JP6397349B2 - Three-phase five-legged iron core and stationary electromagnetic equipment - Google Patents

Three-phase five-legged iron core and stationary electromagnetic equipment Download PDF

Info

Publication number
JP6397349B2
JP6397349B2 JP2015027379A JP2015027379A JP6397349B2 JP 6397349 B2 JP6397349 B2 JP 6397349B2 JP 2015027379 A JP2015027379 A JP 2015027379A JP 2015027379 A JP2015027379 A JP 2015027379A JP 6397349 B2 JP6397349 B2 JP 6397349B2
Authority
JP
Japan
Prior art keywords
iron core
phase
wound
legged
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015027379A
Other languages
Japanese (ja)
Other versions
JP2016152248A (en
Inventor
栗田 直幸
直幸 栗田
尚平 上野
尚平 上野
佐藤 孝平
孝平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2015027379A priority Critical patent/JP6397349B2/en
Priority to CN201610066154.XA priority patent/CN105895328B/en
Publication of JP2016152248A publication Critical patent/JP2016152248A/en
Application granted granted Critical
Publication of JP6397349B2 publication Critical patent/JP6397349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、三相五脚型鉄心およびその三相五脚型鉄心を用いた静止電磁機器に関する。   The present invention relates to a three-phase five-legged iron core and a stationary electromagnetic device using the three-phase five-legged iron core.

静止電磁機器(変圧器、リアクトルなど)の鉄心は、渦電流による損失を抑制することを目的に、薄帯状磁性材を用いた巻鉄心により構成されている。ここで、薄帯状磁性材は、極薄電磁鋼板、アモルファス、ナノ結晶合金などの低損失磁性材料を厚さが100μm以下の薄帯に成形したものである。このような薄帯状磁性材を規定の長さに切断して多数枚を重ね、ラップジョイント接合部などの開放端を備えたU字型の鉄心を構成し、開放端からコイルを挿入後、その開放端を閉じることにより、略円形環状または略矩形環状のいわゆる巻鉄心が構成される。   An iron core of a static electromagnetic device (transformer, reactor, etc.) is composed of a wound iron core using a thin ribbon-like magnetic material for the purpose of suppressing loss due to eddy current. Here, the ribbon-shaped magnetic material is obtained by forming a low-loss magnetic material such as an ultrathin electromagnetic steel sheet, amorphous, or nanocrystalline alloy into a ribbon having a thickness of 100 μm or less. Such a ribbon-shaped magnetic material is cut into a specified length and stacked in large numbers to form a U-shaped iron core having an open end such as a lap joint joint, and after inserting a coil from the open end, By closing the open end, a so-called wound iron core having a substantially circular ring shape or a substantially rectangular ring shape is formed.

三相静止電磁機器は、三相のコイルを備えた以上のような巻鉄心を複数個並べることで構成されるが、その配置構成方法には、三相三脚型および三相五脚型の2つがある。三相コイルの両側に側脚を備えた三相五脚型鉄心は、側脚を持たない三相三脚型に比べて筐体の幅が大きくなるものの高さを抑えることができる。そのため、三相五脚型鉄心は、とくに筐体を低くしたい用途に用いられ、また、設置にあたっての安定性で有利なことから、大型の三相静止電磁機器に採用されることが多い。なお、特許文献1には、巻鉄心を用いた変圧器の製造方法の例が開示されている(特許文献1の図1〜図19など参照)。   A three-phase static electromagnetic device is configured by arranging a plurality of wound cores having a three-phase coil as described above. The arrangement and configuration method includes two-phase three-legged type and three-phase five-legged type. There is one. A three-phase five-legged iron core provided with side legs on both sides of a three-phase coil can suppress the height of the case although the width of the housing is larger than a three-phase tripod type without side legs. For this reason, the three-phase five-legged iron core is used particularly for applications where it is desired to lower the casing, and because it is advantageous in terms of stability in installation, it is often used in large three-phase static electromagnetic devices. Patent Document 1 discloses an example of a method for manufacturing a transformer using a wound iron core (see FIGS. 1 to 19 of Patent Document 1).

また、三相五脚型鉄心に限らず一般的な静止電磁機器では、コイルからの漏洩磁束が鉄心の固定金具類や収納タンクなどの周辺構造物と鎖交することにより漂遊損が生じることから、これを抑制する技術が多くの文献に開示されている。例えば、特許文献2には、漂遊損を減ずるために、「断面L字型の鉄心締付金具17,18の表面に高透磁率の磁気シールド20,21が、平板状の鉄心締付金具19,19の表面に高透磁率の磁気シールド22,22がそれぞれ設けられ、磁気シールド20,22,21は内側巻線15および外側巻線16の周囲に閉磁路を形成する。」ことが記載されている(特許文献2の段落0020、図4参照)。   Also, in general static electromagnetic devices, not limited to three-phase five-legged cores, stray loss occurs due to leakage flux from the coils interlinking with peripheral structures such as iron core fixings and storage tanks. Many techniques have disclosed techniques for suppressing this. For example, in Patent Document 2, in order to reduce stray loss, “the magnetic shields 20 and 21 having high permeability on the surfaces of the L-shaped iron core clamps 17 and 18 and the flat core clamp 19 , 19 are respectively provided with high-permeability magnetic shields 22, 22, and the magnetic shields 20, 22, 21 form a closed magnetic circuit around the inner winding 15 and the outer winding 16. (See paragraph 0020 of FIG. 4 and FIG. 4).

特開2003−133141号公報JP 2003-133141 A 特開2002−075752号公報JP 2002-075752 A

三相五脚型鉄心を用いた三相交流の静止電磁機器では、両側のU相、W相コイル間の磁気回路のリラクタンス(磁気抵抗)が大きいという特徴がある。そのため、これらのコイルにより発生する磁束は、U相、W相の磁脚間を流れず、その多くが中央のV相の磁脚に流れ込む。その結果、中央のV相の磁脚に磁束が集中することとなり、その鉄心で発生する損失(ヒステリシス損などの無負荷損)が増大する。すなわち、従来の三相五脚型鉄心を用いた静止電磁機器では、磁束集中による無負荷損の増大のために、とくに中央のV相の鉄心が局所過熱するという解決すべき技術課題が存在する。   A three-phase AC stationary electromagnetic device using a three-phase five-legged iron core has a feature that reluctance (magnetic resistance) of a magnetic circuit between U-phase and W-phase coils on both sides is large. For this reason, the magnetic flux generated by these coils does not flow between the U-phase and W-phase magnetic legs, and most of them flow into the central V-phase magnetic legs. As a result, the magnetic flux concentrates on the center V-phase magnetic leg, and the loss (no-load loss such as hysteresis loss) generated in the iron core increases. That is, in a conventional static electromagnetic device using a three-phase five-legged iron core, there is a technical problem to be solved that the central V-phase iron core is locally overheated due to an increase in no-load loss due to magnetic flux concentration. .

