れ磁路の磁束を空隙により少なくしている。その結果、第1巻線と第2巻線との間の磁気的な相互影響を抑制して、それぞれ独立したリアクトルとして動作することができる。   When the composite reactor is driven using a booster, a magnetic flux proportional to the input current is generated around the first winding and the second winding. The magnetic flux generated around the first winding tends to flow not only to the first magnetic path formed in the first magnetic leg but also to the first leakage magnetic path passing through the second magnetic leg. However, while four gaps are arranged in the first magnetic path, eight gaps are arranged in the first leakage magnetic path, and the magnetic resistance is much larger than the first magnetic path, The magnetic flux in the first leakage magnetic path is significantly less than the magnetic flux in the first magnetic path. Also in the magnetic flux generated by the second winding, the magnetic flux of the second leakage magnetic path is reduced by the air gap with respect to the second magnetic path. As a result, the magnetic mutual influence between the first winding and the second winding can be suppressed, and each can operate as an independent reactor.

特開2005−80442号公報JP 2005-80442 A

特許文献1の複合型リアクトルは、第1巻線と第2巻線との間の磁気的な相互影響を抑制して、それぞれ独立したリアクトルとして動作可能な構成であるが、リアクトルの周囲に発生する漏れ磁束を抑制するための対策については何ら講じられていない。このため、特許文献1の複合型リアクトルを昇圧装置に用いて駆動すると、当該複合型リアクトルの周囲に発生した漏れ磁束が、昇圧装置の構成要素の内、磁束の影響を受けやすい素子(例えば、電流センサやパルストランス方式の絶縁素子等)に望ましくない影響を与える可能性がある。   The composite reactor of Patent Document 1 is configured to be able to operate as an independent reactor while suppressing the magnetic mutual influence between the first winding and the second winding, but is generated around the reactor. No measures have been taken to suppress leakage magnetic flux. For this reason, when the composite reactor of Patent Document 1 is driven using a booster device, leakage magnetic flux generated around the composite reactor is an element that is susceptible to magnetic flux among the components of the booster device (for example, Undesirably affecting current sensors, pulse transformer type insulation elements, etc.).

本発明の目的は、周囲に発生する漏れ磁束を低減可能な複合型リアクトルを提供することである。   An object of the present invention is to provide a composite reactor capable of reducing leakage magnetic flux generated in the surroundings.

上記の目的を達成するために、請求項1に記載の発明は、
磁性コア(例えば、後述の実施形態での磁性コア11,21,31,41,51)と、該磁性コアを共通コアとして前記磁性コアに配設される第1コイル(例えば、後述の実施形態でのコイル12)及び第2コイル(例えば、後述の実施形態でのコイル13)と、を備える複合型リアクトル(例えば、後述の実施形態での複合型リアクトル10,20)であって、
前記磁性コアは、前記第1コイルの巻線が巻回される第1コア部(例えば、後述の実施形態での第1コア部11a,21a,31a,41a,51a)と、前記第2コイルの巻線が巻回される第2コア部(例えば、後述の実施形態での第2コア部11b,21b,31b,41b,51b)と、を有し、
前記第1コイルは、異なる巻線中心軸上に分割巻きされた第1巻線部(例えば、後述の実施形態での第1巻線部12a)及び第2巻線部(例えば、後述の実施形態での第2巻線部12b)を有し、
前記第1巻線部及び前記第2巻線部は、前記第1コイルの周囲で鎖交する磁束が互いに打ち消し合う向きにそれぞれ配設され、
前記第2コイルは、異なる巻線中心軸上に分割巻きされた第3巻線部(例えば、後述の実施形態での第3巻線部13a)及び第4巻線部(例えば、後述の実施形態での第4巻線部13b)を有し、
前記第3巻線部及び前記第4巻線部は、前記第2コイルの周囲で鎖交する磁束が互いに打ち消し合う向きにそれぞれ配設され、
前記第1巻線部による前記第1コア部における磁束の向きは、前記第3巻線部による前記第2コア部における磁束の向きに略相反し、
前記第2巻線部による前記第1コア部における磁束の向きは、前記第4巻線部による前記第2コア部における磁束の向きに略相反する。
In order to achieve the above object, the invention described in claim 1
A magnetic core (for example, magnetic cores 11, 21, 31, 41, 51 in embodiments described later) and a first coil (for example, an embodiment described later) disposed on the magnetic core using the magnetic core as a common core Coil 12) and a second coil (for example, a coil 13 in an embodiment described later), and a composite reactor (for example, a composite reactor 10, 20 in an embodiment described later),
The magnetic core includes a first core portion (for example, a first core portion 11a, 21a, 31a, 41a, 51a in an embodiment described later) around which the winding of the first coil is wound, and the second coil. A second core part (for example, a second core part 11b, 21b, 31b, 41b, 51b in an embodiment described later) around which the winding is wound,
The first coil includes a first winding part (for example, a first winding part 12a in an embodiment described later) and a second winding part (for example, an implementation described later) that are separately wound on different winding center axes. A second winding part 12b) in the form,
The first winding part and the second winding part are respectively arranged in directions in which magnetic fluxes interlinking around the first coil cancel each other,
The second coil includes a third winding part (for example, a third winding part 13a in an embodiment described later) and a fourth winding part (for example, an implementation described later) that are separately wound on different winding center axes. A fourth winding part 13b) in the form,
The third winding portion and the fourth winding portion are respectively arranged in directions in which magnetic fluxes interlinking around the second coil cancel each other,
The direction of the magnetic flux in the first core portion by the first winding portion is substantially opposite to the direction of the magnetic flux in the second core portion by the third winding portion,
The direction of the magnetic flux in the first core portion by the second winding portion is substantially opposite to the direction of the magnetic flux in the second core portion by the fourth winding portion.

請求項2に記載の発明は、請求項1に記載の発明において、
前記第1巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z11,Z41)と前記第3巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z13,Z43)とが共通し、かつ、前記第2巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z12,Z42)と前記第4巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z14,Z44)とが共通する。
The invention according to claim 2 is the invention according to claim 1,
The winding center axis of the first winding part (for example, winding center axes Z11 and Z41 in the embodiment described later) and the winding center axis of the third winding part (for example, winding in the embodiment described later) Line center axes Z13 and Z43) and the winding center axis of the second winding part (for example, winding center axes Z12 and Z42 in the embodiments described later) and the fourth winding part. The winding center axis (for example, winding center axes Z14 and Z44 in the embodiments described later) is common.

請求項3に記載の発明は、請求項1に記載の発明において、
前記第1コア部の前記第2コア部に対向する端面と、前記第2コア部の前記第1コア部に対向する端面とが少なくとも一部重なる。
The invention according to claim 3 is the invention according to claim 1,
An end surface of the first core portion facing the second core portion and an end surface of the second core portion facing the first core portion at least partially overlap.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、
前記第1巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z11,Z41,Z51)と前記第2巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z12,Z42,Z52)とが互いに平行であり、前記第3巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z13,Z43,Z53)と前記第4巻線部の巻線中心軸(例えば、後述の実施形態での巻線中心軸Z14,Z44,Z54)とが互いに平行である。
The invention according to claim 4 is the invention according to any one of claims 1 to 3,
The winding center axis (for example, winding center axes Z11, Z41, Z51 in the embodiments described later) and the winding center axis (for example, in embodiments described later) of the first winding section. Winding center axes Z12, Z42, Z52) are parallel to each other, and the winding center axes of the third winding portion (for example, winding center axes Z13, Z43, Z53 in the embodiments described later) and the above Winding central axes (for example, winding central axes Z14, Z44, Z54 in the embodiments described later) of the fourth winding part are parallel to each other.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、
前記第1巻線部、前記第2巻線部、前記第3巻線部及び前記第4巻線部の各巻線中心軸(例えば、後述の実施形態での巻線中心軸Z11〜Z14,Z21〜Z24)が同一平面上に含まれる。
The invention according to claim 5 is the invention according to any one of claims 1 to 4,
Winding center axes of the first winding part, the second winding part, the third winding part, and the fourth winding part (for example, winding center axes Z11 to Z14, Z21 in the embodiments described later) ~ Z24) are included on the same plane.

請求項6に記載の発明は、請求項1から4のいずれか一項に記載の発明において、
前記第1巻線部及び前記第3巻線部の各巻線中心軸(例えば、後述の実施形態での巻線中心軸Z41,Z43)を含む第1平面と、前記第2巻線部及び前記第4巻線部の各巻線中心軸(例えば、後述の実施形態での巻線中心軸Z42,Z44)を含む第2平面とは異なる平面である。
The invention according to claim 6 is the invention according to any one of claims 1 to 4,
A first plane including each winding center axis (for example, winding center axes Z41 and Z43 in the embodiments described later) of the first winding part and the third winding part, the second winding part and the This is a plane different from the second plane including each winding center axis (for example, winding center axes Z42 and Z44 in the embodiments described later) of the fourth winding section.

