JP2017085839A - Electric power convertor and control method of electric power convertor - Google Patents

Electric power convertor and control method of electric power convertor Download PDF

Info

Publication number
JP2017085839A
JP2017085839A JP2015214066A JP2015214066A JP2017085839A JP 2017085839 A JP2017085839 A JP 2017085839A JP 2015214066 A JP2015214066 A JP 2015214066A JP 2015214066 A JP2015214066 A JP 2015214066A JP 2017085839 A JP2017085839 A JP 2017085839A
Authority
JP
Japan
Prior art keywords
control
circuit
conversion circuit
conversion
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015214066A
Other languages
Japanese (ja)
Other versions
JP6103557B1 (en
Inventor
秀人 馬庭
Hideto Maniwa
秀人 馬庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015214066A priority Critical patent/JP6103557B1/en
Application granted granted Critical
Publication of JP6103557B1 publication Critical patent/JP6103557B1/en
Publication of JP2017085839A publication Critical patent/JP2017085839A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electric power convertor etc. having an AC-DC conversion circuit and a DC-DC conversion circuit capable of reducing the control period of the AC-DC conversion circuit without using any expensive control circuit with larger processing capacity.SOLUTION: The electric power convertor has an AC-DC conversion circuit and a DC-DC conversion circuit which have a control period different from each other, and within a processing period of a control circuit, the calculations and control is allotted. With this, the control period can be satisfactorily reduced for a circuit a control object of which requires a shorter control period in a time-serially changing AC power like an AC-DC conversion circuit without using any expensive control circuit with larger processing capacity.SELECTED DRAWING: Figure 1

Description

この発明は、交流入力電圧を直流出力電圧へ変換する変換回路の制御速度向上を図る電力変換装置および電力変換装置の制御方法に関するものである。   The present invention relates to a power conversion device for improving the control speed of a conversion circuit that converts an AC input voltage into a DC output voltage, and a method for controlling the power conversion device.

交流電力を入力として高電圧バッテリを充電する電力変換装置は、一般的に交流入力電圧を直流出力電圧に変換する交流−直流変換回路と、この交流−直流変換回路の直流出力電圧を入力とし直流出力電圧に変換する直流−直流変換回路と、の2つの変換回路からなる。2つの変換回路を制御する構成として、マイクロプロセッサ等による1つの制御回路で行なうものがある(例えば特許文献1参照)。   A power converter for charging a high voltage battery using AC power as an input is generally an AC-DC converter circuit that converts an AC input voltage into a DC output voltage, and a DC output voltage of the AC-DC converter circuit as an input. It consists of two conversion circuits, a DC-DC conversion circuit that converts the output voltage. As a configuration for controlling the two conversion circuits, there is one which is performed by one control circuit such as a microprocessor (see, for example, Patent Document 1).

特開2015−50827号公報Japanese Patent Laying-Open No. 2015-50827

しかしながら、センサからの電圧、電流等の情報に基づいて演算,制御を実行する周期である「制御周期」は制御回路の処理能力に依存しており、特に2つ以上の変換回路がある場合等で複数の制御を1つの制御回路で制御する構成においては、制御周期の制御回路処理能力に対する依存性が高くなる。したがって制御周期を短くするために処理能力の高いより高価な制御回路を使用しなければならなかったり、制御回路の処理能力の制約により制御周期を短くできなかったり、といった課題があった。   However, the “control cycle”, which is a cycle for executing calculation and control based on information such as voltage and current from the sensor, depends on the processing capability of the control circuit, particularly when there are two or more conversion circuits. Thus, in a configuration in which a plurality of controls are controlled by a single control circuit, the dependency of the control cycle on the control circuit processing capability increases. Therefore, in order to shorten the control cycle, there is a problem that a more expensive control circuit having a high processing capability has to be used, or that the control cycle cannot be shortened due to restrictions on the processing capability of the control circuit.