しかしながら、特許文献1,2には、中央のV相の磁脚の鉄心に磁束が集中することや、無負荷損により鉄心が局所過熱する技術課題については一切把握されていない。なお、特許文献2には、本発明の実施形態で詳しく説明する追加鉄心2(図1など参照)に構造的に類似する構成要素として、磁気シールド20,22,21が示されている。しかしながら、磁気シールド20,22,21は、漏洩磁束による漂遊損を低減し、鉄心締付金具17,18などの過熱を防止しようとするものであって、三相五脚型鉄心の中央の鉄心への磁束集中を緩和し、その過熱を防止するものではない。   However, Patent Documents 1 and 2 do not recognize any technical problem that the magnetic flux concentrates on the iron core of the center V-phase magnetic leg or the iron core locally overheats due to no-load loss. In Patent Document 2, magnetic shields 20, 22, and 21 are shown as components that are structurally similar to the additional iron core 2 (see FIG. 1 and the like) described in detail in the embodiment of the present invention. However, the magnetic shields 20, 22, and 21 are intended to reduce stray loss due to leakage magnetic flux and to prevent overheating of the iron core fasteners 17 and 18 and the like. It does not relieve the magnetic flux concentration to prevent overheating.

以上のような従来の技術課題に鑑み、本発明は、三相交流のコイルにより発生する磁束の中央の鉄心への集中を緩和し、その過熱を防止することが可能な三相五脚型鉄心およびその三相五脚型鉄心を用いた静止電磁機器を提供することを目的とする。   In view of the above-described conventional technical problems, the present invention provides a three-phase five-legged core that can alleviate the concentration of magnetic flux generated by a three-phase AC coil on the central core and prevent overheating. It is another object of the present invention to provide a static electromagnetic device using the three-phase five-legged core.

発明に係る三相五脚型鉄心は、薄帯状磁性材を複数枚重ねて構成された略矩形環状の巻鉄心が4個、それぞれの巻鉄心の環の側面部が略同じ面に接するようにして一列に並べられるとともに、互いに隣接する巻鉄心の外周部同士が接するように配置されて構成される巻鉄心の組と、前記巻鉄心の組を構成するそれぞれの巻鉄心の鉄心部分のうち、前記互いに隣接する巻鉄心の外周部同士が接し、コイルが巻回されてそれぞれ3つの磁脚となる鉄心部分を除いた部分であるヨーク部の側面部に、絶縁材を挟んで取り付け固定される追加鉄心と、を備えることを特徴とする。   The three-phase five-legged iron core according to the invention has four substantially rectangular annular wound cores formed by stacking a plurality of thin strip-shaped magnetic materials, and the side surfaces of the rings of each wound iron core are in contact with substantially the same surface. And a set of wound cores arranged so that the outer peripheral portions of adjacent wound cores are in contact with each other, and among the core parts of the respective wound cores constituting the set of wound cores, The outer peripheral parts of the wound cores adjacent to each other are in contact with each other, and the coil is wound and fixed to the side part of the yoke part excluding the iron core part which becomes three magnetic legs, with an insulating material interposed therebetween. And an additional iron core.

本発明によれば、三相交流のコイルにより発生する磁束の中央の鉄心への集中を緩和し、その過熱を防止することが可能な三相五脚型鉄心およびその三相五脚型鉄心を用いた静止電磁機器を提供することができる。   According to the present invention, a three-phase five-legged iron core and its three-phase five-legged iron core that can alleviate the concentration of magnetic flux generated by a three-phase AC coil on the central iron core and prevent the overheating thereof. The used static electromagnetic device can be provided.

本発明の第1の実施形態に係る三相五脚型鉄心の構造を示した斜視図の例。The example of the perspective view which showed the structure of the three-phase pentapod type iron core which concerns on the 1st Embodiment of this invention. 図1の三相五脚型鉄心を用いた静止電磁機器の斜視図の例。The example of the perspective view of the static electromagnetic device using the three-phase five-legged iron core of FIG. 図2の静止電磁機器の上辺における追加鉄心を含めた巻鉄心のヨーク部の断面構造の例を模式的に示した図。The figure which showed typically the example of the cross-section of the yoke part of the wound iron core including the additional iron core in the upper side of the static electromagnetic device of FIG. 巻鉄心および追加鉄心を締付固定する他の例を、図3の静止電磁機器の上辺のヨーク部の断面構造の例に準じて示した図。The figure which showed the other example which clamps and fixes a wound iron core and an additional iron core according to the example of the cross-section of the yoke part of the upper side of the static electromagnetic device of FIG. 三次元電磁界解析シミュレーションの対象として用いた三相五脚型の静止電磁機器の上部半分の縦断面図の例。The example of the longitudinal cross-section of the upper half of the three-phase five-legged stationary electromagnetic device used as the object of the three-dimensional electromagnetic field analysis simulation. 三次元電磁界解析シミュレーションの結果の例を示した図。The figure which showed the example of the result of the three-dimensional electromagnetic field analysis simulation. 三次元電磁界解析シミュレーションの結果の他の例を示した図。The figure which showed the other example of the result of the three-dimensional electromagnetic field analysis simulation. 本発明の第2の実施形態に係る三相五脚型鉄心の構造を示した斜視図の例。The example of the perspective view which showed the structure of the three-phase pentapod type iron core which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る三相五脚型鉄心の構造を示した斜視図の例。The example of the perspective view which showed the structure of the three-phase five-legged type iron core which concerns on the 3rd Embodiment of this invention.