請求項7に記載の発明は、請求項1から4のいずれか一項に記載の発明において、
前記第1巻線部及び前記第2巻線部の各巻線中心軸(例えば、後述の実施形態での巻線中心軸Z51,Z52)を含む第1平面と、前記第3巻線部及び前記第4巻線部の各巻線中心軸(例えば、後述の実施形態での巻線中心軸Z53,Z54)を含む第2平面とは異なる平面である。
The invention according to claim 7 is the invention according to any one of claims 1 to 4,
A first plane including each winding center axis (for example, winding center axes Z51 and Z52 in the embodiments described later) of the first winding portion and the second winding portion; the third winding portion; This is a plane different from the second plane including each winding center axis (for example, winding center axes Z53 and Z54 in the embodiments described later) of the fourth winding section.

請求項8に記載の発明は、請求項1から7のいずれか一項に記載の発明において、
前記第1コイルにより生じる磁束の前記磁性コアでの磁路長と、前記第2コイルにより生じる磁束の前記磁性コアでの磁路長とは等しい。
The invention according to claim 8 is the invention according to any one of claims 1 to 7,
The magnetic path length of the magnetic flux generated by the first coil in the magnetic core is equal to the magnetic path length of the magnetic flux generated by the second coil in the magnetic core.

請求項9に記載の発明は、請求項8に記載の発明において、
前記第1コイルにより生じる磁束の前記磁性コアでの磁路及び前記第2コイルにより生じる磁束の前記磁性コアでの磁路は、環状又は矩形ループ状の共通形状を有する。
The invention according to claim 9 is the invention according to claim 8,
The magnetic path of the magnetic flux generated by the first coil in the magnetic core and the magnetic path of the magnetic flux generated by the second coil in the magnetic core have a common shape of an annular or rectangular loop shape.

請求項10に記載の発明は、請求項1から9のいずれか一項に記載の発明において、
前記第1コア部及び前記第2コア部はそれぞれ同形状に形成され、前記第1コア部と前記第2コア部とを組み合わせて前記磁性コアを構成する。
The invention according to claim 10 is the invention according to any one of claims 1 to 9,
The first core portion and the second core portion are formed in the same shape, and the magnetic core is configured by combining the first core portion and the second core portion.

請求項1の発明によれば、第1コイルの分割巻きされた第1巻線部及び第2巻線部の周囲に発生する磁束が互いに打ち消し合うことで、第1コイルの周囲の漏れ磁束を低減できる。同様に、第2コイルの分割巻きされた第3巻線部及び第4巻線部の周囲に発生する磁束が互いに打ち消し合うことで、第2コイルの周囲の漏れ磁束を低減できる。さらに、第1コイルによる第1コア部における磁束の向きと、第2コイルによる第2コア部における磁束の向きが相反するため、磁性コアの磁気飽和が起こりにくくなり、本発明に係る複合型リアクトルは、磁気結合型リアクトルとして十分に機能する。   According to the first aspect of the present invention, the magnetic flux generated around the first and second windings that are separately wound of the first coil cancel each other, so that the leakage magnetic flux around the first coil is reduced. Can be reduced. Similarly, the leakage magnetic flux around the second coil can be reduced by canceling out the magnetic fluxes generated around the third winding portion and the fourth winding portion that are separately wound around the second coil. Furthermore, since the direction of the magnetic flux in the first core portion by the first coil and the direction of the magnetic flux in the second core portion by the second coil are in conflict, magnetic saturation of the magnetic core is less likely to occur, and the composite reactor according to the present invention is achieved. Sufficiently functions as a magnetically coupled reactor.

請求項2の発明によれば、各コイルの周囲に発生する磁束の打ち消し合い効果をさらに高めることができ、漏れ磁束をより低減できる。   According to the invention of claim 2, the effect of canceling out magnetic flux generated around each coil can be further enhanced, and the leakage magnetic flux can be further reduced.

請求項3の発明によれば、磁気結合型リアクトルとして十分に機能する。   According to invention of Claim 3, it fully functions as a magnetic coupling type reactor.

請求項4の発明によれば、各コイルの周囲に発生する磁束の打ち消し合い効果をさらに高めることができ、漏れ磁束をより低減できる。   According to invention of Claim 4, the cancellation effect of the magnetic flux which generate | occur | produces around each coil can further be heightened, and a leakage magnetic flux can be reduced more.

請求項5の発明によれば、各巻線中心軸が同一平面上に含まれるため、各コイルの各巻線部の巻き数や磁性コアの寸法等の設計を容易に行うことができる。   According to the invention of claim 5, since each winding central axis is included on the same plane, the number of turns of each winding part of each coil, the size of the magnetic core, and the like can be easily designed.

請求項6の発明によれば、各巻線中心軸が同一平面上になくても、互いの磁束の少なくとも一部を打ち消し合うため、漏れ磁束を低減できる。   According to the sixth aspect of the present invention, even if the winding central axes are not on the same plane, at least part of the mutual magnetic flux cancels each other, so that the leakage magnetic flux can be reduced.

請求項7の発明によれば、各巻線中心軸が同一平面上になくても、互いの磁束の少なくとも一部を打ち消し合うため、漏れ磁束を低減できる。   According to the seventh aspect of the present invention, even if the winding central axes are not on the same plane, at least a part of the mutual magnetic flux cancels out, so that the leakage magnetic flux can be reduced.

請求項8の発明によれば、各コア部に形成される磁束が等しいため、漏れ磁束を低減できる。   According to invention of Claim 8, since the magnetic flux formed in each core part is equal, a leakage magnetic flux can be reduced.

請求項9の発明によれば、各コア部に形成される磁路の形状が共通であるため、各コイルの周囲に発生する磁束が互いに均衡し、漏れ磁束を効率的に低減できる。   According to invention of Claim 9, since the shape of the magnetic path formed in each core part is common, the magnetic flux which generate | occur | produces around each coil balances, and a leakage magnetic flux can be reduced efficiently.

請求項10の発明によれば、一体化されていない各コア部にコイルの巻線を巻回した後にこれら2つのコア部を組み合わせることで、容易に本発明に係る複合型リアクトルを製造することができる。   According to the invention of claim 10, the composite reactor according to the present invention can be easily manufactured by combining the two core portions after winding the coil winding around the unintegrated core portions. Can do.

本発明に係る複合型リアクトルを適用可能な2相インターリーブ型のDC/DCコンバータの一例を示す回路図である。1 is a circuit diagram showing an example of a two-phase interleaved DC / DC converter to which a composite reactor according to the present invention can be applied. 図1に示すDC/DCコンバータにおける各スイッチ部のスイッチング制御に応じた電流変化の一例を示すグラフである。2 is a graph showing an example of a current change according to switching control of each switch unit in the DC / DC converter shown in FIG. 1. 第1実施形態の複合型リアクトルを模式的に示す図である。It is a figure which shows typically the composite type reactor of 1st Embodiment. 第1実施形態の複合型リアクトルの各コイルの巻線部の分割巻き構成を説明する分解斜視図である。It is a disassembled perspective view explaining the division | segmentation winding structure of the coil | winding part of each coil of the composite reactor of 1st Embodiment. 第1実施形態の複合型リアクトルにおいて、一方のコイルと第1コア部とから構成されたリアクトルの周囲に発生する磁束の一部を示す図である。In the composite reactor of 1st Embodiment, it is a figure which shows a part of magnetic flux which generate | occur | produces around the reactor comprised from one coil and the 1st core part. 第1実施形態の複合型リアクトルの周囲に発生する漏れ磁束の分布の一例を示す図である。It is a figure which shows an example of distribution of the leakage magnetic flux which generate | occur | produces around the composite type reactor of 1st Embodiment. 従来の複合型リアクトルの一例を模式的に示す図である。It is a figure which shows typically an example of the conventional composite reactor. 図7の複合型リアクトルの周囲に発生する漏れ磁束の分布を示す図である。It is a figure which shows distribution of the leakage magnetic flux which generate | occur | produces around the composite type reactor of FIG. 第2実施形態の複合型リアクトルを模式的に示す図である。It is a figure which shows typically the composite type reactor of 2nd Embodiment. 第2実施形態の複合型リアクトルの他の例を模式的に示す図である。It is a figure which shows typically the other example of the composite type reactor of 2nd Embodiment. 他の実施形態の複合型リアクトルを模式的に示す図である。It is a figure which shows typically the composite type reactor of other embodiment. 他の実施形態の複合型リアクトルを模式的に示す斜視図である。It is a perspective view which shows typically the composite type reactor of other embodiment. 他の実施形態の複合型リアクトルを模式的に示す斜視図である。It is a perspective view which shows typically the composite type reactor of other embodiment.

以下、本発明に係る複合型リアクトルの実施形態を説明する。   Hereinafter, embodiments of the composite reactor according to the present invention will be described.

