JP2015142095A - Stationary induction apparatus and method for manufacturing the same - Google Patents

Stationary induction apparatus and method for manufacturing the same Download PDF

Info

Publication number
JP2015142095A
JP2015142095A JP2014015621A JP2014015621A JP2015142095A JP 2015142095 A JP2015142095 A JP 2015142095A JP 2014015621 A JP2014015621 A JP 2014015621A JP 2014015621 A JP2014015621 A JP 2014015621A JP 2015142095 A JP2015142095 A JP 2015142095A
Authority
JP
Japan
Prior art keywords
iron core
shaped
yoke
shaped iron
yoke forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014015621A
Other languages
Japanese (ja)
Inventor
霜村 英二
Eiji Shimomura
英二 霜村
塩田 広
Hiroshi Shioda
広 塩田
増田 剛
Takeshi Masuda
剛 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2014015621A priority Critical patent/JP2015142095A/en
Publication of JP2015142095A publication Critical patent/JP2015142095A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stationary induction apparatus capable of utilizing an advantage of a known Y-shaped iron core while suppressing magnetic flux leakage and an increase in iron loss as problems of the known Y-shaped iron core as much as possible, and including a strong iron core.SOLUTION: An iron core has one layer formed by arranging three substantially U-shaped iron cores each having a yoke formation part in both ends of a leg formation part so that the leg formation parts are arranged at a substantially 120 degrees centering around a predetermined point, and allowing the yoke formation parts to be in contact with each other. The leg formation part and the yoke formation part are formed by laminating the plurality of layers of U-shaped iron cores, and have a lap joint structure in which a part of the yoke formation part of one U-shaped iron cores after the second layer from the inside is sequentially laminated on the yoke formation part of the U-shaped iron core of the previous layer forming another leg formation part different from the one U-shaped iron core. A coil is provided in the three leg formation parts of the iron core. Fastening and fixing means sandwiches the lap joint structure of the yoke formation part with two clamp plates opposed to each other to fasten and fix it.

Description

本発明の実施形態は、静止誘導機器およびその製造方法に関する。   Embodiments described herein relate generally to a stationary induction device and a manufacturing method thereof.

3相の静止誘導機器用鉄心、例えば3相の変圧器用鉄心は、短冊形に切断した電磁鋼板を順次積層して構成する積み鉄心と、電磁鋼板を巻きながら周方向に積層して構成される巻鉄心とに大別される。巻鉄心は2つの内コアと一つの外コアを同じ積み方向に配置したエバンス鉄心と、4つの鉄心を横配置して構成した5脚鉄心の2種類がある。このうち特に、図15に示すエバンス鉄心1(特許文献1の図4参照)は、形状が異なる2種類の大きさの鉄心(内コア2と外コア3)で構成するため、U、V、W相のコイルが囲む鉄心がV相とU,W相とでは異なることによって、磁束波形がひずみ、鉄損の悪化をもたらす。さらに、外コア3は、平面的にU相とW相のコイルを磁気的に繋ぐために内コア2よりも、材料的に無駄に長くなっている。この余分な長さの鉄心にも磁束が流れることから、それだけ多く鉄損が発生することになり、省エネの要求が高まった今日では改善する必要がある。   A three-phase stationary induction device core, for example, a three-phase transformer core, is constructed by laminating magnetic steel sheets cut into strips in order, and laminating them in the circumferential direction while winding the electromagnetic steel sheets. Broadly divided into wound cores. There are two types of wound cores: an Evans iron core in which two inner cores and one outer core are arranged in the same stacking direction, and a five-legged iron core that is configured by arranging four iron cores horizontally. Among these, in particular, the Evans iron core 1 shown in FIG. 15 (see FIG. 4 of Patent Document 1) is composed of iron cores of two different sizes (inner core 2 and outer core 3). When the iron core surrounded by the W-phase coil is different between the V-phase, the U-phase, and the W-phase, the magnetic flux waveform is distorted and the iron loss is deteriorated. Furthermore, the outer core 3 is longer in material than the inner core 2 in order to magnetically connect the U-phase and W-phase coils in a plan view. Since magnetic flux also flows through the extra length of the iron core, iron loss is generated as much, and it is necessary to improve today when the demand for energy saving has increased.

一方、特許文献2,3には、3つの同じ形状の枠状をなす鉄心を三角柱形状に立体的に構成する立体鉄心(以下、デルタ形鉄心と称する)が提案されている。このデルタ形鉄心は、3つのコイルを等配に最近接し、その間を同じ形状の鉄心で繋ぐことで、余分な鉄心部位を極力排除するとともに磁束密度を均一化して、鉄損の低減と材料使用量を減らすことが目的である。   On the other hand, Patent Documents 2 and 3 propose three-dimensional iron cores (hereinafter referred to as delta-shaped iron cores) in which three iron cores having the same shape of a frame are three-dimensionally formed into a triangular prism shape. This delta type core has three coils arranged closest to each other and connected between them with the same shape core to eliminate the extra core part as much as possible and make the magnetic flux density uniform to reduce iron loss and use materials The purpose is to reduce the amount.

しかしながら、デルタ形鉄心は、コイル断面内に脚を高い占積率で納めるために、円筒コイルしか採用できず、また、その中で鉄心の脚を円形断面に形成する必要があるため、電磁鋼板フープを徐々に斜めにスリットしながら(ずらしながら)巻き込む必要がある。前記スリットには高い精度が必要であり、そうでないと占積率は低下する。ただでさえ鉄心の脚を円形断面に形成することが困難である上、前記スリット精度が悪化すると、折角立体鉄心化しても、必要な鉄心断面積を得るためにコイル径を大きく取る必要があり、さらにコイル径を大きくするとコイル間を繋ぐ鉄心(ヨーク)寸法も大きくなることから、鉄損の低減、および材料使用量の低減効果が薄れてくる。   However, delta type iron cores can use only cylindrical coils in order to keep the legs in the coil cross section with a high space factor, and it is necessary to form the iron core legs in a circular cross section. It is necessary to wind the hoop while gradual slitting (shifting). The slit needs to have high accuracy, otherwise the space factor will decrease. Even if it is difficult to form the legs of the iron core in a circular cross section, and the slit accuracy deteriorates, it is necessary to increase the coil diameter in order to obtain the required iron core cross-sectional area even if the three-dimensional iron core is formed. Further, if the coil diameter is further increased, the size of the iron core (yoke) that connects the coils also increases, so the effect of reducing iron loss and reducing the amount of material used is diminished.

特開2005−136059号公報(図4参照)JP 2005-136059 A (see FIG. 4) 特公昭28−1307号公報(第3図参照)Japanese Examined Patent Publication No. 28-1307 (see Fig. 3) 特表2013−539215号公報(図4参照)Special table 2013-539215 gazette (refer FIG. 4) 実公昭33−2827号公報(第2図、第3図参照)Japanese Utility Model Publication No.33-2827 (see FIGS. 2 and 3)

近年、地球温暖化防止のため電気機器の省エネルギー化、高効率化が世界規模で求められており、変圧器などの静止誘導機器においても更なる高効率化が希求されている。例えば静止誘導機器の一種である変圧器の損失には、巻線導体に電流を通電することによる負荷損(銅損)と、鉄心を励磁することで生じる無負荷損(鉄損)とがある。鉄損は変圧器を電路に接続しておくと、負荷をかけない状態でも連続して発生することから、より低減することが求められる。   In recent years, there has been a worldwide demand for energy saving and high efficiency in electrical equipment to prevent global warming, and further improvement in efficiency is demanded in stationary induction equipment such as transformers. For example, the loss of a transformer, which is a kind of static induction device, includes a load loss (copper loss) caused by energizing a winding conductor and a no-load loss (iron loss) caused by exciting an iron core. . Since the iron loss is continuously generated even when no load is applied when the transformer is connected to the electric circuit, further reduction is required.