以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each drawing, the same code | symbol is attached | subjected to a common component and the overlapping description is abbreviate | omitted.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る三相五脚型鉄心10の構造を示した斜視図の例、図2は、図1の三相五脚型鉄心10を用いた静止電磁機器20の斜視図の例を示した図である。なお、本実施形態では説明の都合上、静止電磁機器20は、三相交流用の変圧器であるとするが、三相交流用のリアクトルなどであってもよい。
(First embodiment)
FIG. 1 is an example of a perspective view showing the structure of a three-phase five-legged iron core 10 according to the first embodiment of the present invention, and FIG. 2 is a static electromagnetic using the three-phase five-legged iron core 10 of FIG. 3 is a diagram illustrating an example of a perspective view of the device 20. FIG. In the present embodiment, for convenience of explanation, the stationary electromagnetic device 20 is a three-phase AC transformer, but may be a three-phase AC reactor or the like.

図1に示すように、本実施形態に係る三相五脚型鉄心10は、略矩形環状の巻鉄心1が4個並置されて梯子状に構成される。ここで、巻鉄心1は、極薄電磁鋼板、アモルファス、ナノ結晶合金などからなる薄帯状磁性材を複数枚重ねて構成したものである。このとき、4個の巻鉄心1は、それぞれの巻鉄心1の環の側面部が略同じ面に接するようにして一列に並べられるとともに、左右方向に互いに隣接する巻鉄心1の外周部同士が接するように配置される。つまり、4つの巻鉄心1が横一列に面一に梯子状に配置される。なお、本明細書では、方向を示す用語として、上、下、前、後、左、右を用いるが、これらの方向は、例えば、図1では、左下に示した矢印方向を意味する。また、本実施形態では、三相五脚型鉄心10は、さらに第2の鉄心である追加鉄心2を備えることを特徴とするが、追加鉄心2の詳細については後で説明する。   As shown in FIG. 1, a three-phase five-legged core 10 according to the present embodiment is configured in a ladder shape by arranging four substantially rectangular annular wound cores 1 side by side. Here, the wound iron core 1 is formed by stacking a plurality of ribbon-shaped magnetic materials made of an ultrathin electromagnetic steel sheet, amorphous, nanocrystalline alloy, or the like. At this time, the four wound cores 1 are arranged in a row so that the side surfaces of the rings of the respective wound cores 1 are in contact with substantially the same surface, and the outer peripheral portions of the wound cores 1 adjacent to each other in the left-right direction are Arranged to touch. That is, the four wound iron cores 1 are arranged in a ladder form in a horizontal line and on the same plane. In this specification, up, down, front, back, left, and right are used as terms indicating directions. These directions mean, for example, the arrow directions shown at the bottom left in FIG. In the present embodiment, the three-phase five-legged iron core 10 is further provided with the additional iron core 2 that is the second iron core. Details of the additional iron core 2 will be described later.

なお、図1では、それぞれの巻鉄心1は、2つの単位巻鉄心1aの互いに対向する側面部が絶縁材6を介して接合されて一体化されたものとして描かれている。このように、本実施形態では、巻鉄心1は、互いに対向する側面部が絶縁材6を介して接合された複数の単位巻鉄心1aからなるものであってもよく、あるいは、1つの単位巻鉄心1aからだけで構成されるものであってもよいとする。   In FIG. 1, each wound iron core 1 is drawn as an integrated unit in which two opposing side surfaces of the unit wound iron cores 1 a are joined via an insulating material 6. Thus, in this embodiment, the wound iron core 1 may be composed of a plurality of unit wound iron cores 1a whose side surfaces facing each other are joined via the insulating material 6, or one unit winding. It may be configured only from the iron core 1a.

ここで、4個一列に並置された巻鉄心1の鉄心部分のうち、互いに隣接する巻鉄心1の外周部同士が接する鉄心部分(図1でU相、V相およびW相と示された部分)は、図2に示すように、低圧コイル4bおよび高圧コイル4aが巻回されるため、磁脚と呼ばれる。一方、4個一列に並置された巻鉄心1の鉄心部分のうち、磁脚でない部分は、ヨーク部と呼ばれる。   Here, among the core portions of the wound cores 1 juxtaposed in a row of four, the core portions where the outer peripheral portions of the adjacent wound cores 1 are in contact with each other (portions indicated as U phase, V phase and W phase in FIG. 1) ) Is called a magnetic leg because the low voltage coil 4b and the high voltage coil 4a are wound as shown in FIG. On the other hand, a portion that is not a magnetic leg among the core portions of the wound cores 1 juxtaposed in a row is called a yoke portion.

本実施形態では、図1および図2に示すように、4個一列に並置された巻鉄心1のヨーク部の側面部に略矩形環状の追加鉄心2が設けられる。すなわち、追加鉄心2は、4つの巻鉄心1の上辺および下辺のヨーク部と2つの端部の巻鉄心1の左辺および右辺のヨーク部とを周回するように設けられる。   In this embodiment, as shown in FIG. 1 and FIG. 2, a substantially rectangular annular additional iron core 2 is provided on the side surface portion of the yoke portion of the wound iron core 1 arranged in parallel in four rows. That is, the additional iron core 2 is provided so as to go around the yoke portions on the upper side and the lower side of the four wound cores 1 and the yoke portions on the left side and the right side of the wound core 1 at the two ends.

ここで、追加鉄心2は、巻鉄心1と同様に、極薄電磁鋼板、アモルファス、ナノ結晶合金などからなる薄帯状磁性材を複数枚重ねて構成される。そして、巻鉄心1のヨーク部を形成する薄帯状磁性材の薄帯と、その巻鉄心1のヨーク部の側面に設けられる追加鉄心2を形成する薄帯状磁性材の薄帯とは、それぞれの薄帯の方向が同じで、かつ、薄帯の面が略平行であるものとする。こうすることにより、巻鉄心1内の磁束が追加鉄心2内へ流れ込み易くなる。   Here, like the wound core 1, the additional iron core 2 is formed by stacking a plurality of thin strip-shaped magnetic materials made of ultrathin electromagnetic steel sheets, amorphous, nanocrystalline alloys, and the like. The ribbon of the ribbon-shaped magnetic material forming the yoke portion of the wound core 1 and the ribbon of the ribbon-shaped magnetic material forming the additional iron core 2 provided on the side surface of the yoke portion of the wound core 1 are respectively It is assumed that the direction of the ribbon is the same and the plane of the ribbon is substantially parallel. By doing so, the magnetic flux in the wound core 1 can easily flow into the additional core 2.