図1は、本発明に係る複合型リアクトルを適用可能な2相インターリーブ型のDC/DCコンバータの一例を示す回路図である。図1に示す2相インターリーブ型のDC/DCコンバータは、平滑コンデンサC1と、2つのコイル2,3を有する複合型リアクトル1と、スイッチ部SW1,SW2,SW3,SW4と、平滑コンデンサC2とを備える。当該DC/DCコンバータは、平滑コンデンサC1側の電圧V1を入力電圧とし、平滑コンデンサC2側の電圧V2を出力電圧として作動する場合、入力電圧V1を昇圧する。逆に、平滑コンデンサC2側の電圧V2を入力電圧とし、平滑コンデンサC1側の電圧V1を出力電圧として作動する場合、当該DC/DCコンバータは、入力電圧V2を降圧する。   FIG. 1 is a circuit diagram showing an example of a two-phase interleaved DC / DC converter to which a composite reactor according to the present invention can be applied. The two-phase interleaved DC / DC converter shown in FIG. 1 includes a smoothing capacitor C1, a composite reactor 1 having two coils 2 and 3, a switch unit SW1, SW2, SW3 and SW4, and a smoothing capacitor C2. Prepare. When the DC / DC converter operates with the voltage V1 on the smoothing capacitor C1 side as an input voltage and the voltage V2 on the smoothing capacitor C2 side as an output voltage, the DC / DC converter boosts the input voltage V1. Conversely, when the voltage V2 on the smoothing capacitor C2 side is used as the input voltage and the voltage V1 on the smoothing capacitor C1 side is used as the output voltage, the DC / DC converter steps down the input voltage V2.

複合型リアクトル1のコイル2にはスイッチ部SW1,SW2が接続され、複合型リアクトル1のコイル3にはスイッチ部SW3,SW4が接続されている。スイッチ部SW1,SW2,SW3,SW4は、それぞれIGBT(Insulated Gate Bipolar Transistor
)等のスイッチング素子と、このスイッチング素子に並列接続された還流ダイオードとを有する。
Switch portions SW1 and SW2 are connected to the coil 2 of the composite reactor 1, and switch portions SW3 and SW4 are connected to the coil 3 of the composite reactor 1. The switch units SW1, SW2, SW3, SW4 are respectively IGBTs (Insulated Gate Bipolar Transistors).
) And a free-wheeling diode connected in parallel to the switching element.

スイッチ部SW1〜SW4の各スイッチング素子は、図示しないスイッチング制御部からの信号によってオンオフ制御される。但し、スイッチング制御部は、スイッチ部SW1のスイッチング素子をオン制御する際には、スイッチ部SW2のスイッチング素子をオフ制御し、逆に、スイッチ部SW1のスイッチング素子をオフ制御する際には、スイッチ部SW2のスイッチング素子をオン制御する。同様に、スイッチング制御部は、スイッチ部SW3のスイッチング素子をオン制御する際には、スイッチ部SW4のスイッチング素子をオフ制御し、逆に、スイッチ部SW3のスイッチング素子をオフ制御する際には、スイッチ部SW4のスイッチング素子をオン制御する。   Each switching element of the switch units SW1 to SW4 is on / off controlled by a signal from a switching control unit (not shown). However, the switching control unit turns off the switching element of the switch unit SW2 when turning on the switching element of the switch unit SW1, and conversely, when switching off the switching element of the switch unit SW1, The switching element of the unit SW2 is turned on. Similarly, when the switching control unit switches on the switching element of the switch unit SW3, the switching control unit controls off of the switching unit of the switch unit SW4, and conversely, when switching off the switching element of the switch unit SW3, The switching element of the switch unit SW4 is turned on.

図2は、図1に示したDC/DCコンバータにおけるスイッチ部SW1〜SW4のスイッチング制御に応じた電流変化の一例を示すグラフである。図2には、スイッチ部SW1〜SW4のスイッチング制御に応じた、複合型リアクトル1のコイル2を流れる電流I1、複合型リアクトル1のコイル3を流れる電流I2、及び電流I1,I2の合成電流Icの各変化が示される。図2に示すように、スイッチ部SW2がオン制御、スイッチ部SW1がオフ制御されると、複合型リアクトル1のコイル2を流れる電流I1は増加し、スイッチ部SW2がオフ制御、スイッチ部SW1がオン制御されると電流I1は低下する。同様に、スイッチ部SW4がオン制御、スイッチ部SW3がオフ制御されると、複合型リアクトル1のコイル3を流れる電流I2は増加し、スイッチ部SW4がオフ制御、スイッチ部SW3がオン制御されると電流I2は低下する。なお、当該電流の増減は、図2に示したスイッチ部SW2,SW4の時比率(デューティ比)と、複合型リアクトル1のインダクタンス及び結合率とに応じて異なる。   FIG. 2 is a graph illustrating an example of a current change according to switching control of the switch units SW1 to SW4 in the DC / DC converter illustrated in FIG. FIG. 2 shows a current I1 flowing through the coil 2 of the composite reactor 1, a current I2 flowing through the coil 3 of the composite reactor 1, and a combined current Ic of the currents I1 and I2 according to the switching control of the switch units SW1 to SW4. Each change is shown. As shown in FIG. 2, when the switch unit SW2 is turned on and the switch unit SW1 is turned off, the current I1 flowing through the coil 2 of the composite reactor 1 increases, the switch unit SW2 is turned off, and the switch unit SW1 is turned on. When the ON control is performed, the current I1 decreases. Similarly, when the switch unit SW4 is turned on and the switch unit SW3 is turned off, the current I2 flowing through the coil 3 of the composite reactor 1 increases, the switch unit SW4 is turned off, and the switch unit SW3 is turned on. And current I2 falls. The increase / decrease in the current differs depending on the time ratio (duty ratio) of the switch units SW2 and SW4 shown in FIG. 2 and the inductance and coupling rate of the composite reactor 1.

図2に示すように、スイッチ部SW1,SW2のスイッチング制御の1周期(Ts)と、スイッチ部SW3,SW4のスイッチング制御の1周期(Ts)とは位相が半周期(Ts/2)ずれている。その結果、電流I1と電流I2の合成電流Icは半周期(Ts/2)毎に値が増加するため、2相インターリーブ型のDC/DCコンバータは、インダクタンス値が同様の単相の場合と比較して、リプルの小さい安定した電流を出力できる。   As shown in FIG. 2, one cycle (Ts) of switching control of the switch units SW1 and SW2 and one cycle (Ts) of switching control of the switch units SW3 and SW4 are shifted in phase by a half cycle (Ts / 2). Yes. As a result, since the combined current Ic of the currents I1 and I2 increases every half cycle (Ts / 2), the two-phase interleaved DC / DC converter is compared with the single-phase type having the same inductance value. Thus, a stable current with a small ripple can be output.

なお、図1に示したDC/DCコンバータでは、コイル2とコイル3は互いに磁気結合しており、巻数比が1:1であるので、コイル3にはコイル2と同じ電圧が誘起される。また、コイル2,3の巻線の巻回方向はドットによって示される。図1に示した構成では、コイル3の巻線の端子cは電源(Vin)の正極側であり、巻回方向が異なるコイル2の巻線の端子aも電源(Vin)の正極側である。このため、スイッチ部SW2がオン制御されてコイル2に電流I1が流れる状態の時、コイル3には電流I2がコアの磁化を相殺する方向に発生する。同様に、スイッチ部SW4がオン制御されてコイル3に電流I2が流れる状態の時、コイル2には電流I1がコアの磁化を相殺する方向に発生する。   In the DC / DC converter shown in FIG. 1, the coil 2 and the coil 3 are magnetically coupled to each other and the turns ratio is 1: 1, so that the same voltage as that of the coil 2 is induced in the coil 3. The winding direction of the coils 2 and 3 is indicated by dots. In the configuration shown in FIG. 1, the terminal c of the winding of the coil 3 is on the positive side of the power source (Vin), and the terminal a of the winding of the coil 2 having a different winding direction is also on the positive side of the power source (Vin). . For this reason, when the switch part SW2 is controlled to be on and the current I1 flows through the coil 2, the current I2 is generated in the coil 3 in a direction that cancels the magnetization of the core. Similarly, when the switch unit SW4 is turned on and the current I2 flows through the coil 3, the current I1 is generated in the coil 2 in a direction that cancels the magnetization of the core.

以下、上記説明した2相インターリーブ型のDC/DCコンバータに適用可能な複合型リアクトル1の複数の実施形態について説明する。   Hereinafter, a plurality of embodiments of the composite reactor 1 applicable to the above-described two-phase interleaved DC / DC converter will be described.

(第1実施形態)
第1実施形態の複合型リアクトル10について、図3〜図6を参照して説明する。図3は、第1実施形態の複合型リアクトルを模式的に示す図である。図3に示すように、第1実施形態の複合型リアクトル10は、磁性コア11と、共通コアとしての磁性コア11に巻回される2つのコイル12,13とを備える。
(First embodiment)
The composite reactor 10 of 1st Embodiment is demonstrated with reference to FIGS. FIG. 3 is a diagram schematically illustrating the composite reactor according to the first embodiment. As shown in FIG. 3, the composite reactor 10 of the first embodiment includes a magnetic core 11 and two coils 12 and 13 wound around the magnetic core 11 as a common core.