この発明は、上記のような課題を解決するために成されたものであって、処理能力の高いより高価な制御回路を使用することなく、交流−直流変換回路のように制御対象が時間的に変化する交流で制御周期の早いことが好ましい変換回路に対して制御周期の短縮を図れる電力変換装置および電力変換装置の制御方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and a control target is temporally controlled like an AC-DC converter circuit without using a more expensive control circuit having a high processing capacity. It is an object of the present invention to provide a power conversion device and a method for controlling the power conversion device that can shorten the control cycle for a conversion circuit that preferably has an alternating current and a fast control cycle.

この発明は、第1の制御周期で制御され、交流入力電圧を直流出力電圧へ変換する第1の変換回路と、前記第1の制御周期と異なる第2の制御周期で制御され、直流入力電圧を直流出力電圧へ変換する第2の変換回路と、を備えた、電力変換装置等にある。   The present invention provides a first conversion circuit that is controlled in a first control cycle and converts an AC input voltage into a DC output voltage, and is controlled in a second control cycle that is different from the first control cycle. And a second conversion circuit that converts the power to a DC output voltage.

この発明では、処理能力の高いより高価な制御回路を使用することなく、交流−直流変換回路のように制御対象が時間的に変化する交流で制御周期の早いことが好ましい変換回路に対して制御周期の短縮を図れる電力変換装置および電力変換装置の制御方法を提供できる。   In this invention, without using a more expensive control circuit having a high processing capacity, it is possible to control a conversion circuit that is preferably an alternating current whose control target changes with time, such as an AC-DC conversion circuit, and that has a fast control cycle. It is possible to provide a power conversion device capable of shortening the cycle and a method for controlling the power conversion device.

この発明の実施の形態1に係わる電力変換装置の構成図である。It is a block diagram of the power converter device concerning Embodiment 1 of this invention. この発明の実施の形態1に係わる電力変換装置における2つの変換回路の制御周期が同じ場合と異なる場合での各変換回路の制御周期を比較した図である。It is the figure which compared the control period of each conversion circuit in the case where the control period of two conversion circuits in the power converter device concerning Embodiment 1 of this invention is the same, and when different. この発明の実施の形態2に係わる電力変換装置の構成図である。It is a block diagram of the power converter device concerning Embodiment 2 of this invention. この発明の実施の形態2に係わる電力変換装置における1つの制御回路と2つの制御回路とで制御する場合での各制御回路の処理周期内に対する変換回路の処理割合を比較した図である。It is the figure which compared the processing ratio of the conversion circuit with respect to the inside of the processing period of each control circuit in the case of controlling by one control circuit and two control circuits in the power converter device concerning Embodiment 2 of this invention.

この発明では、複数の制御に対して制御周期を異ならせて制御回路の処理内に各演算,制御を割り当てることにより、処理能力の高いより高価な制御部を使用することなく、交流−直流変換回路のように制御対象が時間的に変化する交流で制御周期の早いことが好ましい回路に対して制御周期の短縮を図ることができる。   In the present invention, by changing the control cycle for a plurality of controls and assigning each calculation and control within the processing of the control circuit, the AC-DC conversion can be performed without using a more expensive control unit having a high processing capacity. The control cycle can be shortened for a circuit such as a circuit in which the control target is preferably changed with time and preferably has a fast control cycle.

また、異なる制御周期での制御のうち、交流−直流変換回路のように制御対象が時間的に変化する交流で制御周期の早いことが好ましい回路に対して、例えばFPGA(Field-Programmable Gate Array)等のような処理速度の速いハードウェア制御回路で処理し、直流−直流変換回路のように制御対象が直流で時間的にあまり変化がなく、制御周期が交流を制御する回路より早くしなくてよいものに対してはソフトウェアに従って処理を行うマイクロプロセッサで処理することにより、全ての制御を処理能力の高い高価なマイクロプロセッサで構成するより安価な構成で電力変換装置を実現することが可能である。   In addition, among the control with different control cycles, for example, an FPGA (Field-Programmable Gate Array), for example, an AC-DC converter circuit such as an AC-DC converter circuit whose control target is preferably an alternating current with a fast control cycle. It is processed by a hardware control circuit with a high processing speed such as a DC-DC conversion circuit, and the control target is direct current and does not change much in time, and the control cycle is not faster than a circuit that controls AC. By processing with a microprocessor that performs processing according to software for a good one, it is possible to realize a power conversion device with a cheaper configuration in which all controls are configured with an expensive microprocessor with high processing capability. .