さらに、追加鉄心2と巻鉄心1のヨーク部の側面との間隙には絶縁材6a(図3参照:図1および図2では図示省略)が挟まれており、巻鉄心1、絶縁材6aおよび追加鉄心2は、紐状またはテープ状のバインド材3により締付固定されて一体化される(図1などでは、バインド材3は紐状に描かれている)。この締付固定用のバインド材3は、非磁性の金属、樹脂、プラスチック、ガラス繊維などで構成されているものとする。   Further, an insulating material 6a (see FIG. 3; not shown in FIGS. 1 and 2) is sandwiched between the additional iron core 2 and the side surface of the yoke portion of the wound iron core 1, and the wound iron core 1, the insulating material 6a and The additional iron core 2 is fastened and integrated by a string-like or tape-like bind material 3 (in FIG. 1 and the like, the bind material 3 is drawn in a string shape). The binding material 3 for fastening and fixing is made of nonmagnetic metal, resin, plastic, glass fiber, or the like.

なお、図1および図2では、バインド材3は、合計12か所に描かれているが、静止電磁機器20の大きさや巻鉄心1の重量に応じて適切な強度を持ち、適切な数で固定するものであれば、その材質や数を限定するものではない。また、絶縁材6aは、巻鉄心1と追加鉄心2との間の渦電流などを抑制するために設けられたものであるが、絶縁材6aがないものとしてもよい。   1 and 2, the binding material 3 is drawn at a total of twelve places, but has an appropriate strength according to the size of the stationary electromagnetic device 20 and the weight of the wound core 1, and an appropriate number The material and the number are not limited as long as they are fixed. Moreover, although the insulating material 6a is provided in order to suppress the eddy current etc. between the wound iron core 1 and the additional iron core 2, it is good also as a thing without the insulating material 6a.

さらに、図2に示すように、静止電磁機器20は、図1でU相、V相およびW相と示された磁脚に、低圧コイル4bおよび高圧コイル4aが巻回されて構成される。そして、これらの低圧コイル4bおよび高圧コイル4aには、それぞれ、低圧電極5bおよび高圧電極5aが設けられている。ただし、図2の斜視図では、高圧電極5aは、三相五脚型鉄心10の裏側に配置されているため、見えないものとして描かれていない(図3参照)。   Further, as shown in FIG. 2, the stationary electromagnetic device 20 is configured by winding a low-voltage coil 4 b and a high-voltage coil 4 a around magnetic legs indicated as U phase, V phase, and W phase in FIG. 1. The low voltage coil 4b and the high voltage coil 4a are provided with a low voltage electrode 5b and a high voltage electrode 5a, respectively. However, in the perspective view of FIG. 2, the high-voltage electrode 5 a is arranged on the back side of the three-phase five-legged iron core 10 and is not drawn as invisible (see FIG. 3).

なお、静止電磁機器20は、例えば、ラップジョイントやバットジョイントなどの接合部を備えたU字型の巻鉄心1を4つ並べて、U相、V相およびW相それぞれの磁脚に対応する巻鉄心1の開放端から低圧コイル4bおよび高圧コイル4aを挿入した後、それぞれの巻鉄心1の開放端を閉じることにより製作される(特許文献1など参照)。従って、三相五脚型鉄心10と静止電磁機器20とは、ほぼ同時に製作が完了する。   The stationary electromagnetic device 20 includes, for example, four U-shaped wound cores 1 each having a joint such as a lap joint or a butt joint, and windings corresponding to the magnetic legs of the U phase, the V phase, and the W phase, respectively. After the low voltage coil 4b and the high voltage coil 4a are inserted from the open end of the iron core 1, the open ends of the respective wound iron cores 1 are closed (see Patent Document 1, etc.). Therefore, the three-phase five-legged iron core 10 and the stationary electromagnetic device 20 are completed almost simultaneously.

図3は、図2の静止電磁機器20の上辺における追加鉄心2を含めた巻鉄心1のヨーク部の断面構造の例を模式的に示した図であり、例えば、図2でAと表示したバインド材3が設けられた近傍位置での断面構造の例を示したものである。図3では、バインド材3は、一点鎖線で描かれ、併せて、この断面位置の前方または後方に位置する低圧コイル4bおよび高圧コイル4aの断面形状が長い破線で示され、低圧電極5bおよび高圧電極5aが太い点線で示されている。   FIG. 3 is a diagram schematically showing an example of a cross-sectional structure of the yoke portion of the wound core 1 including the additional iron core 2 on the upper side of the static electromagnetic device 20 of FIG. 2, for example, indicated as A in FIG. The example of the cross-sectional structure in the vicinity position in which the binding material 3 was provided is shown. In FIG. 3, the binding material 3 is drawn by a one-dot chain line, and the cross-sectional shapes of the low voltage coil 4 b and the high voltage coil 4 a located in front of or behind this cross sectional position are indicated by long broken lines, and the low voltage electrode 5 b and the high voltage The electrode 5a is indicated by a thick dotted line.

単位巻鉄心1aは、幅W2の薄帯状磁性材を厚さC2になるように重ねて巻くことで構成されており、2つの単位巻鉄心1aは、互いに厚さG2の絶縁材6を挟んで密着されている。さらに、これら2つの単位巻鉄心1aからなる巻鉄心1の両側面には、幅Wの薄帯状磁性材を厚さCになるように重ねて構成された追加鉄心2が、厚さGの絶縁材6aを挟んで密着されている。また、紐状またはテープ状のバインド材3は、巻鉄心1および追加鉄心2を囲むように設けられ、これらの巻鉄心1および追加鉄心2を締付固定する。   The unit wound core 1a is configured by overlapping and winding a thin strip-shaped magnetic material having a width W2 so as to have a thickness C2, and the two unit wound cores 1a sandwich an insulating material 6 having a thickness G2 between each other. It is in close contact. Further, an additional iron core 2 formed by stacking a thin strip-like magnetic material having a width W to a thickness C is formed on both side surfaces of the wound iron core 1 composed of these two unit-wound iron cores 1a. The material 6a is in close contact with each other. The string-like or tape-like binding material 3 is provided so as to surround the wound iron core 1 and the additional iron core 2, and fastens and fixes the wound iron core 1 and the additional iron core 2.