磁性コア11は、平面視で略U字状に形成された、分割可能な同形状の第1コア部11a及び第2コア部11bを有する。なお、第1コア部11a及び第2コア部11bは、磁性材である珪素鋼板又はダストコア等を積層してそれぞれ構成される。第1コア部11aと第2コア部11bとは、各コア部の凹部がそれぞれ対向し、一方のコア部の2つの端面に他方のコア部の対向する2つの端面を重ねた状態で結合される。第1コア部11aと第2コア部11bとを結合した磁性コア11の平面視形状は、四隅の角を落とした矩形ループ状である。第1コア部11aにはコイル12の巻線が巻回され、第2コア部11bにはコイル13の巻線が巻回される。なお、磁性コア11の平面視形状は、四隅の角部を有する完全な矩形ループ状であっても良い。   The magnetic core 11 has a first core portion 11 a and a second core portion 11 b that are substantially U-shaped in plan view and can be divided and have the same shape. In addition, the 1st core part 11a and the 2nd core part 11b are each comprised by laminating | stacking the silicon steel plate or dust core etc. which are magnetic materials. The first core portion 11a and the second core portion 11b are coupled in a state in which the concave portions of the respective core portions face each other, and two opposite end surfaces of the other core portion overlap each other on two end surfaces of the one core portion. The The planar view shape of the magnetic core 11 that combines the first core portion 11a and the second core portion 11b is a rectangular loop shape with four corners dropped. The winding of the coil 12 is wound around the first core portion 11a, and the winding of the coil 13 is wound around the second core portion 11b. The planar view shape of the magnetic core 11 may be a complete rectangular loop shape having four corners.

コイル12は、第1巻線部12aと第2巻線部12bとに分割巻きされる。第1巻線部12a及び第2巻線部12bは、第1コア部11aの対向する2辺を構成する巻回部に、各巻回部の巻線中心軸Z11,Z12を中心に巻回される。図3に示す例では、第1巻線部12aの巻線は、第1コア部11aの一方の巻回部に、巻線中心軸Z11を中心に巻回される。また、第2巻線部12bの巻線は、第1コア部11aの他方の巻回部に、巻線中心軸Z12を中心に巻回される。なお、第1巻線部12a及び第2巻線部12bの各巻き数は同数である。   The coil 12 is divided and wound into a first winding portion 12a and a second winding portion 12b. The first winding portion 12a and the second winding portion 12b are wound around the winding center axes Z11 and Z12 of the winding portions around the winding portions constituting the two opposing sides of the first core portion 11a. The In the example shown in FIG. 3, the winding of the first winding portion 12a is wound around one winding portion of the first core portion 11a around the winding center axis Z11. The winding of the second winding portion 12b is wound around the winding center axis Z12 around the other winding portion of the first core portion 11a. The number of turns of the first winding part 12a and the second winding part 12b is the same.

同様に、コイル13は、第3巻線部13aと第4巻線部13bとに分割巻きされる。第3巻線部13a及び第4巻線部13bは、第2コア部11bの対向する2辺を構成する巻回部に、各巻回部の巻線中心軸Z13,Z14を中心に巻回される。図3に示す例では、第3巻線部13aの巻線は、第2コア部11bの一方の巻回部に、巻線中心軸Z13を中心に巻回される。また、第4巻線部13bの巻線は、第2コア部11bの他方の巻回部に、巻線中心軸Z14を中心に巻回される。なお、第3巻線部13a及び第4巻線部13bの各巻き数は同数である。   Similarly, the coil 13 is divided and wound into a third winding portion 13a and a fourth winding portion 13b. The third winding portion 13a and the fourth winding portion 13b are wound around the winding center axes Z13 and Z14 of the winding portions around the winding portions constituting the two opposing sides of the second core portion 11b. The In the example shown in FIG. 3, the winding of the third winding portion 13a is wound around one winding portion of the second core portion 11b around the winding center axis Z13. The winding of the fourth winding portion 13b is wound around the winding center axis Z14 around the other winding portion of the second core portion 11b. The number of turns of the third winding portion 13a and the fourth winding portion 13b is the same.

なお、本実施形態の磁性コア11によれば、第1コア部11aの一方の巻回部の巻線中心軸Z11と、第2コア部11bの一方の巻回部の巻線中心軸Z13は共通し、第1コア部11aの他方の巻回部の巻線中心軸Z12と、第2コア部11bの他方の巻回部の巻線中心軸Z14は共通する。また、巻線中心軸Z11と巻線中心軸Z12は平行であり、巻線中心軸Z13と巻線中心軸Z14は平行である。また、巻線中心軸Z11〜Z14は全て同一平面上に含まれる。   According to the magnetic core 11 of the present embodiment, the winding center axis Z11 of one winding portion of the first core portion 11a and the winding center axis Z13 of one winding portion of the second core portion 11b are In common, the winding center axis Z12 of the other winding part of the first core part 11a and the winding center axis Z14 of the other winding part of the second core part 11b are common. The winding center axis Z11 and the winding center axis Z12 are parallel, and the winding center axis Z13 and the winding center axis Z14 are parallel. The winding center axes Z11 to Z14 are all included on the same plane.

図4は、第1実施形態の複合型リアクトル10の各コイルの巻線部の分割巻き構成を説明する分解斜視図である。図4に示す端子aはコイル12の巻線の始点を示し、端子bはコイル12の巻線の終点を示す。端子aは、コイル12の第1巻線部12aの始点でもあり、端子bは、コイル12の第2巻線部12bの終点でもある。なお、端子a,bは、図1に示した端子a,bの関係と同様である。また、図4に示す端子cはコイル13の巻線の始点を示し、端子dはコイル13の巻線の終点を示す。端子cは、コイル13の第3巻線部13aの始点でもあり、端子dは、コイル13の第4巻線部13bの終点でもある。なお、端子c,dは、図1に示した端子c,dの関係と同様である。   FIG. 4 is an exploded perspective view illustrating a split winding configuration of the winding portion of each coil of the composite reactor 10 of the first embodiment. 4 indicates the starting point of the winding of the coil 12, and the terminal b indicates the end of the winding of the coil 12. In FIG. The terminal a is also the starting point of the first winding part 12a of the coil 12, and the terminal b is also the end point of the second winding part 12b of the coil 12. The terminals a and b are the same as the relationship between the terminals a and b shown in FIG. 4 indicates the starting point of the winding of the coil 13, and the terminal d indicates the end of the winding of the coil 13. The terminal c is also the starting point of the third winding part 13 a of the coil 13, and the terminal d is also the end point of the fourth winding part 13 b of the coil 13. The terminals c and d are the same as the relationship between the terminals c and d shown in FIG.

コイル12の巻線は、第1コア部11aの一方の巻回部に、巻線中心軸Z11と平行な図4に示す矢印A方向に見て反時計回りに巻回されて、第1巻線部12aを構成した後、第1コア部11aの他方の巻回部側に案内され、当該他方の巻回部に、巻線中心軸Z12とも平行な矢印A方向に見て時計回りに巻回されて、第2巻線部12bを構成する。また、コイル13の巻線は、第2コア部11bの一方の巻回部に、巻線中心軸Z13と平行な矢印A方向に見て時計回りに巻回されて、第3巻線部13aを構成した後、第2コア部11bの他方の巻回部側に案内され、当該他方の巻回部に、巻線中心軸Z14とも平行な矢印A方向に見て反時計回りに巻回されて、第4巻線部13bを構成する。したがって、第1巻線部12aによる第1コア部11aにおける磁束の向きは、第3巻線部13aによる第2コア部11bにおける磁束の向きに相反する。同様に、第2巻線部12bによる第1コア部11aにおける磁束の向きは、第4巻線部13bによる第2コア部11bにおける磁束の向きに相反する。   The winding of the coil 12 is wound around one winding portion of the first core portion 11a counterclockwise when viewed in the direction of arrow A shown in FIG. 4 parallel to the winding center axis Z11. After configuring the wire portion 12a, the wire portion 12a is guided to the other winding portion side of the first core portion 11a, and is wound around the other winding portion in a clockwise direction when viewed in the arrow A direction parallel to the winding center axis Z12. The second winding portion 12b is configured by being rotated. Further, the winding of the coil 13 is wound around one winding portion of the second core portion 11b in a clockwise direction when viewed in the direction of arrow A parallel to the winding center axis Z13, and the third winding portion 13a. After being configured, the second core portion 11b is guided to the other winding portion side, and is wound around the other winding portion counterclockwise when viewed in the direction of arrow A parallel to the winding center axis Z14. Thus, the fourth winding portion 13b is configured. Therefore, the direction of the magnetic flux in the first core portion 11a by the first winding portion 12a is opposite to the direction of the magnetic flux in the second core portion 11b by the third winding portion 13a. Similarly, the direction of the magnetic flux in the first core portion 11a by the second winding portion 12b is opposite to the direction of the magnetic flux in the second core portion 11b by the fourth winding portion 13b.