以下、この発明による電力変換装置および電力変換装置の制御方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, a power conversion device and a method for controlling the power conversion device according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態1.
図1は、この発明の実施の形態1に係わる電力変換装置の構成図である。図1において、電力変換装置100は、交流−直流変換回路10、直流−直流変換回路20、制御回路1を有しており、交流電源30、例えばリチウムイオンバッテリ等からなる高電圧バッテリ40に接続される。
交流電源30は交流−直流変換回路10に交流入力電圧を供給する、交流−直流変換回路10は交流入力電圧を直流出力電圧に変換する。直流−直流変換回路20は交流−直流変換回路10からの直流出力電圧を入力して直流出力電圧に変換する。高電圧バッテリ40は直流−直流変換回路20からの出力電流により充電される。制御回路1は交流−直流変換回路10、直流−直流変換回路20における変換処理の制御を行う。
Embodiment 1 FIG.
1 is a configuration diagram of a power conversion apparatus according to Embodiment 1 of the present invention. In FIG. 1, a power conversion apparatus 100 includes an AC-DC conversion circuit 10, a DC-DC conversion circuit 20, and a control circuit 1, and is connected to an AC power source 30, for example, a high voltage battery 40 made of a lithium ion battery or the like. Is done.
The AC power supply 30 supplies an AC input voltage to the AC-DC conversion circuit 10, and the AC-DC conversion circuit 10 converts the AC input voltage into a DC output voltage. The DC-DC converter circuit 20 receives the DC output voltage from the AC-DC converter circuit 10 and converts it into a DC output voltage. The high voltage battery 40 is charged by the output current from the DC-DC conversion circuit 20. The control circuit 1 controls conversion processing in the AC / DC conversion circuit 10 and the DC / DC conversion circuit 20.

交流−直流変換回路10、直流−直流変換回路20は、所望の入力電流、出力電圧、出力電流となるように各変換回路10,20の入出力の電圧値、電流値が制御回路1により演算,制御される。ここで制御回路1にはソフトウェアのプログラムに従って処理を行うマイクロプロセッサを用いられることが考えられる。   The AC-DC conversion circuit 10 and the DC-DC conversion circuit 20 calculate the input and output voltage values and current values of the conversion circuits 10 and 20 by the control circuit 1 so that the desired input current, output voltage, and output current are obtained. Controlled. Here, it is conceivable that a microprocessor that performs processing according to a software program is used for the control circuit 1.

なお以下では、制御回路1の処理の単位を「処理周期」、各変換回路10,20のそれぞれの制御の単位を「制御周期」とする。   Hereinafter, the unit of processing of the control circuit 1 is referred to as “processing cycle”, and the unit of control of each of the conversion circuits 10 and 20 is referred to as “control cycle”.

変換回路10,20の演算,制御処理は、何も処理しない待機期間も含むその他処理と合わせて制御回路1の処理周期内に割り当てられる。ここで制御回路1の処理周期としてマイクロプロセッサにおいてはタイマ割り込み周期が考えられる。   The calculation and control processes of the conversion circuits 10 and 20 are assigned within the processing cycle of the control circuit 1 together with other processes including a standby period in which nothing is processed. Here, in the microprocessor, a timer interrupt cycle can be considered as the processing cycle of the control circuit 1.

ここで制御対象が時間的に変化する交流である交流−直流変換回路10の1回の演算,制御処理を制御回路1の処理周期内に、制御回路1の処理周期=交流−直流変換回路10の制御周期となるように、割り当てる。また、直流−直流変換回路20の制御周期を交流−直流変換回路10の制御周期とは異ならせて、直流−直流変換回路20の1回の演算,制御処理を複数に分割して制御回路1の複数回の処理周期に分配して割り当てる。この場合、制御回路1の処理周期=交流−直流変換回路10の制御周期=直流−直流変換回路20の制御周期/1回の演算,制御処理の分割数、となる。   Here, one calculation and control process of the AC-DC conversion circuit 10 whose control target is an alternating current that changes with time is performed within the processing cycle of the control circuit 1, and the processing cycle of the control circuit 1 = AC-DC conversion circuit 10. Is assigned so that the control cycle becomes. Further, the control cycle of the DC-DC conversion circuit 20 is made different from the control cycle of the AC-DC conversion circuit 10, and one calculation and control processing of the DC-DC conversion circuit 20 is divided into a plurality of control circuits 1. Are distributed and assigned to multiple processing cycles. In this case, the processing cycle of the control circuit 1 = the control cycle of the AC-DC conversion circuit 10 = the control cycle of the DC-DC conversion circuit 20 / one calculation and the number of divisions of the control process.