ここで、追加鉄心2の幅Wは、低圧コイル4bおよび高圧コイル4aの巻鉄心1からの飛び出し量Dより小さくすることにすれば、静止電磁機器20の筐体体積が増えることはない。また、図3では、追加鉄心2の厚さCは、巻鉄心1の巻厚C2とし、それぞれが等しい場合を示しているが、低圧電極5bとの絶縁距離を適切に確保できれば、巻厚C2より小さくしてもよいし、筐体の寸法に余裕がある場合には、逆に大きくしてもよい。   Here, if the width W of the additional iron core 2 is made smaller than the protruding amount D of the low voltage coil 4b and the high voltage coil 4a from the wound core 1, the housing volume of the stationary electromagnetic device 20 will not increase. 3 shows the case where the thickness C of the additional iron core 2 is the same as the thickness C2 of the wound iron core 1 and is equal to each other. However, if the insulation distance from the low-voltage electrode 5b can be secured appropriately, the thickness C2 If the size of the housing has room, the size may be increased.

また、図3に示すように、低圧コイル4bに接続される1対の低圧電極5bは、追加鉄心2との絶縁距離を確保するために折り曲げ加工されて追加鉄心2が設けられた巻鉄心1のヨーク部よりも上側に引き出されている。なお、ここでは、大電流によるジュール熱を減ずるために、低圧コイル4bは、高圧コイル4aよりも内側に巻回されるものとしている。   As shown in FIG. 3, the pair of low-voltage electrodes 5 b connected to the low-voltage coil 4 b is bent to ensure an insulation distance from the additional iron core 2, and the wound iron core 1 provided with the additional iron core 2. It is pulled out above the yoke part. Here, in order to reduce Joule heat due to a large current, the low voltage coil 4b is wound inside the high voltage coil 4a.

図4は、巻鉄心1および追加鉄心2を締付固定する他の例を、図3の静止電磁機器20の上辺のヨーク部の断面構造の例に準じて示した図である。この例では、巻鉄心1および追加鉄心2を締付固定する部材として、バインド材3ではなく、板状の固定金具7およびスタッドボルト8が用いられる。   FIG. 4 is a view showing another example of tightening and fixing the wound iron core 1 and the additional iron core 2 according to the example of the sectional structure of the yoke portion on the upper side of the stationary electromagnetic device 20 in FIG. In this example, as a member for fastening and fixing the wound iron core 1 and the additional iron core 2, not the binding material 3 but a plate-like fixing bracket 7 and stud bolt 8 are used.

図4に示すように、2つの巻鉄心1の両側面部に絶縁材6aを介して設けられた2つの追加鉄心2の外側の側面部には、1対の固定金具7が設けられる。そして、この1対の固定金具7は、少なくとも2本のスタッドボルト8により連結さている。従って、スタッドボルト8を締付けることにより、1対の固定金具7が追加鉄心2を外側から押圧することとなり、追加鉄心2は、巻鉄心1に締付固定される。   As shown in FIG. 4, a pair of fixing metal fittings 7 are provided on the outer side surfaces of the two additional iron cores 2 provided on both side surfaces of the two wound iron cores 1 via the insulating material 6a. The pair of fixing brackets 7 are connected by at least two stud bolts 8. Therefore, by tightening the stud bolt 8, the pair of fixing fittings 7 presses the additional iron core 2 from the outside, and the additional iron core 2 is fastened and fixed to the wound iron core 1.

次に、本実施形態の効果について、三次元電磁界解析シミュレーションの結果を用いて説明する。図5は、三次元電磁界解析シミュレーションの対象として用いた三相五脚型の静止電磁機器20の上部半分の縦断面図の例である。なお、ここでいう静止電磁機器20は、変圧器である。そして、その三次元電磁界解析シミュレーションでは、三相五脚型の静止電磁機器20の形状の上下の対称性を考慮し、磁脚の中央から上半分のみの1/2カットモデルについて、電磁界解析計算を実施した。なお、その電磁界解析計算では、図5に描かれた線分B−B’上の各点における漏洩磁界が計算され、その結果については後記する。   Next, the effect of this embodiment is demonstrated using the result of a three-dimensional electromagnetic field analysis simulation. FIG. 5 is an example of a vertical cross-sectional view of the upper half of a three-phase five-legged stationary electromagnetic device 20 used as a target for a three-dimensional electromagnetic field analysis simulation. Here, the stationary electromagnetic device 20 is a transformer. In the three-dimensional electromagnetic field analysis simulation, in consideration of the vertical symmetry of the shape of the three-phase five-legged stationary electromagnetic device 20, the electromagnetic field is measured for the ½ cut model of only the upper half from the center of the magnetic leg. Analytical calculations were performed. In the electromagnetic field analysis calculation, the leakage magnetic field at each point on the line segment B-B ′ drawn in FIG. 5 is calculated, and the result will be described later.

この三次元電磁界解析シミュレーションでは、巻鉄心1および追加鉄心2を構成する材料は、飽和磁束密度が1.63Tのアモルファス合金(具体的には、日立金属株式会社製2605HB1M型アモルファス合金)の特性を有するものと仮定した。また、静止電磁機器20を構成する巻鉄心1や追加鉄心2の大きさなどを規定する各種寸法は、次の表1に示す通りである。

Figure 0006397349
In this three-dimensional electromagnetic field analysis simulation, the material constituting the wound core 1 and the additional iron core 2 is a characteristic of an amorphous alloy having a saturation magnetic flux density of 1.63 T (specifically, 2605HB1M type amorphous alloy manufactured by Hitachi Metals, Ltd.). Was assumed to have The various dimensions that define the size of the wound iron core 1 and the additional iron core 2 constituting the stationary electromagnetic device 20 are as shown in Table 1 below.
Figure 0006397349

以上の表1および図5において、寸法を表す符号Hは、巻鉄心1の高さの半値を表し、符号H2は、3つの磁脚に巻回される低圧コイル4bおよび高圧コイル4aに高さの半値を表す。また、符号E1は、図5に示した4つの巻鉄心1のうち、内側2つの巻鉄心1の配列方向に沿った内寸を表し、符号E2は、外側2つ(右端および左端)の巻鉄心1の配列方向に沿った内寸を表す。なお、内側3つの磁脚には、低圧コイル4bおよび高圧コイル4aが巻回される必要性から、寸法E1は、寸法E2よりも大きくなっている。   In Table 1 and FIG. 5, the symbol H representing the dimension represents a half value of the height of the wound core 1, and the symbol H2 represents the height of the low voltage coil 4b and the high voltage coil 4a wound around the three magnetic legs. The half value of. Moreover, the code | symbol E1 represents the internal dimension along the sequence direction of the two inner winding cores 1 among the four wound cores 1 shown in FIG. 5, and the code | symbol E2 is winding of two outer side (right end and left end). The inner dimension along the arrangement direction of the iron cores 1 is represented. Note that the dimension E1 is larger than the dimension E2 because the low voltage coil 4b and the high voltage coil 4a are wound around the inner three magnetic legs.