前述したように静止誘導機器の鉄心には、積み鉄心と巻鉄心とに大別されるが、後者は電磁鋼板を繋ぎ合わせる箇所が少ない等の理由で、鉄損低減に適した構造である。巻鉄心の一般的な構造に、前述したエバンス鉄心1(図15参照)が挙げられる。図16には、外コアと内コアの磁路長さ比(横軸)に対する鉄損および鉄心重量(縦軸)の変化を示す特性図を示している。この場合、外コアの磁路長さをLo、内コアの磁路長さをLiとし、外コアと内コアの磁路長さ比はLo/Liとする。図16はノーカットリング形状の鉄心に対して実測した結果である。この特性図から明らかなように、磁路長さ比が小さくなるほど鉄損と鉄心重量は減少する。この磁路長さ比が1.0の場合の一例が、前記デルタ形鉄心の構造に当たる。このように同じ鉄心断面と鉄心窓(すなわち、コイルの寸法に対応)であれば、デルタ形鉄心は理想の鉄心構造であると言うことができる。   As described above, the iron core of the stationary induction device is roughly classified into a stacked iron core and a wound iron core, but the latter is a structure suitable for reducing iron loss because there are few places where electromagnetic steel sheets are connected. The Evans iron core 1 (refer FIG. 15) mentioned above is mentioned to the general structure of a wound iron core. FIG. 16 is a characteristic diagram showing changes in iron loss and iron core weight (vertical axis) with respect to the magnetic path length ratio (horizontal axis) between the outer core and the inner core. In this case, the magnetic path length of the outer core is Lo, the magnetic path length of the inner core is Li, and the magnetic path length ratio between the outer core and the inner core is Lo / Li. FIG. 16 shows the result of actual measurement for an uncut ring-shaped iron core. As is apparent from this characteristic diagram, the iron loss and the iron core weight decrease as the magnetic path length ratio decreases. An example where the magnetic path length ratio is 1.0 corresponds to the structure of the delta iron core. Thus, if the iron core cross section and the iron core window (that corresponds to the dimensions of the coil) are used, it can be said that the delta iron core has an ideal iron core structure.

しかしながら、現実のデルタ形鉄心は、コイル断面内の鉄心占積率がエバンス鉄心1ほど高くなく、同じ鉄心断面とするにはコイルを大きくする必要が生じる。この結果、鉄損と鉄心重量は増加することになる。また、鉄心脚の円形断面化には高い寸法精度を必要とすることと、それでもエバンス鉄心1ほど占積率を上げることができないという現状がある。   However, the actual delta-type iron core has a core space factor in the coil cross section that is not as high as that of the Evans iron core 1, and it is necessary to enlarge the coil in order to have the same iron core cross section. As a result, the iron loss and the iron core weight increase. In addition, there is a current situation that a high dimensional accuracy is required to make the iron core leg into a circular cross section and that the space factor cannot be increased as much as the Evans iron core 1.

一方、特許文献4の第2図および第3図の例には、次のような構成の3相変圧器鉄心が示されている。図17に示すように、それぞれ脚5aおよび当該脚5aの両端部にヨーク形成部5bを備えたほぼU字形をなすU字形心体5を3個備えるとともに、高さが低い三角柱状をなす中央継鉄部6を2個備え、3個のU字形心体5を、横向きにした状態で各脚5aが所定の点を中心として120度配置となるように配置するとともに、上下のヨーク形成部5bの中央部に中央継鉄部6をそれぞれ配置して、これらを端面同士で接合した構成となっている。この構成のものでは、平面的に見てY字形をなしており、以下、従来のY形鉄心7と称する。この従来のY形鉄心7は、前記デルタ形鉄心とほぼ同様な効果、すなわち、等しい磁路長を各脚に配分し、余分な鉄心を極力少なくすることができる利点がある。しかも、従来のデルタ鉄心とは違い、円形断面コイルだけでなく、角形断面コイルに対しても高い鉄心占積率を維持することができる利点もある。図17中、矢印Aは磁束の流れる方向を示している。   On the other hand, in the example of FIG. 2 and FIG. 3 of Patent Document 4, a three-phase transformer core having the following configuration is shown. As shown in FIG. 17, each of the legs 5a and three U-shaped core bodies 5 each having a substantially U-shape having yoke forming portions 5b at both ends of the legs 5a and a triangular column shape having a low height are provided. Two yoke parts 6 are provided, and three U-shaped core bodies 5 are arranged so that each leg 5a is arranged at 120 degrees around a predetermined point in a state of being horizontally oriented, and upper and lower yoke forming parts The central yoke portion 6 is disposed in the central portion of 5b, and these are joined at the end faces. This configuration is Y-shaped in plan view, and is hereinafter referred to as a conventional Y-shaped iron core 7. This conventional Y-shaped iron core 7 has an effect that is almost the same as that of the delta-shaped iron core, that is, the same magnetic path length is distributed to each leg, and the extra iron core can be reduced as much as possible. Moreover, unlike the conventional delta core, there is an advantage that a high core space factor can be maintained not only for the circular cross-section coil but also for the square cross-section coil. In FIG. 17, an arrow A indicates the direction in which the magnetic flux flows.

しかしながら、上記従来のY形鉄心7においては、次のような課題もある。3個のU字形心体5と、2個の中央継鉄部6を必要としている。3個のU字形心体5における上下の各ヨーク形成部5bは、三角形の中央継鉄部6とそれぞれ端面で接合する必要がある。それらの接合部を符号8で示す。各ヨーク形成部5bと中央継鉄部6とを接合する手段としては、接着剤による接着と、溶接例えばスポット溶接が考えられる。どちらの場合も、ヨーク形成部5bの端面と中央継鉄部6の端面とが対向した状態で接合されることになるため、その接合面で漏れ磁束が発生しやすく、鉄損が増加しやすい。特に接着剤による接着の場合には、各接合部8でギャップができることが避けられない。接合部8でギャップができると、漏れ磁束が発生しやすく、また、励磁電流の劣化や鉄損の増加が発生しやすい。溶接の場合には、熱により鋼板が損傷しやすく、特性が低下し、鉄損が増加しやすい。   However, the conventional Y-shaped iron core 7 has the following problems. Three U-shaped core bodies 5 and two central yoke portions 6 are required. The upper and lower yoke forming portions 5b in the three U-shaped core bodies 5 must be joined to the triangular central yoke portion 6 at their end surfaces. Those joint portions are denoted by reference numeral 8. As means for joining each yoke forming part 5b and the central yoke part 6, adhesion by an adhesive and welding such as spot welding can be considered. In either case, since the end surface of the yoke forming portion 5b and the end surface of the central yoke portion 6 are bonded to each other, leakage magnetic flux is likely to be generated at the bonding surface, and iron loss is likely to increase. . In particular, in the case of bonding with an adhesive, it is inevitable that a gap is formed at each joint 8. If a gap is formed at the joint 8, leakage magnetic flux is likely to occur, and excitation current is deteriorated and iron loss is likely to increase. In the case of welding, the steel sheet is easily damaged by heat, the characteristics are deteriorated, and the iron loss is easily increased.

そこで、従来のY形鉄心の利点を生かしながらも、その従来のY形鉄心の課題である磁束漏れや鉄損の増加を極力抑えることができ、しかも強固な鉄心を備えた静止誘導機器およびその製造方法を提供する。   Therefore, while taking advantage of the conventional Y-shaped iron core, it is possible to suppress the increase in magnetic flux leakage and iron loss, which are the problems of the conventional Y-shaped iron core, and a stationary induction device having a strong iron core and its A manufacturing method is provided.

本実施形態の静止誘導機器は、静止誘導機器用の鉄心と、コイルと、締付け固定手段を備える。静止誘導機器用の鉄心は、一つの脚形成部および当該脚形成部の両端部にヨーク形成部を有するほぼU字状をなす3個のU字状鉄心を、前記脚形成部が所定の点を中心としてほぼ120度配置となるように配置した状態で、前記ヨーク形成部同士を突き合わせて一層が形成され、前記脚形成部およびヨーク形成部は前記U字状鉄心を複数層重ねて形成され、内側から2層目以降の一つのU字状鉄心のヨーク形成部の一部が、当該一つのU字状鉄心とは異なる他の脚形成部を形成する前層のU字状鉄心のヨーク形成部に順次重なるように構成されたラップ接合構造を有する。コイルは、鉄心の3箇所の脚形成部に設けられる。締付け固定手段は、鉄心において前記ヨーク形成部の前記ラップ接合構造部分を、対向する2枚のクランプ板で挟み込んで締付け固定する。   The stationary induction device according to the present embodiment includes an iron core for a stationary induction device, a coil, and a fastening means. The iron core for a stationary induction device has three U-shaped iron cores having a substantially U shape having one leg forming portion and yoke forming portions at both ends of the leg forming portion. The yoke forming portions are abutted with each other in a state of being arranged at approximately 120 degrees around the center, and the leg forming portion and the yoke forming portion are formed by stacking a plurality of the U-shaped iron cores. The yoke of the U-shaped iron core of the front layer in which a part of the yoke forming portion of one U-shaped iron core after the second layer from the inside forms another leg forming portion different from the one U-shaped iron core A lap joint structure is formed so as to sequentially overlap the forming portion. The coil is provided at three leg forming portions of the iron core. The clamping and fixing means clamps and fixes the lap joint structure portion of the yoke forming portion between two opposing clamp plates in the iron core.