また、第1コア部11aの形状と第2コア部11bの形状が等しく、各コア部には結合面を中心にコイル12,13が対称に配設されているため、コイル12により生じる磁束の第1コア部11aでの磁路MP2と、コイル13により生じる磁束の第2コア部11bでの磁路MP3とは共通の矩形形状を有し、2つの磁路MP2,MP3の磁路長は等しい。   Moreover, since the shape of the 1st core part 11a and the shape of the 2nd core part 11b are equal, and the coils 12 and 13 are symmetrically arrange | positioned centering | focusing on the coupling surface in each core part, the magnetic flux produced by the coil 12 is the same. The magnetic path MP2 in the first core portion 11a and the magnetic path MP3 in the second core portion 11b of the magnetic flux generated by the coil 13 have a common rectangular shape, and the magnetic path lengths of the two magnetic paths MP2 and MP3 are equal.

図5は、第1実施形態の複合型リアクトル10において、コイル12と第1コア部11aとから構成されたリアクトルの周囲に発生する磁束の一部を示す図である。コイル12の第1巻線部12a及び第2巻線部12bは、第1コア部11aの巻線中心軸Z11,Z12に沿った各巻回部に、巻線中心軸Z11,Z12を中心に同巻き数で巻回されている。また、図4に示したように、第1巻線部12aの巻線中心軸Z11を中心とした巻き方向は、第2巻線部12bの巻線中心軸Z12を中心とした巻き方向と逆向きである。したがって、図5に示すように、第1巻線部12aの周囲に発生する磁束Φ1と、第2巻線部12bの周囲に発生する磁束Φ2とは、コイル12の周囲で互いに打ち消し合うよう作用する。   FIG. 5 is a diagram illustrating a part of the magnetic flux generated around the reactor configured by the coil 12 and the first core portion 11a in the composite reactor 10 of the first embodiment. The first winding portion 12a and the second winding portion 12b of the coil 12 are the same around the winding center axes Z11 and Z12 as the winding portions along the winding center axes Z11 and Z12 of the first core portion 11a. It is wound with the number of turns. Further, as shown in FIG. 4, the winding direction around the winding center axis Z11 of the first winding portion 12a is opposite to the winding direction around the winding center axis Z12 of the second winding portion 12b. The direction. Therefore, as shown in FIG. 5, the magnetic flux Φ1 generated around the first winding portion 12a and the magnetic flux Φ2 generated around the second winding portion 12b act so as to cancel each other around the coil 12. To do.

同様に、コイル13の第3巻線部13a及び第4巻線部13bは、第2コア部11bの巻線中心軸Z13,Z14に沿った各巻回部に、巻線中心軸Z13,Z14を中心に同巻き数で巻回されている。また、図4に示したように、第3巻線部13aの巻線中心軸Z13を中心とした巻き方向は、第4巻線部13bの巻線中心軸Z14を中心とした巻き方向と逆向きである。したがって、第3巻線部13aの周囲に発生する磁束と、第4巻線部13bの周囲に発生する磁束とは、コイル13の周囲で互いに打ち消し合うよう作用する。   Similarly, the third winding portion 13a and the fourth winding portion 13b of the coil 13 are respectively provided with the winding center axes Z13 and Z14 at the winding portions along the winding center axes Z13 and Z14 of the second core portion 11b. It is wound in the center with the same number of turns. As shown in FIG. 4, the winding direction around the winding center axis Z13 of the third winding portion 13a is opposite to the winding direction around the winding center axis Z14 of the fourth winding portion 13b. The direction. Therefore, the magnetic flux generated around the third winding portion 13 a and the magnetic flux generated around the fourth winding portion 13 b act so as to cancel each other around the coil 13.

図6は、第1実施形態の複合型リアクトル10の周囲に発生する漏れ磁束の分布の一例を示す図である。上記説明したように、コイル12側では第1巻線部12aの周囲に発生する磁束と第2巻線部12bの周囲に発生する磁束とが互いに打ち消し合い、コイル13側では第3巻線部13aの周囲に発生する磁束と第4巻線部13bの周囲に発生する磁束とが互いに打ち消し合う。一方、本実施形態の複合型リアクトル10の周囲に発生する漏れ磁束の比較として、従来の複合型リアクトルの構成を図7に示し、当該複合型リアクトルの周囲に発生する漏れ磁束の分布の一例を図8に示す。図8に示すように、図7に示した複合型リアクトルの周囲の磁界には、一方のコイルからの漏れ磁束と、他方のコイルからの漏れ磁束とが含まれ、漏れ磁束は互いに打ち消し合っていない。このように、本実施形態では、本実施形態の複合型リアクトル10の周囲に発生する漏れ磁束は、各コイルの一方の巻線部による磁束が他方の巻線部による磁束を打ち消すことにより低減されている。なお、本実施形態で用いられる磁性コア11が従来のものと同様であっても、上記説明したように、各コイルの分割巻きされた各巻線部の巻き方向を上記構成とすることで、漏れ磁束の低減を実現できる。   FIG. 6 is a diagram illustrating an example of a distribution of leakage magnetic flux generated around the composite reactor 10 of the first embodiment. As described above, the magnetic flux generated around the first winding portion 12a and the magnetic flux generated around the second winding portion 12b cancel each other on the coil 12 side, and the third winding portion on the coil 13 side. The magnetic flux generated around 13a and the magnetic flux generated around the fourth winding portion 13b cancel each other. On the other hand, as a comparison of the leakage magnetic flux generated around the composite reactor 10 of the present embodiment, the configuration of the conventional composite reactor is shown in FIG. 7, and an example of the distribution of the leakage magnetic flux generated around the composite reactor is shown. As shown in FIG. As shown in FIG. 8, the magnetic field around the composite reactor shown in FIG. 7 includes the leakage magnetic flux from one coil and the leakage magnetic flux from the other coil, and the leakage magnetic fluxes cancel each other. Absent. As described above, in the present embodiment, the leakage magnetic flux generated around the composite reactor 10 of the present embodiment is reduced by the magnetic flux generated by one winding portion of each coil canceling the magnetic flux generated by the other winding portion. ing. Even if the magnetic core 11 used in the present embodiment is the same as the conventional one, as described above, the winding direction of each winding portion of each coil is configured as described above, so that leakage occurs. Reduction of magnetic flux can be realized.

また、本実施形態では、図3に示したように、第1巻線部12aによる第1コア部11aにおける磁束の向きは、第3巻線部13aによる第2コア部11bにおける磁束の向きに相反し、第2巻線部12bによる第1コア部11aにおける磁束の向きは、第4巻線部13bによる第2コア部11bにおける磁束の向きに相反している。このため、磁性コア11の磁気飽和が起こりにくくなり、本実施形態の複合型リアクトル10は、磁気結合型リアクトルとして十分に機能する。   In the present embodiment, as shown in FIG. 3, the direction of the magnetic flux in the first core portion 11a by the first winding portion 12a is the same as the direction of the magnetic flux in the second core portion 11b by the third winding portion 13a. In contrast, the direction of the magnetic flux in the first core portion 11a by the second winding portion 12b is opposite to the direction of the magnetic flux in the second core portion 11b by the fourth winding portion 13b. For this reason, the magnetic saturation of the magnetic core 11 is less likely to occur, and the composite reactor 10 of this embodiment functions sufficiently as a magnetically coupled reactor.

また、本実施形態では、磁性コア11を構成する第1コア部11a及び第2コア部11bは同形状であり、コイル12の第1巻線部12a及び第2巻線部12bの各中心軸である巻線中心軸Z11,Z12、及びコイル13の第3巻線部13a及び第4巻線部13bの各中心軸である巻線中心軸Z13,Z14は同一平面上に含まれる。また、巻線中心軸Z11と巻線中心軸Z13は共通し、巻線中心軸Z12と巻線中心軸Z14は共通する。また、巻線中心軸Z11と巻線中心軸Z12は平行であり、巻線中心軸Z13と巻線中心軸Z14は平行である。さらに、コイル12により生じる磁束の第1コア部11aでの磁路と、コイル13により生じる磁束の第2コア部11bでの磁路とは共通の形状を有し、これら2つの磁路の磁路長は等しい。したがって、各コイルの周囲に発生する磁束が互いに均衡し、本実施形態の複合型リアクトル10の周囲の漏れ磁束を効率的に低減できる。   Moreover, in this embodiment, the 1st core part 11a and the 2nd core part 11b which comprise the magnetic core 11 are the same shapes, and each center axis | shaft of the 1st winding part 12a of the coil 12, and the 2nd winding part 12b The winding center axes Z11, Z12 and the winding center axes Z13, Z14, which are the center axes of the third winding portion 13a and the fourth winding portion 13b of the coil 13, are included in the same plane. The winding center axis Z11 and the winding center axis Z13 are common, and the winding center axis Z12 and the winding center axis Z14 are common. The winding center axis Z11 and the winding center axis Z12 are parallel, and the winding center axis Z13 and the winding center axis Z14 are parallel. Further, the magnetic path of the magnetic flux generated by the coil 12 in the first core portion 11a and the magnetic path of the magnetic flux generated by the coil 13 in the second core portion 11b have a common shape, and the magnetic paths of these two magnetic paths are the same. The road length is equal. Therefore, the magnetic flux generated around each coil is balanced, and the leakage magnetic flux around the composite reactor 10 of the present embodiment can be efficiently reduced.