さらに、ここでは、4つの巻鉄心1の外周部が互いに直接に接するのではなく、わずかな間隙寸法G3を介して接するものとしている。従って、低圧コイル4bおよび高圧コイル4aが巻回される3つの磁脚の巻鉄心1の配列方向に沿った寸法Lは、L=2×C2+G3と表される。そして、配列方向に沿った4つの巻鉄心1の全長Sは、S=3×L+2×(C2+E1+E2)と表される。   Further, here, the outer peripheral portions of the four wound iron cores 1 are not in direct contact with each other, but are in contact with each other through a slight gap dimension G3. Therefore, the dimension L along the arrangement direction of the wound cores 1 of the three magnetic legs around which the low voltage coil 4b and the high voltage coil 4a are wound is expressed as L = 2 × C2 + G3. The total length S of the four wound cores 1 along the arrangement direction is expressed as S = 3 × L + 2 × (C2 + E1 + E2).

なお、表3に示した符号のうち、図5に示されていない寸法を表す符号は、図3に示された符号と同じものである。すなわち、符号Cは、追加鉄心2の厚さ、符号Wは、追加鉄心2の幅、符号W2は、単位巻鉄心1aの幅、符号G2は、2つの単位巻鉄心1aの間に挟まれる絶縁材6の厚さを表す。   In addition, the code | symbol showing the dimension which is not shown by FIG. 5 among the code | symbols shown in Table 3 is the same as the code | symbol shown by FIG. That is, symbol C is the thickness of the additional iron core 2, symbol W is the width of the additional iron core 2, symbol W2 is the width of the unit wound core 1a, and symbol G2 is insulation sandwiched between the two unit wound cores 1a. This represents the thickness of the material 6.

また、この三次元電磁界解析シミュレーションを行う際に設定した高圧コイル4aおよび低圧コイル4bの励磁条件は、次の表2に示す通りである。

Figure 0006397349
The excitation conditions for the high voltage coil 4a and the low voltage coil 4b set when performing the three-dimensional electromagnetic field analysis simulation are as shown in Table 2 below.
Figure 0006397349

図6は、三次元電磁界解析シミュレーションの結果の例を示した図である。図6では、三次元電磁界解析シミュレーションの結果は、中央の磁脚(図1でV相と示された磁脚)の上方に設定された垂直方向の線分B−B’(長さ400mm:図5参照)上の各位置おける漏洩磁界の大きさの変化を表したグラフとして示されている。すなわち、図6のグラフの横軸は、中央の磁脚上方の線分B−B’上の位置を表し、縦軸は、漏洩磁界の強度Hを表している。   FIG. 6 is a diagram illustrating an example of a result of a three-dimensional electromagnetic field analysis simulation. In FIG. 6, the result of the three-dimensional electromagnetic field analysis simulation is a vertical line segment BB ′ (length 400 mm) set above the central magnetic leg (the magnetic leg indicated as V phase in FIG. 1). : Refer to FIG. 5) It is shown as a graph showing the change in the magnitude of the leakage magnetic field at each position above. That is, the horizontal axis of the graph of FIG. 6 represents the position on the line segment B-B ′ above the central magnetic leg, and the vertical axis represents the leakage magnetic field strength H.

図6のグラフでは、巻鉄心1と追加鉄心2とに挟まれた絶縁材6aの厚さWが第3の変動パラメータとして用いられている。すなわち、図6に示された折れ線50は、比較例として、追加鉄心2を設けない場合の漏洩磁界の変化を表したものであり、折れ線50a,50b,50cは、追加鉄心2を設けた場合で、絶縁材6aの厚さGが、それぞれ6.5mm,1mm,0.2mmのときの漏洩磁界の変化を表している。   In the graph of FIG. 6, the thickness W of the insulating material 6a sandwiched between the wound iron core 1 and the additional iron core 2 is used as the third variation parameter. That is, the broken line 50 shown in FIG. 6 represents the change of the leakage magnetic field when the additional iron core 2 is not provided as a comparative example, and the broken lines 50a, 50b, and 50c are when the additional iron core 2 is provided. The change in the leakage magnetic field when the thickness G of the insulating material 6a is 6.5 mm, 1 mm, and 0.2 mm, respectively.

以上の図6に示された三次元電磁界解析シミュレーションの結果からは、漏洩磁界は、巻鉄心1に最も近いB点で最も大きく、巻鉄心1から離れるに従って減少していくことが分かる。また、追加鉄心2を設けた場合、追加鉄心2を設けない場合に比べ、漏洩磁界が半分以下に減少していることが分かる。さらには、巻鉄心1と追加鉄心2とに挟まれた絶縁材6aの厚さGが小さいほど漏洩磁界が小さくなることが分かる。   From the results of the three-dimensional electromagnetic field analysis simulation shown in FIG. 6 above, it can be seen that the leakage magnetic field is greatest at the point B closest to the wound core 1 and decreases as the distance from the wound core 1 increases. Moreover, when the additional iron core 2 is provided, it turns out that the leakage magnetic field has decreased to half or less compared with the case where the additional iron core 2 is not provided. Furthermore, it can be seen that the leakage magnetic field decreases as the thickness G of the insulating material 6a sandwiched between the wound iron core 1 and the additional iron core 2 decreases.

一般に、変圧器などの静止電磁機器において、漏洩磁界が大きいことは、その静止電磁機器に用いられている鉄心に磁束集中が生じていることを表している。すなわち、磁束集中により鉄心内の磁束密度が増加して磁気飽和に近づくと透磁率が低下する。その結果、磁束は鉄心の外に漏洩し易くなり、鉄心の周辺領域における漏洩磁界が大きくなる。つまり、図6に示された結果は、追加鉄心2を設けたことにより、図1でV相と示された中央の磁脚への磁束集中が緩和されていることを表すものに他ならない。   Generally, in a stationary electromagnetic device such as a transformer, a large leakage magnetic field indicates that magnetic flux concentration is generated in an iron core used in the stationary electromagnetic device. That is, when the magnetic flux density in the iron core increases due to magnetic flux concentration and approaches magnetic saturation, the magnetic permeability decreases. As a result, the magnetic flux easily leaks out of the iron core, and the leakage magnetic field in the peripheral region of the iron core increases. That is, the result shown in FIG. 6 is nothing but the fact that the magnetic flux concentration on the center magnetic leg shown as the V phase in FIG. 1 is alleviated by providing the additional iron core 2.