第1実施形態における変圧器(静止誘導機器)の全体構成を概略的に示す斜視図The perspective view which shows roughly the whole structure of the transformer (static induction apparatus) in 1st Embodiment. 鉄心と締付け固定手段を示すもので、(a)は締付け固定手段を分解して示す斜視図、(b)は締付け固定手段を締め付けた状態での斜視図The iron core and the fastening means are shown, (a) is an exploded perspective view showing the fastening means, and (b) is a perspective view with the fastening means tightened. 鉄心単体の斜視図Perspective view of iron core alone 鉄心の組立構成を説明する図Diagram explaining assembly structure of iron core 締付け固定手段の分解斜視図Disassembled perspective view of the fastening means 3組のU字状鉄心ユニットの構成とコイルの関係を示す図The figure which shows the structure of 3 sets of U-shaped iron core units, and the relationship of a coil 変圧器の組立手順を説明するもので、(a)はコイルを装着した3組のU字状鉄心ユニットを合体する様子を示す斜視図、(b)は鉄心に締付け固定手段を取り付ける様子を示す斜視図、(c)は変圧器の完成状態を示す図The assembly procedure of the transformer will be described. (A) is a perspective view showing a state in which three sets of U-shaped core units equipped with coils are combined, and (b) shows a state in which fastening means are attached to the core. The perspective view, (c) is a diagram showing the completed state of the transformer 第2実施形態による締付け固定手段を示すもので、(a)は分解斜視図、(b)は組立状態での斜視図FIG. 3 shows a fastening and fixing means according to a second embodiment, wherein (a) is an exploded perspective view and (b) is a perspective view in an assembled state. 第3実施形態による締付け固定手段を示すもので、(a)は分解斜視図、(b)は組立状態での斜視図FIG. 9 shows a fastening means according to a third embodiment, wherein (a) is an exploded perspective view, and (b) is a perspective view in an assembled state. 第4実施形態における変圧器(静止誘導機器)の全体構成を概略的に示す斜視図The perspective view which shows schematically the whole structure of the transformer (static induction apparatus) in 4th Embodiment. 鉄心と締付け固定手段を示す斜視図Perspective view showing iron core and fastening means 締付け固定手段を示す斜視図Perspective view showing the fastening means 締付け固定手段の分解斜視図Disassembled perspective view of the fastening means 締付け固定手段の組立途中状態で示す変圧器の斜視図Perspective view of the transformer shown in the middle of assembly of the fastening means エバンス鉄心の正面図Evans iron core front view 磁路長さ比と鉄損および総鉄心重量の関係を示す特性線図Characteristic diagram showing the relationship between magnetic path length ratio, iron loss and total core weight 従来のY形鉄心を示す分解斜視図An exploded perspective view showing a conventional Y-shaped iron core

以下、複数の実施形態による静止誘導機器を図面に基づいて説明する。なお、各実施形態において実質的に同一の構成部位には同一の符号を付し、説明を省略する。
(第1実施形態)
まず、第1実施形態について図1から図7を参照して説明する。第1実施形態の静止誘導機器としては、三相の変圧器である。図1には、三相の変圧器10の概略構成が示されている。変圧器10は、静止誘導機器用鉄心を構成する変圧器用の鉄心11と、3個のコイル12と、一対の締付け固定手段13を備えている。
Hereinafter, stationary guidance devices according to a plurality of embodiments will be described with reference to the drawings. In addition, in each embodiment, the same code | symbol is attached | subjected to the substantially same component, and description is abbreviate | omitted.
(First embodiment)
First, a first embodiment will be described with reference to FIGS. The static induction device of the first embodiment is a three-phase transformer. FIG. 1 shows a schematic configuration of a three-phase transformer 10. The transformer 10 includes an iron core 11 for a transformer that constitutes an iron core for a static induction device, three coils 12, and a pair of tightening and fixing means 13.

このうち、変圧器用の鉄心11は、図3に示すように、3組のU字状鉄心ユニット14,15,16を備え、これら3組のU字状鉄心ユニット14,15,16を後述するように合体させることにより形成されている。3組の各U字状鉄心ユニット14,15,16は、それぞれ電磁鋼板からなるU字状鉄心17を複数層、この場合4層重ねて形成されている。各U字状鉄心17は、上下方向に延びる脚形成部18と、この脚形成部18の両端部からそれぞれ90度曲げられて対向する一対のヨーク形成部19を一体に有していて、横向きのU字状をなしている。   Among these, as shown in FIG. 3, the transformer core 11 includes three sets of U-shaped core units 14, 15, 16, and these three sets of U-shaped core units 14, 15, 16 will be described later. It is formed by uniting. Each of the three sets of U-shaped iron core units 14, 15, 16 is formed by stacking a plurality of U-shaped iron cores 17 made of electromagnetic steel plates, in this case, four layers. Each U-shaped iron core 17 integrally includes a leg forming portion 18 extending in the vertical direction and a pair of yoke forming portions 19 that are bent by 90 degrees from both ends of the leg forming portion 18 and face each other. U-shaped.

3組のU字状鉄心ユニット14,15,16におけるそれぞれ一層目の3個のU字状鉄心17を、それぞれの脚形成部18が所定の点を中心にしてほぼ120度配置となるよう配置した状態で、上下の各ヨーク形成部19同士を突き合わせることで一層が形成される。脚形成部18およびヨーク形成部19は、U字状鉄心17を4層重ねて形成される。そして、後述するように、内側から2層目以降の一つのU字状鉄心17のヨーク形成部19の一部が、当該一つのU字状鉄心17とは異なる他の脚形成部18を形成する前層のU字状鉄心17のヨーク形成部19に順次重なるようにすることで、ヨーク形成部19の中央部にラップ接合構造20が形成されている。   The three U-shaped iron cores 17 of the first layer in the three sets of U-shaped iron core units 14, 15, 16 are arranged so that the respective leg forming portions 18 are arranged approximately 120 degrees around a predetermined point. In this state, one layer is formed by abutting the upper and lower yoke forming portions 19 together. The leg forming portion 18 and the yoke forming portion 19 are formed by stacking four U-shaped iron cores 17. As will be described later, a part of the yoke forming portion 19 of one U-shaped iron core 17 in the second and subsequent layers from the inside forms another leg forming portion 18 different from the one U-shaped iron core 17. The lap joint structure 20 is formed at the central portion of the yoke forming portion 19 by sequentially overlapping the yoke forming portion 19 of the U-shaped iron core 17 of the front layer.

このようにして形成される鉄心11は、3箇所の脚形成部18が所定の点を中心としてほぼ120度配置されるとともに、上下の各ヨーク形成部19がY字状をなしている。
ここで、このような構成の鉄心11において、ヨーク形成部19が順次重なってラップ接合構造20を形成する構成を、図4を参照して説明する。(a)はU字状鉄心17を2層目まで重ねた状態が示されている。2層目において、左手前側の脚形成部18を形成するU字状鉄心17−1のヨーク形成部19は、他の2個のU字状鉄心17のヨーク形成部19より長く設定されている。これにより、U字状鉄心17−1のヨーク形成部19の先端部が、Y字状をなすヨーク形成部の中央部を占有した形態となっている。
In the iron core 11 formed in this manner, the three leg forming portions 18 are arranged at approximately 120 degrees around a predetermined point, and the upper and lower yoke forming portions 19 have a Y-shape.
Here, in the iron core 11 having such a configuration, a configuration in which the yoke forming portions 19 are sequentially overlapped to form the lap joint structure 20 will be described with reference to FIG. (A) shows a state in which the U-shaped iron core 17 is stacked up to the second layer. In the second layer, the yoke forming portion 19 of the U-shaped iron core 17-1 that forms the leg forming portion 18 on the left front side is set longer than the yoke forming portions 19 of the other two U-shaped iron cores 17. . Thereby, the front-end | tip part of the yoke formation part 19 of the U-shaped iron core 17-1 becomes the form which occupied the center part of the Y-shaped yoke formation part.