図2に直流−直流変換回路20の1回の演算,制御処理の分割数が2の時の、
(A)交流−直流変換回路10と直流−直流変換回路20の制御周期が同じ場合すなわち直流−直流変換回路20の1回の演算,制御処理の分割がない場合と、
(B)異なる場合すなわち直流−直流変換回路20の1回の演算,制御処理を分割した場合と、
を示して比較した図を示す。
FIG. 2 shows a case where the number of divisions for one calculation and control processing of the DC-DC conversion circuit 20 is two.
(A) When the control cycle of the AC-DC converter circuit 10 and the DC-DC converter circuit 20 is the same, that is, when there is no one-time calculation and control process division of the DC-DC converter circuit 20,
(B) Different cases, that is, a case where one calculation / control processing of the DC-DC conversion circuit 20 is divided;
The figure which showed and compared is shown.

図2に示すとおり、交流−直流変換回路10と直流−直流変換回路20の制御周期が、直流−直流変換回路20の1回の演算,制御処理の分割した、(B)に示す異なる場合の方が、交流−直流変換回路10の制御周期が早いことがわかる。   As shown in FIG. 2, when the control cycle of the AC-DC conversion circuit 10 and the DC-DC conversion circuit 20 is different as shown in FIG. It can be seen that the control cycle of the AC-DC conversion circuit 10 is earlier.

ここでは直流−直流変換回路20の1回の演算,制御処理の分割数が2の時の例を説明したが、分割数を増やすほど、交流−直流変換回路10と直流−直流変換回路20の制御周期が同じ場合に比べて交流−直流変換回路10の制御周期が早くなることは明らかである。
すなわち、直流−直流変換回路20の1回の演算,制御処理の分割数は2以上の整数であればよく、これにより直流−直流変換回路20の制御周期は交流−直流変換回路10の制御周期の2以上の整数倍になる。
Here, an example in which the number of divisions for one calculation and control process of the DC-DC conversion circuit 20 is 2 has been described. However, as the number of divisions is increased, the AC-DC conversion circuit 10 and the DC-DC conversion circuit 20 are increased. It is clear that the control cycle of the AC-DC conversion circuit 10 is faster than when the control cycle is the same.
That is, the number of divisions for one calculation and control process of the DC-DC conversion circuit 20 may be an integer equal to or greater than 2, whereby the control cycle of the DC-DC conversion circuit 20 is the control cycle of the AC-DC conversion circuit 10. It becomes an integer multiple of 2 or more.

以上、この発明の実施の形態1によれば、交流−直流変換回路10の制御周期と直流−直流変換回路20の制御周期とを異ならせて制御回路1の各処理周期内に各演算,制御を割り当てることにより、処理能力の高いより高価な制御回路を使用することなく、交流−直流変換回路10のように制御対象が時間的に変化する交流で制御周期の早いことが好ましいものに対して制御周期の短縮を図ることができる。   As described above, according to the first embodiment of the present invention, the control cycle of the AC-DC conversion circuit 10 and the control cycle of the DC-DC conversion circuit 20 are made different so that each calculation and control is performed within each processing cycle of the control circuit 1. By assigning, it is preferable to use an alternating current whose control object changes with time, such as the alternating current-direct current converter circuit 10, without using a more expensive control circuit having a high processing capacity, and with a fast control cycle. The control cycle can be shortened.