なお、中央のV相の磁脚への磁束集中の緩和は、次のようにも説明できる。すなわち、追加鉄心2を設けたことにより、図1でU相およびW相と示された磁脚間のリラクタンス(磁気抵抗)が低下する。そのため、U相およびW相それぞれの磁脚で発生する磁束は、中央のV相の磁脚だけでなく、互いに反対側のW相およびU相の磁脚へも流れ易くなる。よって、中央のV相の磁脚への磁束集中が緩和される。   The relaxation of the magnetic flux concentration on the center V-phase magnetic leg can also be explained as follows. That is, by providing the additional iron core 2, the reluctance (magnetic resistance) between the magnetic legs indicated as the U phase and the W phase in FIG. 1 is lowered. Therefore, the magnetic flux generated at the magnetic legs of the U phase and the W phase easily flows not only to the magnetic legs of the center V phase but also to the magnetic legs of the W phase and U phase opposite to each other. Therefore, the magnetic flux concentration on the center V-phase magnetic leg is alleviated.

また、巻鉄心1と追加鉄心2とに挟まれた絶縁材6aの厚さGが小さいほど漏洩磁界が小さくなることは、絶縁材6aの厚さGが小さいほど巻鉄心1と追加鉄心2との間のリラクタンス(磁気抵抗)が小さくなることから容易に理解できる。従って、絶縁材6aの厚さGが小さいほど、中央のV相の磁脚への磁束集中を緩和する効果が大きいといえる。   Further, the smaller the thickness G of the insulating material 6a sandwiched between the wound core 1 and the additional iron core 2, the smaller the leakage magnetic field. The smaller the thickness G of the insulating material 6a, the smaller the wound core 1 and the additional iron core 2 It can be easily understood from the fact that the reluctance (magnetoresistance) between them becomes small. Therefore, it can be said that the smaller the thickness G of the insulating material 6a, the greater the effect of relaxing the magnetic flux concentration on the center V-phase magnetic leg.

図7は、三次元電磁界解析シミュレーションの結果の他の例を示した図である。図7では、グラフの横軸は、巻鉄心1と追加鉄心2とに挟まれた絶縁材6aの厚さGを表し、縦軸は、本実施形態に係る静止電磁機器20(変圧器)の無負荷損Wiを表している。ここで、無負荷損Wiは、三次元電磁界解析シミュレーションで得られる全鉄心内の磁束密度分布と、その鉄心材料(前記のアモルファス合金)の損失特性と、表2に示した励磁条件(ただし、コイル電流の周波数は50Hz)とに基づき、鉄心全体で発生する無負荷損を計算したものである。ただし、図7のグラフの縦軸の無負荷損Wiの値は、追加鉄心2がない比較例の変圧器の無負荷損を100とした場合の相対値で表されている。   FIG. 7 is a diagram showing another example of the result of the three-dimensional electromagnetic field analysis simulation. In FIG. 7, the horizontal axis of the graph represents the thickness G of the insulating material 6a sandwiched between the wound iron core 1 and the additional iron core 2, and the vertical axis represents the static electromagnetic device 20 (transformer) according to the present embodiment. It represents no-load loss Wi. Here, the no-load loss Wi represents the magnetic flux density distribution in the entire iron core obtained by the three-dimensional electromagnetic field analysis simulation, the loss characteristics of the iron core material (the above-mentioned amorphous alloy), and the excitation conditions shown in Table 2 (however, The frequency of the coil current is 50 Hz), and the no-load loss generated in the entire iron core is calculated. However, the value of the no-load loss Wi on the vertical axis of the graph of FIG. 7 is expressed as a relative value when the no-load loss of the transformer of the comparative example without the additional iron core 2 is 100.

本実施形態に係る追加鉄心2を備えた静止電磁機器20(変圧器)では、追加鉄心2がない従来の変圧器に比べて、重量は増加することになるが、図7に示すように、無負荷損Wiが減少する。ちなみに、絶縁材6aの厚さGが0.2mmのときには、無負荷損Wiは約10%も減少する。   In the stationary electromagnetic device 20 (transformer) provided with the additional iron core 2 according to the present embodiment, the weight increases as compared with the conventional transformer without the additional iron core 2, but as shown in FIG. The no-load loss Wi decreases. Incidentally, when the thickness G of the insulating material 6a is 0.2 mm, the no-load loss Wi decreases by about 10%.

ところで、コイル電流の周波数が一定の場合、無負荷損Wiは、磁束の2乗に比例する部分が大きいとされている。従って、追加鉄心2を備えたことによる鉄心全体での無負荷損Wiの減少は、一部の磁脚への磁束集中が緩和されたことを意味するものといえる。なお、ここでいう一部の磁脚が図1でV相と示された中央の磁脚であることは、今まで説明してきたことから明らかである。   By the way, when the frequency of the coil current is constant, the no-load loss Wi is assumed to be large in proportion to the square of the magnetic flux. Therefore, it can be said that the reduction of the no-load loss Wi in the entire iron core due to the provision of the additional iron core 2 means that the magnetic flux concentration on some of the magnetic legs has been alleviated. In addition, it is clear from what has been described so far that some of the magnetic legs here are the magnetic legs at the center indicated as the V phase in FIG.

以上のように、本実施形態によれば、中央のV相の磁脚への磁束集中を緩和することができる。そのため、磁束集中のため生じるその中央のV相の磁脚の過熱を防止することが可能になる。   As described above, according to the present embodiment, the magnetic flux concentration on the center V-phase magnetic leg can be alleviated. Therefore, it is possible to prevent overheating of the V-phase magnetic leg in the center caused by the magnetic flux concentration.