(b)は、左手前の2層目のU字状鉄心17−1に、3層目のU字状鉄心17−2を重ねた状態が示されている。このU字状鉄心17−2のヨーク形成部19の長さは、2層目のU字状鉄心17−1のヨーク形成部19よりも短く設定されている。これに伴い、3層目のヨーク形成部の中央部は空いていて、2層目のU字状鉄心17−1のヨーク形成部19が露出している。(c)は、奥側の2層目のU字状鉄心17に、3層目のU字状鉄心17−3を重ねた状態が示されている。この3層目のU字状鉄心17−3のヨーク形成部19の長さは、2層目のU字状鉄心17のヨーク形成部19よりも長く設定されている。これにより、そのU字状鉄心17−3のヨーク形成部19の先端部は、2層目の前記U字状鉄心17−1のヨーク形成部19の先端部に上から重なり、3層目のY字状をなすヨーク形成部の中央部を占有した形態となっている。   (B) shows a state in which the U-shaped iron core 17-2 in the third layer is superimposed on the U-shaped iron core 17-1 in the second layer on the left front side. The length of the yoke forming portion 19 of the U-shaped iron core 17-2 is set to be shorter than the yoke forming portion 19 of the U-shaped iron core 17-1 in the second layer. Accordingly, the central portion of the third-layer yoke forming portion is vacant, and the yoke-forming portion 19 of the second-layer U-shaped iron core 17-1 is exposed. (C) shows a state in which the U-shaped iron core 17 in the third layer is superimposed on the U-shaped iron core 17 in the second layer on the back side. The length of the yoke forming portion 19 of the third-layer U-shaped iron core 17-3 is set longer than the yoke forming portion 19 of the second-layer U-shaped iron core 17. As a result, the tip of the yoke forming portion 19 of the U-shaped iron core 17-3 is overlapped with the tip of the yoke forming portion 19 of the U-shaped iron core 17-1 in the second layer from the top. The central portion of the Y-shaped yoke forming portion is occupied.

(d)は、右手前の2層目のU字状鉄心17に、3層目のU字状鉄心17−4を重ねた状態が示されている。このU字状鉄心17−4のヨーク形成部19の長さは、2層目のU字状鉄心17のヨーク形成部19と同じに設定されている。これに伴い、U字状鉄心17−4のヨーク形成部19の先端部が、奥側の3層目のU字状鉄心17−3の先端部に当接している。これにより、U字状鉄心17を3層目まで重ねた状態となる。   (D) shows a state in which the U-shaped iron core 17-4 of the third layer is superimposed on the U-shaped iron core 17 of the second layer on the right front side. The length of the yoke forming portion 19 of the U-shaped iron core 17-4 is set to be the same as that of the yoke forming portion 19 of the U-shaped iron core 17 in the second layer. In connection with this, the front-end | tip part of the yoke formation part 19 of the U-shaped iron core 17-4 is contact | abutting to the front-end | tip part of the U-shaped iron core 17-3 of the back | latter layer. Thereby, it will be in the state which accumulated the U-shaped iron core 17 to the 3rd layer.

(e)は、左手前の3層目のU字状鉄心17−2に、4層目のU字状鉄心17−5を重ねた状態が示されている。このU字状鉄心17−5のヨーク形成部19の長さは、3層目のU字状鉄心17−2のヨーク形成部19よりも短く設定されている。これに伴い、4層目のヨーク形成部の中央部は空いていて、3層目のU字状鉄心17−3のヨーク形成部19が露出している。(f)は、奥側の3層目のU字状鉄心17−3に、4層目のU字状鉄心17−6を重ねた状態が示されている。この4層目のU字状鉄心17−6のヨーク形成部19の長さは、3層目のU字状鉄心17−3のヨーク形成部19よりも短く設定されている。これに伴い、4層目のヨーク形成部の中央部は空いていて、3層目のU字状鉄心17−3のヨーク形成部19が露出している。   (E) shows a state in which the U-shaped iron core 17-5 in the fourth layer is superimposed on the U-shaped iron core 17-2 in the third layer on the left front side. The length of the yoke forming portion 19 of the U-shaped iron core 17-5 is set shorter than that of the yoke forming portion 19 of the third U-shaped iron core 17-2. Accordingly, the central portion of the fourth-layer yoke forming portion is vacant, and the yoke-forming portion 19 of the third-layer U-shaped iron core 17-3 is exposed. (F) shows a state in which the U-shaped iron core 17-3 in the fourth layer is superimposed on the U-shaped iron core 17-3 in the third layer on the back side. The length of the yoke forming portion 19 of the U-shaped iron core 17-6 of the fourth layer is set shorter than the yoke forming portion 19 of the U-shaped iron core 17-3 of the third layer. Accordingly, the central portion of the fourth-layer yoke forming portion is vacant, and the yoke-forming portion 19 of the third-layer U-shaped iron core 17-3 is exposed.

(g)は、右手前の3層目のU字状鉄心17−4に、4層目のU字状鉄心17−7を重ねた状態が示されている。このU字状鉄心17−7のヨーク形成部19の長さは、3層目のU字状鉄心17−3のヨーク形成部19よりも長く設定されている。これに伴い、U字状鉄心17−7のヨーク形成部19の先端部が、4層目のヨーク形成部の中央部を占有した形態となり、他の4層目のU字状鉄心17−5および17−6の先端部に当接している。これにより、U字状鉄心17を4層目まで重ねた状態となる。   (G) shows a state in which the U-shaped iron core 17-7 in the fourth layer is superimposed on the U-shaped iron core 17-4 in the third layer on the right front side. The length of the yoke forming portion 19 of the U-shaped iron core 17-7 is set longer than that of the yoke forming portion 19 of the third U-shaped iron core 17-3. Accordingly, the tip of the yoke forming portion 19 of the U-shaped iron core 17-7 occupies the center of the fourth-layer yoke forming portion, and the other U-shaped iron core 17-5 of the fourth layer is formed. And 17-6 are in contact with the tip. Thereby, it will be in the state which accumulated the U-shaped iron core 17 to the 4th layer.

ここで、このように構成される鉄心11には、上下のY字状をなすヨーク形成部における中央部に、3方向からのヨーク形成部19が重なり合うラップ接合構造20が形成される。前記コイル12は、図1に示すように、環状、この場合矩形の環状(枠状)をなしていて、3組のU字状鉄心ユニット14,15,16の各脚形成部に装着されている。各コイル12は、角形断面コイルである。   Here, in the iron core 11 configured as described above, a lap joint structure 20 in which the yoke forming portions 19 from three directions overlap is formed at the central portion of the upper and lower Y-shaped yoke forming portions. As shown in FIG. 1, the coil 12 has an annular shape, in this case, a rectangular annular shape (frame shape), and is attached to each leg forming portion of the three sets of U-shaped core units 14, 15, and 16. Yes. Each coil 12 is a square section coil.