さらに、磁性コア11は、同形状の第1コア部11a及び第2コア部11bから構成されるため、一体化されていない各コア部にコイルの巻線を巻回した後にこれら2つのコア部を結合することで、容易に本実施形態の複合型リアクトル10を製造することができる。   Furthermore, since the magnetic core 11 is composed of the first core portion 11a and the second core portion 11b having the same shape, the two core portions are wound after winding the coil winding around each non-integrated core portion. By combining these, the composite reactor 10 of this embodiment can be easily manufactured.

(第2実施形態)
図9は、第2実施形態の複合型リアクトルを模式的に示す図である。第2実施形態の複合型リアクトル20が第1実施形態の複合型リアクトル10と異なる点は、コアの形状である。このため、第1実施形態の複合型リアクトル10と同一又は同等の構成要素には同一符号又は相当符号を付して説明を簡略化又は省略する。
(Second Embodiment)
FIG. 9 is a diagram schematically illustrating a composite reactor according to the second embodiment. The difference between the composite reactor 20 of the second embodiment and the composite reactor 10 of the first embodiment is the shape of the core. For this reason, the same code | symbol or an equivalent code | symbol is attached | subjected to the component same or equivalent to the composite reactor 10 of 1st Embodiment, and description is simplified or abbreviate | omitted.

第2実施形態の複合型リアクトル20が備える磁性コア21は、平面視で略C字状に形成された、分割可能な同形状の第1コア部21a及び第2コア部21bを有する。なお、第1コア部21a及び第2コア部21bは、磁性材である珪素鋼板又はダストコア等を積層してそれぞれ構成される。第1コア部21aと第2コア部21bとは、各コア部の凹部がそれぞれ対向し、一方のコア部の2つの端面に他方のコア部の対向する2つの端面を重ねた状態で結合される。第1コア部21aと第2コア部21bとを結合した磁性コア21の平面視形状は円環状である。なお、図10に示すように、第1コア部21aと第2コア部21bとを結合した平面視形状が楕円に近い環状の磁性コアであっても良い。   The magnetic core 21 included in the composite reactor 20 of the second embodiment includes a first core portion 21a and a second core portion 21b that are split and have the same shape and are substantially C-shaped in plan view. In addition, the 1st core part 21a and the 2nd core part 21b are each comprised by laminating | stacking the silicon steel plate or dust core etc. which are magnetic materials. The first core portion 21a and the second core portion 21b are coupled in a state in which the concave portions of the respective core portions face each other, and the two opposite end surfaces of the other core portion overlap the two end surfaces of the one core portion. The The planar view shape of the magnetic core 21 obtained by coupling the first core portion 21a and the second core portion 21b is an annular shape. In addition, as shown in FIG. 10, the cyclic | annular magnetic core in which the planar view shape which couple | bonded the 1st core part 21a and the 2nd core part 21b may be an ellipse may be sufficient.

また、第1コア部21aの形状と第2コア部21bの形状が等しく、各コア部には結合面を中心にコイル12,13が対称に配設されているため、コイル12により生じる磁束の第1コア部21aでの磁路と、コイル13により生じる磁束の第2コア部21bでの磁路とは共通の環状形状を有し、2つの磁路の磁路長は等しい。   Moreover, since the shape of the 1st core part 21a and the shape of the 2nd core part 21b are equal, and the coils 12 and 13 are symmetrically arrange | positioned centering | focusing on the coupling surface in each core part, the magnetic flux produced by the coil 12 is the same. The magnetic path in the first core portion 21a and the magnetic path in the second core portion 21b of the magnetic flux generated by the coil 13 have a common annular shape, and the magnetic path lengths of the two magnetic paths are equal.

本実施形態でも、第1の実施形態と同様に、第1コア部21aにはコイル12の巻線が分割巻きで巻回され、第2コア部21bにはコイル13の巻線が分割巻きで巻回される。コイル12の第1巻線部12a及び第2巻線部12bは、図9に示す第1コア部21aの巻線中心軸Z21,Z22に沿った各巻回部に、巻線中心軸Z21,Z22を中心に同巻き数で巻回されている。第1巻線部12aの巻線中心軸Z21を中心とした巻き方向は、第2巻線部12bの巻線中心軸Z22を中心とした巻き方向と逆向きである。したがって、第1巻線部12aの周囲に発生する磁束と、第2巻線部12bの周囲に発生する磁束とは、コイル12の周囲で互いに打ち消し合うよう作用する。   Also in this embodiment, as in the first embodiment, the winding of the coil 12 is wound on the first core portion 21a by split winding, and the winding of the coil 13 is split on the second core portion 21b. It is wound. The first winding portion 12a and the second winding portion 12b of the coil 12 are wound around the winding center axes Z21, Z22 along the winding center axes Z21, Z22 of the first core portion 21a shown in FIG. Is wound at the same number of turns. The winding direction around the winding center axis Z21 of the first winding portion 12a is opposite to the winding direction around the winding center axis Z22 of the second winding portion 12b. Therefore, the magnetic flux generated around the first winding portion 12 a and the magnetic flux generated around the second winding portion 12 b act so as to cancel each other around the coil 12.

同様に、コイル13の第3巻線部13a及び第4巻線部13bは、図9に示す第2コア部21bの巻線中心軸Z23,Z24に沿った各巻回部に、巻線中心軸Z23,Z24を中心に同巻き数で巻回されている。また、第3巻線部13aの巻線中心軸Z23を中心とした巻き方向は、第4巻線部13bの巻線中心軸Z24を中心とした巻き方向と逆向きである。したがって、第3巻線部13aの周囲に発生する磁束と、第4巻線部13bの周囲に発生する磁束とは、コイル13の周囲で互いに打ち消し合うよう作用する。   Similarly, the third winding portion 13a and the fourth winding portion 13b of the coil 13 are wound around the winding center axis along the winding center axes Z23 and Z24 of the second core portion 21b shown in FIG. It is wound with the same number of turns around Z23 and Z24. The winding direction around the winding center axis Z23 of the third winding portion 13a is opposite to the winding direction around the winding center axis Z24 of the fourth winding portion 13b. Therefore, the magnetic flux generated around the third winding portion 13 a and the magnetic flux generated around the fourth winding portion 13 b act so as to cancel each other around the coil 13.

したがって、コイル12側では第1巻線部12aの周囲に発生する磁束と第2巻線部12bの周囲に発生する磁束とが互いに打ち消し合い、コイル13側では第3巻線部13aの周囲に発生する磁束と第4巻線部13bの周囲に発生する磁束とが互いに打ち消し合うため、第2実施形態の複合型リアクトル20の周囲に発生する漏れ磁束は小さい。   Therefore, the magnetic flux generated around the first winding portion 12a and the magnetic flux generated around the second winding portion 12b cancel each other on the coil 12 side, and around the third winding portion 13a on the coil 13 side. Since the generated magnetic flux and the magnetic flux generated around the fourth winding portion 13b cancel each other, the leakage magnetic flux generated around the composite reactor 20 of the second embodiment is small.

また、本実施形態では、図9に示したように、コイル12の第1巻線部12aによる第1コア部21aにおける磁束の向きは、コイル13の第3巻線部13aによる第2コア部21bにおける磁束の向きに略相反する。同様に、コイル12の第2巻線部12bによる第1コア部21aにおける磁束の向きは、コイル13の第4巻線部13bによる第2コア部21bにおける磁束の向きに略相反する。このため、磁性コア21の磁気飽和が起こりにくくなり、本実施形態の複合型リアクトル20は、磁気結合型リアクトルとして十分に機能することができる。   In the present embodiment, as shown in FIG. 9, the direction of the magnetic flux in the first core portion 21 a by the first winding portion 12 a of the coil 12 is the second core portion by the third winding portion 13 a of the coil 13. This is almost opposite to the direction of the magnetic flux in 21b. Similarly, the direction of the magnetic flux in the first core portion 21a by the second winding portion 12b of the coil 12 is substantially opposite to the direction of the magnetic flux in the second core portion 21b by the fourth winding portion 13b of the coil 13. For this reason, magnetic saturation of the magnetic core 21 is less likely to occur, and the composite reactor 20 of the present embodiment can sufficiently function as a magnetically coupled reactor.