実施の形態2.
図3は、この発明の実施の形態2に係わる電力変換装置の構成図である。図3において、電力変換装置101は、交流−直流変換回路10、直流−直流変換回路20、制御回路1、制御回路2を有しており、交流電源30、例えばリチウムイオンバッテリからなる高電圧バッテリ40に接続される。
Embodiment 2. FIG.
FIG. 3 is a configuration diagram of a power conversion apparatus according to Embodiment 2 of the present invention. In FIG. 3, the power converter 101 includes an AC-DC converter circuit 10, a DC-DC converter circuit 20, a control circuit 1, and a control circuit 2, and a high-voltage battery made of an AC power supply 30, for example, a lithium ion battery. 40.

交流−直流変換回路10、直流−直流変換回路20は、所望の入力電流、出力電圧、出力電流となるように各変換回路10,20の入出力の電圧値、電流値に基づいて制御回路1、制御回路2によりそれぞれ演算,制御される。なおここでは、図1と同一な部分についての説明は省略する。   The AC-DC conversion circuit 10 and the DC-DC conversion circuit 20 are controlled by the control circuit 1 based on the input / output voltage values and current values of the conversion circuits 10 and 20 so that the desired input current, output voltage, and output current are obtained. The control circuit 2 calculates and controls them. In addition, description about the same part as FIG. 1 is abbreviate | omitted here.

ここで制御対象が時間的に変化する交流である交流−直流変換回路10の制御回路1にはハードウェアのみで演算,制御処理を実行するFPGAまたはASIC(Application Specific Integrated Circuit)が用いられ、直流−直流変換回路20の制御回路2にはソフトウェアで決められた順序に基づいて処理を行うマイクロプロセッサまたはDSP(Digital Signal Processor)が用いられている。   Here, an FPGA or ASIC (Application Specific Integrated Circuit) that performs calculation and control processing only by hardware is used for the control circuit 1 of the AC-DC conversion circuit 10 whose AC is a time-varying AC. The control circuit 2 of the DC conversion circuit 20 uses a microprocessor or DSP (Digital Signal Processor) that performs processing based on the order determined by software.

図4に直流−直流変換回路20の1回の演算,制御処理の分割数が2の時の、
(A)図3に破線で示す1つの制御回路1で制御する場合と、
(B)2つの制御回路、制御回路1と制御回路2で制御する場合、
での各制御回路1,2の処理周期内に対する各変換回路10,20の処理割合を比較した図を示す。
(A)の1つの制御回路1で制御する場合は、図2の(B)の、直流−直流変換回路20の1回の演算,制御処理の分割数が2で、交流−直流変換回路10と直流−直流変換回路20の制御周期が異なる場合と同じである。
FIG. 4 shows a case where the number of divisions for one calculation and control processing of the DC-DC conversion circuit 20 is two.
(A) Control by one control circuit 1 indicated by a broken line in FIG.
(B) When controlling with two control circuits, control circuit 1 and control circuit 2,
The figure which compared the processing ratio of each conversion circuit 10 and 20 with respect to the inside of the processing period of each control circuit 1 in FIG.
In the case of controlling with one control circuit 1 in FIG. 2A, the number of divisions for one calculation and control processing of the DC-DC conversion circuit 20 in FIG. This is the same as the case where the control cycle of the DC-DC converter circuit 20 is different.

図4に示す通り、2つの制御回路1,2で制御する場合の方が各制御回路1,2の処理周期内に対する変換回路10,20の処理割合が少なく、特に直流−直流変換回路20の制御回路2においては差が顕著であることがわかる。   As shown in FIG. 4, when the control is performed by the two control circuits 1 and 2, the processing ratio of the conversion circuits 10 and 20 with respect to the processing cycle of each control circuit 1 and 2 is small. It can be seen that the difference is significant in the control circuit 2.

これは制御回路2にはより処理能力の遅い安価なマイクロプロセッサまたはDSPを適用できることを意味する。一方、制御回路1にはハードウェアのみで演算,制御処理を実行するFPGAまたはASICを用いるので交流−直流変換回路10の1回の演算,制御処理をより高速に実行することができ、交流−直流変換回路10の制御周期をより高速にできることを意味する。   This means that an inexpensive microprocessor or DSP having a slower processing capability can be applied to the control circuit 2. On the other hand, since the control circuit 1 uses an FPGA or an ASIC that executes calculation and control processing only by hardware, the single calculation and control processing of the AC-DC conversion circuit 10 can be executed at a higher speed. This means that the control cycle of the DC conversion circuit 10 can be made faster.