前記締付け固定手段13は、鉄心11における前記ラップ接合構造20部分を締付け固定するものであり、上下のラップ接合構造20部分に対応して上下の2箇所に設けられる。この締付け固定手段13は、図5に示すように、上下2枚のクランプ板22と、これら2枚のクランプ板22を連結する3組の支柱部23を備えている。2枚のクランプ板22は、それぞれ三角形をなしていて、それぞれの角部の内側に円形の挿通孔24が形成されている。3組の各支柱部23は、2枚のクランプ板22間に配置される円筒状の筒部材25と、ボルト26と、ナット27とから構成されている。ボルト26は、一端部に頭部26aを有するとともに、他端部に雄ねじ部26bを有している。ナット27は、雄ねじ部26bに螺合するねじ孔である雌ねじ部27aを有している。   The tightening and fixing means 13 fastens and fixes the lap joint structure 20 portion of the iron core 11 and is provided at two upper and lower portions corresponding to the upper and lower lap joint structure 20 portions. As shown in FIG. 5, the tightening and fixing means 13 includes two upper and lower clamp plates 22 and three sets of column portions 23 that connect the two clamp plates 22. The two clamp plates 22 each have a triangular shape, and a circular insertion hole 24 is formed inside each corner. Each of the three sets of column portions 23 includes a cylindrical tube member 25 disposed between two clamp plates 22, a bolt 26, and a nut 27. The bolt 26 has a head portion 26a at one end and a male screw portion 26b at the other end. The nut 27 has a female screw portion 27a that is a screw hole screwed into the male screw portion 26b.

締付け固定手段13は、次のようにして鉄心11におけるラップ接合構造20部分に取り付けられる。図2に示すように、2枚のクランプ板22を、ラップ接合構造20部分を上下から挟み込むように配置するとともに、2枚のクランプ板22間に3本の筒部材25を配置する。このとき、上下のクランプ板22を、3箇所の挿通孔24および筒部材25が、鉄心11において隣り合ったヨーク形成部19間に形成される3箇所のコーナー部28(図3参照)に位置するように配置する。   The fastening means 13 is attached to the lap joint structure 20 portion of the iron core 11 as follows. As shown in FIG. 2, two clamp plates 22 are arranged so as to sandwich the lap joint structure 20 portion from above and below, and three cylindrical members 25 are arranged between the two clamp plates 22. At this time, the upper and lower clamp plates 22 are positioned at three corner portions 28 (see FIG. 3) where the three insertion holes 24 and the cylindrical member 25 are formed between the yoke forming portions 19 adjacent to each other in the iron core 11. Arrange to do.

そして、3本のボルト26の先端部を、一方のクランプ板22の挿通孔24、筒部材25の貫通孔、他方のクランプ板22の挿通孔24を順に貫通させた状態に挿通し、2枚目のクランプ板22から突出した雄ねじ部26bにナット27の雌ねじ部27aを螺合させることにより、2枚のクランプ板22を連結する。これにより、鉄心11におけるラップ接合構造20部分を2枚のクランプ板22で挟み込んで締付け固定することができる。このとき、2枚のクランプ板22間に位置する3本の筒部材25は、鉄心11において隣り合ったヨーク形成部19間に形成される3箇所のコーナー部28に位置している。   Then, the tip portions of the three bolts 26 are inserted through the insertion hole 24 of one clamp plate 22, the through hole of the cylindrical member 25, and the insertion hole 24 of the other clamp plate 22 in order, and two pieces The two clamp plates 22 are connected by screwing the female screw portion 27a of the nut 27 into the male screw portion 26b protruding from the clamp plate 22 of the eye. Thereby, the lap joint structure 20 part in the iron core 11 can be clamped and fixed by being sandwiched between the two clamp plates 22. At this time, the three cylindrical members 25 positioned between the two clamp plates 22 are positioned at three corner portions 28 formed between adjacent yoke forming portions 19 in the iron core 11.

次に、変圧器10の製造方法について説明する。まず、図7(a)に示すように、3組の各U字状鉄心ユニット14,15,16の脚形成部18に角型のコイル12を装着する。図6には、各U字状鉄心ユニット14,15,16におけるU字状鉄心17の重ね方と、コイル12の関係を示している。各U字状鉄心ユニット14,15,16は、U字状鉄心17におけるヨーク形成部19の先端部側に突出した部分と引っ込んだ部分とがあり、入り組んだ形態となっている。   Next, a method for manufacturing the transformer 10 will be described. First, as shown in FIG. 7A, the square coil 12 is mounted on the leg forming portion 18 of each of the three sets of U-shaped core units 14, 15, 16. FIG. 6 shows a relationship between the coil 12 and the way in which the U-shaped cores 17 are overlapped in each U-shaped core unit 14, 15, 16. Each U-shaped iron core unit 14, 15, 16 has a protruding portion and a retracting portion in the U-shaped iron core 17 on the tip side of the yoke forming portion 19, and is in an intricate form.

そして、コイル12を装着した3組のU字状鉄心ユニット14,15,16を、それぞれのヨーク形成部19の先端部同士が向き合うようにして合体させる(図7(b)参照)。これにより、各組のU字状鉄心ユニット14,15,16におけるU字状鉄心17のヨーク形成部19が重なり合うようになり、上下のヨーク形成部19の各中央部に前述したラップ接合構造20が形成されるようになる。また、3組のU字状鉄心ユニット14,15,16の脚形成部18が、所定の点を中心にしてほぼ120度配置となるよう配置される。   Then, the three sets of U-shaped core units 14, 15, and 16 equipped with the coils 12 are combined so that the tip portions of the respective yoke forming portions 19 face each other (see FIG. 7B). As a result, the yoke forming portions 19 of the U-shaped iron core 17 in the U-shaped iron core units 14, 15, 16 of each set overlap each other, and the above-described lap joint structure 20 is provided at each central portion of the upper and lower yoke forming portions 19. Will be formed. Further, the leg forming portions 18 of the three sets of U-shaped iron core units 14, 15, and 16 are arranged so as to be arranged at approximately 120 degrees around a predetermined point.

次に、上下の各ラップ接合構造20部分に、前記締付け固定手段13を前述したように取り付けることで、各ラップ接合構造20部分を締付け固定する(図7(b),(c)参照)。この場合、上方側の締付け固定手段13においては、ボルト26を2枚のクランプ板22および筒部材25に対して上方から挿通し、下方側の締付け固定手段13においては、ボルト26を2枚のクランプ板22および筒部材25に対して下方から挿通する。これにより、3組のU字状鉄心ユニット14,15,16が、上下2組の締付け固定手段13により強固に連結された状態となり、強固な鉄心11ひいては変圧器10を形成することができる。   Next, the fastening fixing means 13 is attached to the upper and lower lap joining structure 20 portions as described above, thereby fastening and fixing each lap joining structure 20 portion (see FIGS. 7B and 7C). In this case, in the upper clamping and fixing means 13, the bolts 26 are inserted from above into the two clamp plates 22 and the cylindrical member 25, and in the lower clamping and fixing means 13, two bolts 26 are inserted. The clamp plate 22 and the cylindrical member 25 are inserted from below. As a result, the three sets of U-shaped iron core units 14, 15, 16 are firmly connected by the two upper and lower sets of tightening and fixing means 13, and the strong iron core 11 and thus the transformer 10 can be formed.

このとき、2枚のクランプ板22間に位置する各筒部材25は、鉄心11において隣り合ったヨーク形成部19間に形成される3箇所のコーナー部28に位置している。これにより、1本の筒部材25が隣り合った2箇所のヨーク形成部19の2面を位置決めするようになり、3本の筒部材25でヨーク形成部19の6面すべての位置決めをすることができる。   At this time, each cylindrical member 25 positioned between the two clamp plates 22 is positioned at three corner portions 28 formed between adjacent yoke forming portions 19 in the iron core 11. As a result, one cylindrical member 25 positions the two surfaces of the two adjacent yoke forming portions 19, and the three cylindrical members 25 position all six surfaces of the yoke forming portion 19. Can do.

上記した実施形態によれば、次のような作用効果を得ることができる。
変圧器用の鉄心11としては、U字状鉄心17を複数層重ねて構成された3組のU字状鉄心ユニット14,15,16を合体して、脚形成部18が所定の点を中心としてほぼ120度配置となるように配置した状態で、ヨーク形成部19にラップ接合構造20を有する構成とした。これにより、従来のY形鉄心7と同様に、等しい磁路長を各脚に配分し、余分な鉄心を極力少なくすることができる。しかも、従来のデルタ鉄心とは違い、円形断面コイルだけでなく、角形断面のコイル12に対しても高い鉄心占積率を維持することができる利点もある。
According to the above-described embodiment, the following operational effects can be obtained.
As the iron core 11 for a transformer, three sets of U-shaped iron core units 14, 15, 16 configured by stacking a plurality of U-shaped iron cores 17 are combined, and the leg forming portion 18 is centered on a predetermined point. The yoke forming portion 19 has a lap joint structure 20 in a state of being arranged so as to be approximately 120 degrees. Thereby, similarly to the conventional Y-shaped iron core 7, an equal magnetic path length can be distributed to each leg, and an extra iron core can be reduced as much as possible. Moreover, unlike the conventional delta core, there is an advantage that a high core space factor can be maintained not only for the circular cross-section coil but also for the coil 12 having a square cross section.