また、本実施形態では、図9に示すように、磁性コア21を構成する第1コア部21a及び第2コア部21bは同形状であり、第1コア部21aの各巻回部の巻線中心軸Z21,Z22及び第2コア部21bの各巻回部の巻線中心軸Z23,Z24は全て同一平面上に含まれる。さらに、コイル12により生じる磁束の第1コア部21aでの磁路と、コイル13により生じる磁束の第2コア部21bでの磁路とは共通の形状を有し、これら2つの磁路の磁路長は等しい。したがって、各コイルの周囲に発生する磁束が互いに均衡し、本実施形態の複合型リアクトル10の周囲の漏れ磁束を効率的に低減できる。   Moreover, in this embodiment, as shown in FIG. 9, the 1st core part 21a and the 2nd core part 21b which comprise the magnetic core 21 are the same shapes, and the winding center of each winding part of the 1st core part 21a The axes Z21 and Z22 and the winding center axes Z23 and Z24 of the winding portions of the second core portion 21b are all included in the same plane. Furthermore, the magnetic path of the magnetic flux generated by the coil 12 in the first core portion 21a and the magnetic path of the magnetic flux generated by the coil 13 in the second core portion 21b have a common shape, and the magnetic paths of these two magnetic paths are the same. The road length is equal. Therefore, the magnetic flux generated around each coil is balanced, and the leakage magnetic flux around the composite reactor 10 of the present embodiment can be efficiently reduced.

さらに、磁性コア21は、同形状の第1コア部21a及び第2コア部21bから構成されるため、一体化されていない各コア部にコイルの巻線を巻回した後にこれら2つのコア部を結合することで、容易に本実施形態の複合型リアクトル20を製造することができる。   Further, since the magnetic core 21 is composed of the first core portion 21a and the second core portion 21b having the same shape, the two core portions are wound after winding the coil winding around each unintegrated core portion. By combining these, the composite reactor 20 of the present embodiment can be easily manufactured.

上記説明した第1,第2実施形態の複合型リアクトルでは、磁性コア11,21を構成する2つのコア部がそれぞれ同じ形状であるが、図11に示すように、端面の面積及び形状が異なる2つのコア部31a,31bを結合して矩形ループ状又は環状の磁性コア31を構成しても良い。この場合、一方のコア部の2つの端面に他方のコア部の対向する2つの端面を重ねた状態で、各端面が完全には重ならず、端面の一部が重なっていれば良い。当該構成であっても、各コイル12,13において、一方の巻線部の周囲に発生する磁束と、他方の巻線部の周囲に発生する磁束とが互いに打ち消し合うよう作用し、磁気結合型リアクトルとして十分に機能する。   In the composite reactors of the first and second embodiments described above, the two core parts constituting the magnetic cores 11 and 21 have the same shape, but the area and shape of the end faces are different as shown in FIG. The two core portions 31a and 31b may be combined to form a rectangular loop-shaped or annular magnetic core 31. In this case, it is only necessary that the two end surfaces of the one core portion overlap the two opposite end surfaces of the other core portion so that the respective end surfaces do not completely overlap and a part of the end surface overlaps. Even in this configuration, in each of the coils 12 and 13, the magnetic flux generated around one winding portion and the magnetic flux generated around the other winding portion act so as to cancel each other, and the magnetic coupling type Works well as a reactor.

また、図12に示すように、各コア部41a,41bの一方の巻回部と他方の巻回部との間に段差が設けられた構成であっても良い。この場合、第1コア部41aの一方の巻線部の巻線中心軸Z41及び第2コア部41bの一方の巻線部の巻線中心軸Z43を含む平面と、第1コア部41aの他方の巻線部の巻線中心軸Z42及び第2コア部41bの他方の巻線部の巻線中心軸Z44を含む平面とは異なる平面である。当該構成であっても、各コイル12,13において、一方の巻線部の周囲に発生する磁束と、他方の巻線部の周囲に発生する磁束とが互いに打ち消し合うよう作用、磁気結合型リアクトルとして十分に機能する。   Moreover, as shown in FIG. 12, the structure by which the level | step difference was provided between one winding part of each core part 41a, 41b and the other winding part may be sufficient. In this case, the plane including the winding center axis Z41 of one winding portion of the first core portion 41a and the winding center axis Z43 of one winding portion of the second core portion 41b, and the other of the first core portion 41a This is a plane different from the plane including the winding center axis Z42 of the winding portion and the winding center axis Z44 of the other winding portion of the second core portion 41b. Even in this configuration, in each of the coils 12 and 13, the magnetic flux generated around one winding portion and the magnetic flux generated around the other winding portion cancel each other, and the magnetically coupled reactor As well as it works.

また、図13に示すように、磁性コア51を構成する第1コア部51a及び第2コア部51bは同じ形状であるが、第1コア部51aに対して第2コア部51bをずらして、第1コア部51aの巻線中心軸Z51,Z52と第2コア部51bの巻線中心軸Z53,Z54とが互いにずれた状態で第1コア部51aと第2コア部51bとを結合しても良い。この場合、第1コア部51aの一方の巻線部の巻線中心軸Z51及び他方の巻線部の巻線中心軸Z52を含む平面と、第2コア部51bの一方の巻線部の巻線中心軸Z53及び他方の巻線部の巻線中心軸Z54を含む平面とは異なる平面である。当該構成であっても、各コイル12,13において、一方の巻線部の周囲に発生する磁束と、他方の巻線部の周囲に発生する磁束とが互いに打ち消し合うよう作用、磁気結合型リアクトルとして十分に機能する。   Further, as shown in FIG. 13, the first core part 51a and the second core part 51b constituting the magnetic core 51 have the same shape, but the second core part 51b is shifted with respect to the first core part 51a, The first core portion 51a and the second core portion 51b are coupled with the winding center axes Z51 and Z52 of the first core portion 51a and the winding center axes Z53 and Z54 of the second core portion 51b being shifted from each other. Also good. In this case, the plane including the winding center axis Z51 of one winding portion of the first core portion 51a and the winding center axis Z52 of the other winding portion, and the winding of one winding portion of the second core portion 51b. The plane is different from the plane including the line center axis Z53 and the winding center axis Z54 of the other winding portion. Even in this configuration, in each of the coils 12 and 13, the magnetic flux generated around one winding portion and the magnetic flux generated around the other winding portion cancel each other, and the magnetically coupled reactor As well as it works.

さらに、上記説明した磁性コアを構成する一方のコア部と他方のコア部との間にはエアギャップが設けられても良い。エアギャップを設けた構成であれば、エアギャップがない構成と比較して、コイル12の第1巻線部12aとコイル13の第3巻線部13aの間隔及びコイル12の第2巻線部12bとコイル13の第4巻線部13bの間隔を狭くできる。また、磁性コアの各コア部の巻線中心軸に垂直な断面形状は矩形であっても円形であっても良い。   Furthermore, an air gap may be provided between one core part and the other core part constituting the magnetic core described above. If it is the structure which provided the air gap, compared with the structure without an air gap, the space | interval of the 1st winding part 12a of the coil 12, and the 3rd winding part 13a of the coil 13, and the 2nd winding part of the coil 12 The distance between 12b and the fourth winding portion 13b of the coil 13 can be narrowed. The cross-sectional shape perpendicular to the winding central axis of each core portion of the magnetic core may be rectangular or circular.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。例えば、本発明に係る複合型リアクトルは、図1に示した昇降圧を行うDC/DCコンバータ以外に、昇圧のみを行うDC/DCコンバータ又は降圧のみを行うDC/DCコンバータにも適用可能である。   In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably. For example, the composite reactor according to the present invention is applicable to a DC / DC converter that performs only step-up or a DC / DC converter that performs only step-down, in addition to the DC / DC converter that performs step-up / step-down shown in FIG. .