以上、この発明の実施の形態2によれば、異なる制御周期での制御のうち、交流−直流変換回路10のように制御対象が時間的に変化する交流で制御周期の早いことが好ましいものに対して処理速度の速いハードウェア制御回路(FPGAまたはASIC)で処理し、直流−直流変換回路20のように制御対象が直流で時間的にあまり変化がなく、制御周期が交流を制御するものより早くしなくてよいものに対してはソフトウェアを使用したマイクロプロセッサで処理することにより、全ての制御を処理能力の高い高価なマイクロプロセッサでするより安価な構成で電力変換装置101を実現することが可能である。   As described above, according to the second embodiment of the present invention, among the control in different control cycles, it is preferable that the control target is fast with an alternating current whose control object changes with time, such as the AC-DC conversion circuit 10. On the other hand, the processing is performed by a hardware control circuit (FPGA or ASIC) having a high processing speed, and the control target is direct current with little change in time as in the DC-DC conversion circuit 20, and the control cycle controls AC. By implementing processing with a microprocessor using software for things that do not need to be done quickly, it is possible to realize the power conversion apparatus 101 with a cheaper configuration than performing all control with an expensive microprocessor with high processing capability. Is possible.

なお各実施の形態において、制御回路1、制御回路2が制御部を構成し、制御回路1が第1の制御回路、制御回路2が第2の制御回路を構成する。また、交流−直流変換回路10が第1の変換回路、直流−直流変換回路20が第2の変換回路を構成する。   In each embodiment, the control circuit 1 and the control circuit 2 constitute a control unit, the control circuit 1 constitutes a first control circuit, and the control circuit 2 constitutes a second control circuit. The AC-DC conversion circuit 10 constitutes a first conversion circuit, and the DC-DC conversion circuit 20 constitutes a second conversion circuit.

また、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせることが可能である。また、各実施の形態の任意の構成要素を適宜、変更または省略することが可能である。   Further, in the present invention, the embodiments can be freely combined within the scope of the invention. In addition, any component in each embodiment can be changed or omitted as appropriate.

この発明は、交流−直流変換回路の制御周期と直流−直流変換回路の制御周期とを異ならせて制御回路の処理内に各演算,制御を割り当てることにより、処理能力の高いより高価な制御回路を使用することなく、交流−直流変換回路のように制御対象が時間的に変化する交流で制御周期の早いことが好ましいものに対して制御周期の短縮を図る電力変換装置に適用することができる。   According to the present invention, the control cycle of the AC-DC converter circuit and the control cycle of the DC-DC converter circuit are made different from each other, and each calculation and control is assigned in the process of the control circuit. Can be applied to a power conversion device that shortens the control cycle for an alternating current whose control target changes with time, such as an AC-DC conversion circuit, that preferably has a fast control cycle. .

この発明は多くの分野の電力変換装置に適用可能であり、同様な効果を奏する。   The present invention can be applied to power converters in many fields and has the same effect.

1,2 制御回路、10 交流−直流変換回路、20 直流−直流変換回路、
30 交流電源、40 高電圧バッテリ、100,101 電力変換装置。
1, 2 control circuit, 10 AC-DC conversion circuit, 20 DC-DC conversion circuit,
30 AC power supply, 40 high voltage battery, 100, 101 power converter.