また、Y字状をなすヨーク形成部19の中央部に、複数層のヨーク形成部19が重なるラップ接合構造20を有する構成としているので、一つの脚から隣の脚へ流れる磁束は、ヨーク形成部19の延び方向だけではなく、重なり方向(ラップ方向)にも流れ易くなり、従来のY形鉄心7においてヨーク形成部5bと三角形の中央継鉄部6とを接合する構造のものとは違い、磁束の流れがスムーズであり、接合部での漏れ磁束の発生が少なく、鉄損の増加や励磁電流の増加を極力抑えることが可能となる。   Further, since the lap joint structure 20 is formed in the central portion of the Y-shaped yoke forming portion 19 in which a plurality of yoke forming portions 19 overlap, the magnetic flux flowing from one leg to the adjacent leg is It is easy to flow not only in the extending direction of the part 19 but also in the overlapping direction (lapping direction), which is different from the conventional Y-shaped iron core 7 in which the yoke forming part 5b and the triangular central yoke part 6 are joined. The flow of magnetic flux is smooth, the occurrence of leakage magnetic flux at the joint is small, and it is possible to suppress the increase in iron loss and the increase in excitation current as much as possible.

しかも、前記ラップ接合構造20部分を2枚のクランプ板22で挟み込んで締付け固定する締付け固定手段13を備えることで、強固な鉄心11を構成することができ、ひいては強固な変圧器10を構成することができる。   In addition, a strong iron core 11 can be configured by providing the fixing means 13 for clamping and fixing the lap joint structure 20 portion between the two clamp plates 22, thereby forming a strong transformer 10. be able to.

締付け固定手段13は、隣り合ったヨーク形成部19間に形成される3箇所の各コーナー部28に位置させて支柱部23を有し、この支柱部23により前記2枚のクランプ板22を締め込んでラップ接合構造20部分を締付け固定する構成とした。これにより、前述したように、支柱部23における筒部材25が隣り合った2箇所のヨーク形成部19の2面を位置決めするようになり、3本の筒部材25でヨーク形成部19の6面すべての位置決めをすることができ、U字状鉄心17のずれを効果的に防止することができる。この場合、締付け固定手段13を設けるについて、鉄心11側に穴開けなどの特別な加工を施す必要がない利点もある。   The tightening and fixing means 13 has column portions 23 positioned at three corner portions 28 formed between adjacent yoke forming portions 19, and the two clamp plates 22 are tightened by the column portions 23. It was set as the structure which clamp | tightens and fixes 20 lap joining structure 20 part. As a result, as described above, the two surfaces of the two yoke forming portions 19 where the cylindrical member 25 in the column portion 23 is adjacent are positioned, and the six surfaces of the yoke forming portion 19 are formed by the three cylindrical members 25. All the positioning can be performed, and the deviation of the U-shaped iron core 17 can be effectively prevented. In this case, the provision of the tightening and fixing means 13 is advantageous in that it is not necessary to perform special processing such as drilling on the iron core 11 side.

また、U字状鉄心17を複数層重ねて構成されたU字状鉄心ユニット14,15,16を3組備え、これら3組のU字状鉄心ユニット14,15,16の各脚形成部18に、環状に形成されたコイル12を装着し、この後、これら3組のU字状鉄心ユニット14,15,16を合体させることでヨーク形成部19にラップ接合構造20を有する鉄心11を形成し、この後、前記ラップ接合構造20部分を、締付け固定手段13が備えた対向する2枚のクランプ板22で挟み込んで締付け固定するようにした。このような製造方法を採用することで、コイル12の装着が容易にでき、しかも、コイル12の空間占有率を高くでき、コンパクトな変圧器10を形成することが可能となる。   Further, three sets of U-shaped core units 14, 15, 16 configured by stacking a plurality of U-shaped cores 17 are provided, and each leg forming portion 18 of these three sets of U-shaped core units 14, 15, 16 is provided. The coil 12 formed in an annular shape is mounted, and thereafter, the three U-shaped core units 14, 15 and 16 are combined to form the core 11 having the lap joint structure 20 in the yoke forming portion 19. Thereafter, the lap joint structure 20 portion is clamped and fixed by being sandwiched between two opposing clamp plates 22 provided in the clamp fixing means 13. By adopting such a manufacturing method, the coil 12 can be easily mounted, and the space occupancy of the coil 12 can be increased, and the compact transformer 10 can be formed.

(第2実施形態)
図8は第2実施形態を示している。この第2実施形態は、締付け固定手段13における支柱部23の筒部材の構成が第1実施形態とは異なっている。筒部材30,31は、上下に2分割され、それぞれクランプ板22に溶接などにより固着されている。この場合、ボルト26の先端部を、一方のクランプ板22の挿通孔24、筒部材30の挿通孔、筒部材31の挿通孔、他方のクランプ板22の挿通孔24に順に挿通し、その挿通孔24から突出した先端部の雄ねじ部26bにナット27を締め付ける構成となっている。上下の筒部材30,31間に隙間が形成されている。この第2実施形態においても、第1実施形態と同様な作用効果を得ることができる。
(Second Embodiment)
FIG. 8 shows a second embodiment. The second embodiment is different from the first embodiment in the configuration of the cylindrical member of the column portion 23 in the tightening and fixing means 13. The cylindrical members 30 and 31 are divided into two in the vertical direction, and are fixed to the clamp plate 22 by welding or the like. In this case, the tip of the bolt 26 is inserted through the insertion hole 24 of the one clamp plate 22, the insertion hole of the cylindrical member 30, the insertion hole of the cylindrical member 31, and the insertion hole 24 of the other clamp plate 22 in order. The nut 27 is fastened to the male thread portion 26 b at the tip portion protruding from the hole 24. A gap is formed between the upper and lower cylindrical members 30 and 31. In the second embodiment, the same effects as those of the first embodiment can be obtained.

(第3実施形態)
図9は第3実施形態を示している。この第3実施形態は、第2実施形態とは次の点が異なっている。図9(a)において、下側のクランプ板22に固着された筒部材32の挿通孔に雌ねじ部32aを形成している。ボルト33の上下方向の長さ寸法は、第1および第2の実施形態におけるボルト26よりも短く設定されていて、先端部に雄ねじ部33bが形成されている。ナット27は設けられていない。
(Third embodiment)
FIG. 9 shows a third embodiment. The third embodiment differs from the second embodiment in the following points. In FIG. 9A, a female screw portion 32 a is formed in the insertion hole of the cylindrical member 32 fixed to the lower clamp plate 22. The length of the bolt 33 in the vertical direction is set shorter than that of the bolt 26 in the first and second embodiments, and a male screw portion 33b is formed at the tip. The nut 27 is not provided.

この場合、ボルト33の先端部を、一方のクランプ板22の挿通孔24、筒部材30の挿通孔に挿通し、その先端部の雄ねじ部33bを筒部材32の雌ねじ部32aに螺合させることにより、2枚のクランプ板22を連結する構成となっている。上下の筒部材30,32間に隙間が形成されている。この第3実施形態によれば、ナット27を不要にできる利点がある。   In this case, the distal end portion of the bolt 33 is inserted into the insertion hole 24 of the one clamp plate 22 and the insertion hole of the cylindrical member 30, and the male screw portion 33 b at the distal end portion is screwed into the female screw portion 32 a of the cylindrical member 32. Thus, the two clamp plates 22 are connected. A gap is formed between the upper and lower cylindrical members 30 and 32. According to the third embodiment, there is an advantage that the nut 27 can be eliminated.