10,20 複合型リアクトル
11,21,31,41,51 磁性コア
11a,21a,31a,41a,51a 第1コア部
11b,21b,31b,41b,51b 第2コア部
12 コイル
12a 第1巻線部
12b 第2巻線部
13 コイル
13a 第3巻線部
13b 第4巻線部
MP2,MP3 磁路
Z11〜Z14,Z21〜Z24,Z41〜Z44,Z51〜Z54 巻線中心軸
10, 20 Composite reactor 11, 21, 31, 41, 51 Magnetic cores 11a, 21a, 31a, 41a, 51a First core part 11b, 21b, 31b, 41b, 51b Second core part 12 Coil 12a First winding Part 12b Second winding part 13 Coil 13a Third winding part 13b Fourth winding part MP2, MP3 Magnetic paths Z11-Z14, Z21-Z24, Z41-Z44, Z51-Z54 Winding central axis

Claims (10)

磁性コアと、該磁性コアを共通コアとして前記磁性コアに配設される第1コイル及び第2コイルと、を備える複合型リアクトルであって、
前記磁性コアは、前記第1コイルの巻線が巻回される第1コア部と、前記第2コイルの巻線が巻回される第2コア部と、を有し、
前記第1コイルは、異なる巻線中心軸上に分割巻きされた第1巻線部及び第2巻線部を有し、
前記第1巻線部及び前記第2巻線部は、前記第1コイルの周囲で鎖交する磁束が互いに打ち消し合う向きにそれぞれ配設され、
前記第2コイルは、異なる巻線中心軸上に分割巻きされた第3巻線部及び第4巻線部を有し、
前記第3巻線部及び前記第4巻線部は、前記第2コイルの周囲で鎖交する磁束が互いに打ち消し合う向きにそれぞれ配設され、
前記第1巻線部による前記第1コア部における磁束の向きは、前記第3巻線部による前記第2コア部における磁束の向きに略相反し、
前記第2巻線部による前記第1コア部における磁束の向きは、前記第4巻線部による前記第2コア部における磁束の向きに略相反する、複合型リアクトル。
A composite reactor comprising a magnetic core, and a first coil and a second coil disposed on the magnetic core using the magnetic core as a common core,
The magnetic core has a first core part around which the winding of the first coil is wound, and a second core part around which the winding of the second coil is wound,
The first coil has a first winding portion and a second winding portion that are separately wound on different winding center axes,
The first winding part and the second winding part are respectively arranged in directions in which magnetic fluxes interlinking around the first coil cancel each other,
The second coil has a third winding portion and a fourth winding portion that are separately wound on different winding center axes,
The third winding portion and the fourth winding portion are respectively arranged in directions in which magnetic fluxes interlinking around the second coil cancel each other,
The direction of the magnetic flux in the first core portion by the first winding portion is substantially opposite to the direction of the magnetic flux in the second core portion by the third winding portion,
The composite reactor in which the direction of the magnetic flux in the first core portion by the second winding portion is substantially opposite to the direction of the magnetic flux in the second core portion by the fourth winding portion.
請求項1に記載の複合型リアクトルであって、
前記第1巻線部の巻線中心軸と前記第3巻線部の巻線中心軸とが共通し、かつ、前記第2巻線部の巻線中心軸と前記第4巻線部の巻線中心軸とが共通する、複合型リアクトル。
The composite reactor according to claim 1,
The winding central axis of the first winding part and the winding central axis of the third winding part are common, and the winding central axis of the second winding part and the winding of the fourth winding part A compound reactor with a common line center axis.
請求項1に記載の複合型リアクトルであって、
前記第1コア部の前記第2コア部に対向する端面と、前記第2コア部の前記第1コア部に対向する端面とが少なくとも一部重なる、複合型リアクトル。
The composite reactor according to claim 1,
A composite reactor in which an end surface of the first core portion facing the second core portion and an end surface of the second core portion facing the first core portion at least partially overlap each other.
請求項1から3のいずれか一項に記載の複合型リアクトルであって、
前記第1巻線部の巻線中心軸と前記第2巻線部の巻線中心軸とが互いに平行であり、
前記第3巻線部の巻線中心軸と前記第4巻線部の巻線中心軸とが互いに平行である、複合型リアクトル。
The composite reactor according to any one of claims 1 to 3,
The winding central axis of the first winding portion and the winding central axis of the second winding portion are parallel to each other;
A composite reactor in which a winding central axis of the third winding portion and a winding central axis of the fourth winding portion are parallel to each other.
請求項1から4のいずれか一項に記載の複合型リアクトルであって、
前記第1巻線部、前記第2巻線部、前記第3巻線部及び前記第4巻線部の各巻線中心軸が同一平面上に含まれる、複合型リアクトル。
The composite reactor according to any one of claims 1 to 4,
A composite reactor in which the winding central axes of the first winding portion, the second winding portion, the third winding portion, and the fourth winding portion are included on the same plane.
請求項1から4のいずれか一項に記載の複合型リアクトルであって、
前記第1巻線部及び前記第3巻線部の各巻線中心軸を含む第1平面と、前記第2巻線部及び前記第4巻線部の各巻線中心軸を含む第2平面とは異なる平面である、複合型リアクトル。
The composite reactor according to any one of claims 1 to 4,
The first plane including each winding center axis of the first winding part and the third winding part, and the second plane including each winding center axis of the second winding part and the fourth winding part A complex reactor that is a different plane.
請求項1から4のいずれか一項に記載の複合型リアクトルであって、
前記第1巻線部及び前記第2巻線部の各巻線中心軸を含む第1平面と、前記第3巻線部及び前記第4巻線部の各巻線中心軸を含む第2平面とは異なる平面である、複合型リアクトル。
The composite reactor according to any one of claims 1 to 4,
The first plane including each winding center axis of the first winding portion and the second winding portion, and the second plane including each winding center axis of the third winding portion and the fourth winding portion. A complex reactor that is a different plane.
請求項1から7のいずれか一項に記載の複合型リアクトルであって、
前記第1コイルにより生じる磁束の前記磁性コアでの磁路長と、前記第2コイルにより生じる磁束の前記磁性コアでの磁路長とは等しい、複合型リアクトル。
A composite reactor according to any one of claims 1 to 7,
A composite reactor in which a magnetic path length of the magnetic flux generated by the first coil in the magnetic core is equal to a magnetic path length of the magnetic flux generated by the second coil in the magnetic core.
請求項8に記載の複合型リアクトルであって、
前記第1コイルにより生じる磁束の前記磁性コアでの磁路及び前記第2コイルにより生じる磁束の前記磁性コアでの磁路は、環状又は矩形ループ状の共通形状を有する、複合型リアクトル。
The composite reactor according to claim 8,
The magnetic path in the magnetic core of the magnetic flux generated by the first coil and the magnetic path in the magnetic core of the magnetic flux generated by the second coil have a common shape of an annular or rectangular loop shape.
請求項1から9のいずれか一項に記載の複合型リアクトルであって、
前記第1コア部及び前記第2コア部はそれぞれ同形状に形成され、前記第1コア部と前記第2コア部とを組み合わせて前記磁性コアを構成する、複合型リアクトル。
The composite reactor according to any one of claims 1 to 9,
The first core portion and the second core portion are formed in the same shape, and the magnetic core is configured by combining the first core portion and the second core portion.
JP2017250179A 2017-12-26 2017-12-26 Compound type reactor Pending JP2018078320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250179A JP2018078320A (en) 2017-12-26 2017-12-26 Compound type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250179A JP2018078320A (en) 2017-12-26 2017-12-26 Compound type reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014195631A Division JP6619926B2 (en) 2014-09-25 2014-09-25 Combined reactor

Publications (1)

Publication Number Publication Date
JP2018078320A true JP2018078320A (en) 2018-05-17

Family

ID=62150706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250179A Pending JP2018078320A (en) 2017-12-26 2017-12-26 Compound type reactor

Country Status (1)

Country Link
JP (1) JP2018078320A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283363A (en) * 1993-03-29 1994-10-07 Nippon Steel Corp Inductor
JP2012015350A (en) * 2010-07-01 2012-01-19 Denso Corp Reactor
JP2014127637A (en) * 2012-12-27 2014-07-07 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283363A (en) * 1993-03-29 1994-10-07 Nippon Steel Corp Inductor
JP2012015350A (en) * 2010-07-01 2012-01-19 Denso Corp Reactor
JP2014127637A (en) * 2012-12-27 2014-07-07 Auto Network Gijutsu Kenkyusho:Kk Reactor, converter and power conversion device

Similar Documents

Publication Publication Date Title
JP6619926B2 (en) Combined reactor
US10211745B2 (en) Resonant LLC converter with a multi-leg transformer with gapped center leg
EP2461334B1 (en) Inductor
US20140292455A1 (en) Reactor, Transformer, and Power Conversion Apparatus Using Same
JP7126210B2 (en) reactor, power circuit
JP2017059805A (en) Three-phase reactor with core and coil
JP2015056940A (en) Multi-phase power conversion device filter circuit and multi-phase power conversion device
JP2012054484A (en) Composite transformer
JP6305293B2 (en) Magnetically coupled reactor and power converter
US20110199175A1 (en) Inductor
US20220208425A1 (en) Integrated inductor and power module
EP2827484B1 (en) Dc-dc converter
JP2021061647A (en) Coil component and interleaving dc-dc converter using the same
JP6445810B2 (en) Interleaving choke coil
JP7142527B2 (en) Coupled inductors and switching circuits
JP6459116B2 (en) Trance
JP2018078320A (en) Compound type reactor
JP7295914B2 (en) Three-phase magnetic assembly with integral core body
JP2004288882A (en) Noise filter
JP7454604B2 (en) Control device for power converter
JP7246028B2 (en) Reactor, core material, and power supply circuit
WO2023282323A1 (en) Magnetically coupled reactor and boosting circuit
JP2020025040A (en) Coupled inductor for multi-phase converter
JP2019009177A (en) Magnetic coated wire and transformer using the same
WO2018185989A1 (en) Coil component core and coil component

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702