この発明は、第1の制御周期で制御され、交流入力電圧を直流出力電圧へ変換する第1の変換回路と、前記第1の制御周期より長い第2の制御周期で制御され、直流入力電圧を直流出力電圧へ変換する第2の変換回路と、前記第1および第2の変換回路の各制御周期の制御処理を処理周期単位で組み合わせて制御する制御部と、を備え、前記制御部において、前記第2の変換回路の各制御周期の制御処理が複数に分割されて前記制御部の処理周期に分配して割り当てられ、前記制御部での前記処理周期が、前記第2の変換回路の各制御周期の制御処理が分割されない場合と比較して短い、電力変換装置等にある。 The present invention provides a first conversion circuit that is controlled in a first control cycle and converts an AC input voltage into a DC output voltage, and is controlled in a second control cycle that is longer than the first control cycle. A second conversion circuit that converts the control signal into a DC output voltage, and a control unit that controls and controls the control processing of each control cycle of the first and second conversion circuits in units of processing cycles. , The control processing of each control cycle of the second conversion circuit is divided into a plurality of parts and allocated to the processing cycle of the control unit, and the processing cycle in the control unit is the same as that of the second conversion circuit. The power conversion device or the like is shorter than the case where the control processing of each control cycle is not divided .

Claims (9)

第1の制御周期で制御され、交流入力電圧を直流出力電圧へ変換する第1の変換回路と、
前記第1の制御周期と異なる第2の制御周期で制御され、直流入力電圧を直流出力電圧へ変換する第2の変換回路と、
を備えた、電力変換装置。
A first conversion circuit controlled in a first control cycle and converting an AC input voltage into a DC output voltage;
A second conversion circuit that is controlled in a second control cycle different from the first control cycle and converts a DC input voltage to a DC output voltage;
A power conversion device comprising:
前記第1の制御周期は前記第2の制御周期より短い、請求項1に記載の電力変換装置。   The power converter according to claim 1, wherein the first control cycle is shorter than the second control cycle. 前記第2の制御周期は前記第1の制御周期の2以上の整数倍である、請求項1に記載の電力変換装置。   The power conversion device according to claim 1, wherein the second control cycle is an integer multiple of 2 or more of the first control cycle. 前記第1の変換回路の直流出力電圧は、前記第2の変換回路の直流入力電圧である、請求項1から3までのいずれか1項に記載の電力変換装置。   4. The power conversion device according to claim 1, wherein the DC output voltage of the first conversion circuit is a DC input voltage of the second conversion circuit. 5. 前記第1の変換回路と前記第2の変換回路を共に制御する制御回路を備えた請求項1から4までのいずれか1項に記載の電力変換装置。   5. The power conversion device according to claim 1, further comprising a control circuit that controls both the first conversion circuit and the second conversion circuit. 6. 前記第1の変換回路を制御するハードウェアで処理を行う第1の制御回路と、
前記第2の変換回路を制御するソフトウェアで決められた順序に基づいて処理を行う第2の制御回路と、
を備えた、請求項1から4までのいずれか1項に記載の電力変換装置。
A first control circuit that performs processing with hardware that controls the first conversion circuit;
A second control circuit for performing processing based on an order determined by software for controlling the second conversion circuit;
The power converter device according to any one of claims 1 to 4, further comprising:
前記第2の変換回路の1回の制御処理が複数に分割されて前記第1の変換回路のための処理周期に分配して割り当られている、請求項1から6までのいずれか1項に記載の電力変換装置。   The control process of one time of the said 2nd conversion circuit is divided | segmented into plurality, and is distributed and allocated to the processing period for the said 1st conversion circuit, The any one of Claim 1-6 The power converter device described in 1. 交流入力電圧を直流出力電圧へ変換する第1の変換回路を第1の制御周期で制御し、
直流入力電圧を直流出力電圧へ変換する第2の変換回路を前記第1の制御周期と異なる第2の制御周期で制御する、電力変換装置の制御方法。
Controlling a first conversion circuit for converting an AC input voltage into a DC output voltage in a first control cycle;
A control method for a power converter, wherein a second conversion circuit that converts a DC input voltage into a DC output voltage is controlled in a second control cycle different from the first control cycle.
前記第2の変換回路の1回の制御処理を複数に分割して前記第1の変換回路のための処理周期に分配して割り当てる、請求項8に記載の電力変換装置の制御方法。   The method of controlling a power conversion device according to claim 8, wherein one control process of the second conversion circuit is divided into a plurality of parts and distributed and assigned to a processing cycle for the first conversion circuit.
JP2015214066A 2015-10-30 2015-10-30 Power converter and control method of power converter Active JP6103557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015214066A JP6103557B1 (en) 2015-10-30 2015-10-30 Power converter and control method of power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015214066A JP6103557B1 (en) 2015-10-30 2015-10-30 Power converter and control method of power converter