(第4実施形態)
第4実施形態について図10から図14を参照して説明する。この場合、締付け固定手段13は、鉄心11におけるヨーク形成部19のラップ接合構造20部分に対応して上下2箇所に設けられ、これら2箇所の締付け固定手段13間に、これらの間を支持する中間支柱部35を設けている。中間支柱部35は、図13に示すように、円柱状をなしていて、その上下両端部に雄ねじ部35a,35bを形成している。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. In this case, the tightening and fixing means 13 are provided at two upper and lower positions corresponding to the lap joint structure 20 portion of the yoke forming portion 19 in the iron core 11, and the space between these two fixing and fixing means 13 is supported. An intermediate strut portion 35 is provided. As shown in FIG. 13, the intermediate strut portion 35 has a columnar shape, and male screw portions 35 a and 35 b are formed at both upper and lower end portions thereof.

中間支柱部35の上部の雄ねじ部35aに対応するクランプ板22の下面の中央部には、図示はしないが、雌ねじ部を有する短円筒状の受け部36が固着されている。また、中間支柱部35の下部の雄ねじ部35bに対応するクランプ板22の上面の中央部には、雌ねじ部37を有する短円筒状の受け部38が固着されている。上下の締付け固定手段13の各ナット27は、予め対応するクランプ板22に固着しておく。   Although not shown, a short cylindrical receiving portion 36 having a female screw portion is fixed to the central portion of the lower surface of the clamp plate 22 corresponding to the male screw portion 35a on the upper portion of the intermediate support column 35. A short cylindrical receiving portion 38 having a female screw portion 37 is fixed to the central portion of the upper surface of the clamp plate 22 corresponding to the male screw portion 35 b below the intermediate support column 35. Each nut 27 of the upper and lower fastening means 13 is fixed to the corresponding clamp plate 22 in advance.

この場合、上下の2個の締付け固定手段13間に中間支柱部35を設けるものを組み立てる場合には、例えば次のようにして行う。まず、中間支柱部35の上下両端部の雄ねじ部35a,35bを、上下の締付け固定手段13におけるクランプ板22の受け部36,38の雌ねじ部37に螺合させ、中間支柱部35の上下両端部に2枚のクランプ板22を連結しておく。   In this case, when assembling a structure in which the intermediate strut portion 35 is provided between the two upper and lower fastening means 13, for example, the following is performed. First, the male thread portions 35a and 35b at both upper and lower end portions of the intermediate strut portion 35 are screwed into the female thread portions 37 of the receiving portions 36 and 38 of the clamp plate 22 in the upper and lower tightening fixing means 13 so Two clamp plates 22 are connected to the part.

そして、コイル12を装着した3組のU字状鉄心ユニット14,15,16を合体させる際に、中間支柱部35の上下両端部に2枚のクランプ板22を連結したものを、3組のU字状鉄心ユニット14,15,16の中央部に配置した状態とする(図14参照)。この後、中間支柱部35の上側に連結されたクランプ板22に、上側の締付け固定手段13を組み付け、また、中間支柱部35の下側に連結されたクランプ板22に、下側の締付け固定手段13を組み付ける。これにより、図10に示すように、上下のラップ接合構造20部分を上下の締付け固定手段13にて締め付け固定するともに、これら締付け固定手段13間を中間支柱部35にて支持した構成とすることができる。   When three sets of U-shaped iron core units 14, 15, and 16 equipped with the coil 12 are combined, two sets of clamp plates 22 are connected to the upper and lower end portions of the intermediate strut portion 35. It is set as the state arrange | positioned in the center part of U-shaped iron core unit 14,15,16 (refer FIG. 14). Thereafter, the upper clamping and fixing means 13 is assembled to the clamp plate 22 connected to the upper side of the intermediate column part 35, and the lower clamp and fixed to the clamp plate 22 connected to the lower side of the intermediate column part 35. The means 13 is assembled. As a result, as shown in FIG. 10, the upper and lower lap joint structure 20 portions are fastened and fixed by the upper and lower tightening fixing means 13, and the space between these tightening fixing means 13 is supported by the intermediate strut portion 35. Can do.

このような構成とした場合には、鉄心11を一層強固にでき、ひいては変圧器10を一層強固に構成することができる。
上記した実施形態において、中間支柱部35の上下の雄ねじ部35a,35b、および受け部36,38の雌ねじ部37は、必要に応じて設ければよく、中間支柱部35の上下両端部と、受け部36,38は嵌合させることができればよい。
In such a configuration, the iron core 11 can be further strengthened, and as a result, the transformer 10 can be further strengthened.
In the above-described embodiment, the upper and lower male threaded portions 35a and 35b of the intermediate strut portion 35 and the female threaded portions 37 of the receiving portions 36 and 38 may be provided as necessary. The receiving parts 36 and 38 should just be able to be fitted.

(その他の実施形態)
鉄心11を構成するU字状鉄心ユニット14,15,16は、U字状鉄心17を4層重ねるものに限られず、U字状鉄心17を2層、3層、あるいは5層以上重ねる構成とすることもできる。
静止誘導機器としては、変圧器10に限られず、リアクトルにも適用できる。
(Other embodiments)
The U-shaped iron core units 14, 15, and 16 constituting the iron core 11 are not limited to the four-layered U-shaped iron cores 17, and the U-shaped iron cores 17 are stacked in two, three, or five or more layers. You can also
The static induction device is not limited to the transformer 10 and can be applied to a reactor.

以上説明したように、本実施形態によれば、従来のY形鉄心の利点を生かしながらも、その従来のY形鉄心の課題である磁束漏れや鉄損の増加を極力抑えることができ、しかも強固な鉄心を備えた静止誘導機器を提供することができる。   As described above, according to this embodiment, while taking advantage of the conventional Y-shaped iron core, it is possible to suppress the increase in magnetic flux leakage and iron loss, which are the problems of the conventional Y-shaped iron core, as much as possible. A static induction device having a strong iron core can be provided.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、10は変圧器(静止誘導機器)、11は鉄心、12はコイル、13は締付け固定手段、14,15,16はU字状鉄心ユニット、17はU字状鉄心、18は脚形成部、19はヨーク形成部、20はラップ接合構造、22はクランプ板、23は支柱部、25は筒部材、26はボルト、27はナット、28はコーナー部、30,31は筒部材、32は筒部材、35は中間支柱部、36,38は受け部を示す。   In the drawings, 10 is a transformer (stationary induction device), 11 is an iron core, 12 is a coil, 13 is a fastening means, 14, 15 and 16 are U-shaped iron core units, 17 is a U-shaped iron core, and 18 is a leg formation. Part, 19 is a yoke forming part, 20 is a lap joint structure, 22 is a clamp plate, 23 is a support part, 25 is a cylindrical member, 26 is a bolt, 27 is a nut, 28 is a corner part, 30 and 31 are cylindrical members, 32 Is a cylindrical member, 35 is an intermediate strut portion, and 36 and 38 are receiving portions.

Claims (4)