Publications (2)

Publication Number Publication Date
JP6103557B1 JP6103557B1 (en) 2017-03-29
JP2017085839A true JP2017085839A (en) 2017-05-18

Family

ID=58712214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015214066A Active JP6103557B1 (en) 2015-10-30 2015-10-30 Power converter and control method of power converter

Country Status (1)

Country Link
JP (1) JP6103557B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234640A (en) * 2020-12-09 2021-01-15 江苏时代新能源科技有限公司 Power converter control method, device and storage medium
US11251714B1 (en) 2020-12-09 2022-02-15 Contemporary Amperex Technology Co., Limited Method, apparatus and system for improving energy transmission efficiency between battery and power grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178568A (en) * 1989-12-05 1991-08-02 Mitsubishi Electric Corp Sine wave pwm signal generator
JP2008099439A (en) * 2006-10-12 2008-04-24 Omron Corp Switching power supply
JP2008109723A (en) * 2006-10-23 2008-05-08 Omron Corp Switching power supply
JP2008125316A (en) * 2006-11-15 2008-05-29 Omron Corp Switching power supply unit
US20150043248A1 (en) * 2013-08-06 2015-02-12 Chicony Power Technology Co., Ltd. Power supplying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178568A (en) * 1989-12-05 1991-08-02 Mitsubishi Electric Corp Sine wave pwm signal generator
JP2008099439A (en) * 2006-10-12 2008-04-24 Omron Corp Switching power supply
JP2008109723A (en) * 2006-10-23 2008-05-08 Omron Corp Switching power supply
JP2008125316A (en) * 2006-11-15 2008-05-29 Omron Corp Switching power supply unit
US20150043248A1 (en) * 2013-08-06 2015-02-12 Chicony Power Technology Co., Ltd. Power supplying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234640A (en) * 2020-12-09 2021-01-15 江苏时代新能源科技有限公司 Power converter control method, device and storage medium
CN112234640B (en) * 2020-12-09 2021-04-13 江苏时代新能源科技有限公司 Power converter control method, device and storage medium
US11251714B1 (en) 2020-12-09 2022-02-15 Contemporary Amperex Technology Co., Limited Method, apparatus and system for improving energy transmission efficiency between battery and power grid

Also Published As

Publication number Publication date
JP6103557B1 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US9294010B2 (en) Method for controlling switching branch of three-level converter and switching branch for three-level converter
JP2017505092A5 (en)
MY183296A (en) Control device for direct power converter
WO2017013392A3 (en) Power supply
JP6103557B1 (en) Power converter and control method of power converter
US9484837B2 (en) Switching branch for three-level inverter and method for controlling switching branch of three-level inverter
US9627989B2 (en) Three-level converter and method for controlling three-level converter
JP4911241B1 (en) Power converter
JP2016086510A (en) Power conversion equipment
US8644043B2 (en) Switching branch for three-level rectifier and method for controlling switching branch for three-level rectifier
JP6337659B2 (en) 5-level power converter
JP6503268B2 (en) Control method and control device for series resonance type power supply device
WO2015099667A8 (en) Dynamic dc link voltage control
JP2017163787A5 (en)
JP2018085827A (en) Voltage controller
US7486122B1 (en) Digitized method for generating pulse width modulation signals
Niu et al. Design of a single controller for multiple paralleled inverters
WO2014111993A1 (en) Contention avoidance control device and contention avoidance control method for pwm output and a/d conversion, as well as power control system
EP2854279A3 (en) Matrix converter
JP6242003B2 (en) Voltage detector
JP2019103263A (en) Charging device
US9184691B2 (en) Method for controlling electric drive and electric drive
RU117747U1 (en) DEVICE FOR CONTROL OF A THREE-PHASE AUTONOMOUS INVERTER USING A VECTOR PWM
CN113508521A (en) Controller for AC/DC or DC/AC multiphase power converter
JP6260587B2 (en) Power supply

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170221

R150 Certificate of patent or registration of utility model

Ref document number: 6103557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250