一つの脚形成部および当該脚形成部の両端部にヨーク形成部を有するほぼU字状をなす3個のU字状鉄心を、前記脚形成部が所定の点を中心としてほぼ120度配置となるように配置した状態で、前記ヨーク形成部同士を突き合わせて一層が形成され、前記脚形成部およびヨーク形成部は前記U字状鉄心を複数層重ねて形成され、内側から2層目以降の一つのU字状鉄心のヨーク形成部の一部が、当該一つのU字状鉄心とは異なる他の脚形成部を形成する前層のU字状鉄心のヨーク形成部に順次重なるように構成されたラップ接合構造を有する静止誘導機器用の鉄心と、
この鉄心の3箇所の前記脚形成部に設けられたコイルと、
前記鉄心において前記ヨーク形成部の前記ラップ接合構造部分を、対向する2枚のクランプ板で挟み込んで締付け固定する締付け固定手段と、
を備えたことを特徴とする静止誘導機器。
One leg forming part and three U-shaped iron cores having a substantially U shape having yoke forming parts at both ends of the leg forming part are arranged at approximately 120 degrees around the predetermined point. In such a state, one layer is formed by abutting the yoke forming portions together, and the leg forming portion and the yoke forming portion are formed by stacking a plurality of the U-shaped iron cores, and the second and subsequent layers from the inside are formed. A part of the yoke forming part of one U-shaped core is configured to sequentially overlap the yoke forming part of the U-shaped core of the previous layer that forms another leg forming part different from the one U-shaped core. An iron core for stationary induction equipment having a lap joint structure,
Coils provided in the three leg forming portions of the iron core;
Tightening fixing means for clamping and fixing the lap joint structure portion of the yoke forming portion between the two opposing clamp plates in the iron core;
A stationary induction device characterized by comprising:
前記締付け固定手段は、隣り合った前記ヨーク形成部間に形成される3箇所の各コーナー部に位置させて支柱部を有し、これら支柱部により前記2枚のクランプ板を連結して前記ラップ接合構造部分を締付け固定することを特徴とする請求項1記載の静止誘導機器。   The tightening and fixing means has struts located at three corners formed between the adjacent yoke forming portions, and the two clamp plates are connected to each other by the struts. The stationary induction device according to claim 1, wherein the joining structure portion is fastened and fixed. 前記締付け固定手段は、前記鉄心における前記ヨーク形成部の前記ラップ接合構造部分に対応して対向する2箇所に設けられ、これら2箇所の前記締付け固定手段間に、これらの間を支持する中間支柱部を設けたことを特徴とする請求項1または2記載の静止誘導機器。   The tightening fixing means is provided at two locations corresponding to the lap joint structure portion of the yoke forming portion of the iron core, and an intermediate strut that supports between the two tightening fixing means. The stationary guidance device according to claim 1, further comprising a portion. 請求項1から3のいずれか一項に記載の静止誘導機器を製造する方法であって、
前記U字状鉄心を複数層重ねて構成されたU字状鉄心ユニットを3組備え、これら3組のU字状鉄心ユニットはそれぞれの前記ヨーク形成部の先端部側が入り組んだ形態となっていて、これら3組のU字状鉄心ユニットの各脚形成部に、環状に形成された前記コイルを装着し、この後、これら3組のU字状鉄心ユニットを、前記ヨーク形成部が他のU字状鉄心ユニットのヨーク形成部と互いに重なるように合体させることで前記ヨーク形成部の中心部に前記ラップ接合構造を有する前記鉄心を形成し、この後、前記ラップ接合構造部分を、前記締付け固定手段が備えた対向する2枚の前記クランプ板で挟み込んで締付け固定するようにしたことを特徴とする静止誘導機器の製造方法。
A method for manufacturing the stationary induction device according to any one of claims 1 to 3,
Three sets of U-shaped core units configured by stacking a plurality of layers of the U-shaped cores are provided, and the three sets of U-shaped core units are in a form in which the tip end sides of the respective yoke forming portions are complicated. The coils formed in an annular shape are attached to the respective leg forming portions of the three sets of U-shaped core units, and then the three sets of U-shaped core units are connected to the other U-shaped core units. The iron core having the lap joint structure is formed in the central portion of the yoke forming portion by being united with the yoke forming portion of the letter-shaped iron core unit, and thereafter, the lap joint structure portion is fastened and fixed. A method of manufacturing a stationary induction device, characterized in that it is clamped and fixed between two opposing clamp plates provided in the means.
JP2014015621A 2014-01-30 2014-01-30 Stationary induction apparatus and method for manufacturing the same Pending JP2015142095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014015621A JP2015142095A (en) 2014-01-30 2014-01-30 Stationary induction apparatus and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014015621A JP2015142095A (en) 2014-01-30 2014-01-30 Stationary induction apparatus and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015142095A true JP2015142095A (en) 2015-08-03

Family

ID=53772248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014015621A Pending JP2015142095A (en) 2014-01-30 2014-01-30 Stationary induction apparatus and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015142095A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808761A (en) * 2017-12-04 2018-03-16 河南省森电电力设备股份有限公司 A kind of anti-sudden short circuit three dimensional wound core transformer
CN108987064A (en) * 2017-06-05 2018-12-11 发那科株式会社 Reactor
JP2018198303A (en) * 2016-09-08 2018-12-13 ファナック株式会社 Reactor comprising first end plate and second end plate
JP2019029369A (en) * 2017-07-25 2019-02-21 ファナック株式会社 Reactor with end plate and base
CN110211776A (en) * 2018-02-28 2019-09-06 发那科株式会社 Electromagnetic equipment
US10770216B2 (en) * 2017-03-13 2020-09-08 Fanuc Corporation Reactor
JP2020178081A (en) * 2019-04-19 2020-10-29 ファナック株式会社 Reactor including outer peripheral iron core and manufacturing method thereof
JP7427512B2 (en) 2020-04-10 2024-02-05 東北電力株式会社 electromagnetic equipment
DE102018113904B4 (en) 2017-06-12 2024-03-28 Fanuc Corporation Choke with connection and base
WO2024077828A1 (en) * 2022-10-13 2024-04-18 海鸿电气有限公司 Transformer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018198303A (en) * 2016-09-08 2018-12-13 ファナック株式会社 Reactor comprising first end plate and second end plate
US10580565B2 (en) 2016-09-08 2020-03-03 Fanuc Corporation Reactor including first end plate and second end plate
US10770216B2 (en) * 2017-03-13 2020-09-08 Fanuc Corporation Reactor
CN108987064A (en) * 2017-06-05 2018-12-11 发那科株式会社 Reactor
JP2018206949A (en) * 2017-06-05 2018-12-27 ファナック株式会社 Reactor including outer circumference core
DE102018112785B4 (en) 2017-06-05 2023-07-20 Fanuc Corporation Choke with an outer circumferential iron core
US10600551B2 (en) 2017-06-05 2020-03-24 Fanuc Corporation Reaction having outer peripheral iron core
DE102018113904B4 (en) 2017-06-12 2024-03-28 Fanuc Corporation Choke with connection and base
US10650960B2 (en) 2017-07-25 2020-05-12 Fanuc Corporation Reactor having end plate and pedestal
JP2019029369A (en) * 2017-07-25 2019-02-21 ファナック株式会社 Reactor with end plate and base
CN107808761A (en) * 2017-12-04 2018-03-16 河南省森电电力设备股份有限公司 A kind of anti-sudden short circuit three dimensional wound core transformer
CN110211776A (en) * 2018-02-28 2019-09-06 发那科株式会社 Electromagnetic equipment
JP2020178081A (en) * 2019-04-19 2020-10-29 ファナック株式会社 Reactor including outer peripheral iron core and manufacturing method thereof
JP7088876B2 (en) 2019-04-19 2022-06-21 ファナック株式会社 Reactor including outer peripheral iron core and its manufacturing method
US11521783B2 (en) 2019-04-19 2022-12-06 Fanuc Corporation Reactor including outer iron-core and method for manufacturing the same
JP7427512B2 (en) 2020-04-10 2024-02-05 東北電力株式会社 electromagnetic equipment
WO2024077828A1 (en) * 2022-10-13 2024-04-18 海鸿电气有限公司 Transformer

Similar Documents

Publication Publication Date Title
JP2015142095A (en) Stationary induction apparatus and method for manufacturing the same
JP4447619B2 (en) Laminated iron core
US9013263B2 (en) Wound iron core for static apparatus, amorphous transformer and coil winding frame for transformer
WO2014073238A1 (en) Reactor device
JP6483312B2 (en) Stacked iron core structure and transformer provided with the same
US20140009031A1 (en) Motor stator and motor
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
JP4722589B2 (en) Stator laminated core
CN109256266B (en) Three-phase reactor
JP7047931B2 (en) Winding core and transformer
JP5722941B2 (en) Iron core for static induction equipment
JP6577545B2 (en) Three-phase transformer
JP2014204120A (en) Method of manufacturing iron core for stationary induction apparatus
TW201814743A (en) Magnetic core strip and magnetic core
US10629359B2 (en) AC reactor
JP5005169B2 (en) Transformer
JP5432078B2 (en) Transformer
JP4381351B2 (en) Three-phase winding core
JP2018186113A (en) Stationary induction apparatus
JPH09275020A (en) Triangular configuration tripod iron core transformer
JP2009010253A (en) High-frequency reactor
JP2004349617A (en) Dust core for reactor
JPH0644535B2 (en) Stationary induction electric iron core
JPH0124916Y2 (en)
US20200075205A1 (en) Iron core-type reactor having gaps