(第2の実施形態)
図8は、本発明の第2の実施形態に係る三相五脚型鉄心10aの構造を示した斜視図の例である。図8に示すように、本実施形態に係る三相五脚型鉄心10aは、追加鉄心2aの構造が相違することを除き、図1に示した第1の実施形態に係る三相五脚型鉄心10と同じである。すなわち、第1の実施形態と同様に、三相五脚型鉄心10aは、薄帯状磁性材を複数枚重ねて略矩形環状に構成された巻鉄心1が4個並置されて構成される。一方、追加鉄心2aは、薄帯状磁性材を複数枚重ねて構成されるが、その形状は、薄帯状磁性材の帯方向に長い角材状をしている。
(Second Embodiment)
FIG. 8 is an example of a perspective view showing the structure of a three-phase five-legged iron core 10a according to the second embodiment of the present invention. As shown in FIG. 8, the three-phase five-legged iron core 10a according to the present embodiment is the three-phase five-legged type according to the first embodiment shown in FIG. 1 except that the structure of the additional iron core 2a is different. The same as the iron core 10. That is, similarly to the first embodiment, the three-phase five-legged iron core 10a is configured by juxtaposing four wound iron cores 1 configured in a substantially rectangular ring shape by stacking a plurality of thin ribbon magnetic materials. On the other hand, the additional iron core 2a is formed by stacking a plurality of ribbon-like magnetic materials, and the shape thereof is a square rod shape that is long in the band direction of the ribbon-like magnetic material.

本実施形態では、以上のような長い角材状の追加鉄心2aが4本用いられ、それぞれの追加鉄心2aは、U相、V相およびW相の磁脚を構成する巻鉄心1のヨーク部のうち、その磁脚の上辺および下辺のヨーク部の両側面に設けられる。このとき、巻鉄心1と追加鉄心2aの間隙には、第1の実施形態の場合と同様に、厚さGの絶縁材6a(図3参照:図8では図示省略)が挟まれており、巻鉄心1と追加鉄心2aとは、紐状またはテープ状の非磁性のバインド材3によって締付固定される。なお、図8では、バインド材3は、合計8か所に描かれているが、当該三相五脚型鉄心10aを用いた静止電磁機器の大きさや巻鉄心1の重量に応じて、適切な強度を持ち、適切な数で固定するものであれば、その材質や数を限定するものではない。   In this embodiment, four long square-shaped additional iron cores 2a as described above are used, and each of the additional iron cores 2a is a yoke portion of the wound iron core 1 constituting the U-phase, V-phase, and W-phase magnetic legs. Of these, the magnetic leg is provided on both side surfaces of the upper and lower yoke portions. At this time, an insulating material 6a having a thickness G (see FIG. 3; not shown in FIG. 8) is sandwiched between the wound iron core 1 and the additional iron core 2a, as in the first embodiment. The wound iron core 1 and the additional iron core 2a are fastened and fixed by a string-like or tape-like nonmagnetic binding material 3. In FIG. 8, the binding materials 3 are drawn in a total of eight places, but depending on the size of the stationary electromagnetic device using the three-phase five-legged core 10 a and the weight of the wound core 1, As long as it has strength and is fixed with an appropriate number, the material and the number are not limited.

以上のように構成された三相五脚型鉄心10aを用いた静止電磁機器においても、追加鉄心2aは、程度の差はあっても、U相およびW相と示された磁脚間のリラクタンス(磁気抵抗)を低下させることには変わりない。すなわち、追加鉄心2aは、中央のV相の磁脚に流れ込む磁束を他の磁脚へ分散させるので、本実施形態でも、中央のV相の磁脚の過熱を防止する効果を認めることができる。   Even in the static electromagnetic device using the three-phase five-legged core 10a configured as described above, the additional iron core 2a has a reluctance between the magnetic legs indicated as the U-phase and the W-phase, to some extent. It does not change to reduce (magnetic resistance). That is, the additional iron core 2a disperses the magnetic flux flowing into the central V-phase magnetic leg to other magnetic legs, so that the effect of preventing overheating of the central V-phase magnetic leg can also be recognized in this embodiment. .

また、本実施形態では、追加鉄心2aの重量は、第1の実施形態での追加鉄心2に比べ軽量化される。従って、本実施形態は、静止電磁機器の重量を抑制したい場合や、大容量大型の静止電磁機器に対して好適である。   Moreover, in this embodiment, the weight of the additional iron core 2a is reduced compared with the additional iron core 2 in 1st Embodiment. Therefore, this embodiment is suitable for the case where it is desired to suppress the weight of the static electromagnetic device or for a large capacity large size static electromagnetic device.

(第3の実施形態)
図9は、本発明の第3の実施形態に係る三相五脚型鉄心10bの構造を示した斜視図の例である。図9に示すように、本実施形態に係る三相五脚型鉄心10bは、追加鉄心2bの構造が相違することを除き、図1に示した第1の実施形態に係る三相五脚型鉄心10と同じである。すなわち、第1の実施形態と同様に、三相五脚型鉄心10b、薄帯状磁性材を複数枚重ねて略矩形環状に構成された巻鉄心1が8個並置されて構成される。一方、追加鉄心2bは、薄帯状磁性材を複数枚重ねて構成されるが、その形状は、直方体状をしている。
(Third embodiment)
FIG. 9 is an example of a perspective view showing the structure of a three-phase five-legged iron core 10b according to the third embodiment of the present invention. As shown in FIG. 9, the three-phase five-legged iron core 10b according to the present embodiment has the three-phase five-legged iron core 10b according to the first embodiment shown in FIG. 1 except that the structure of the additional iron core 2b is different. The same as the iron core 10. That is, as in the first embodiment, the three-phase five-legged iron core 10b and the eight wound iron cores 1 configured in a substantially rectangular ring shape by stacking a plurality of thin strip-shaped magnetic materials are arranged side by side. On the other hand, the additional iron core 2b is formed by stacking a plurality of thin ribbon magnetic materials, and the shape thereof is a rectangular parallelepiped.

本実施形態では、直方体状の追加鉄心2bが12本用いられる。そして、それぞれの追加鉄心2bは、U相、V相およびW相のそれぞれの磁脚を構成し互いに隣接する2つの巻鉄心1の上辺および下辺のヨーク部の側面に、その2つの巻鉄心1を互いにつなぐように設けられる。このとき、巻鉄心1と追加鉄心2bの間隙には、第1の実施形態の場合と同様に、厚さGの絶縁材6a(図3参照:図9では図示省略)が挟まれており、巻鉄心1と追加鉄心2bとは、紐状またはテープ状の非磁性のバインド材3によって締付固定される。なお、図9では、バインド材3は、合計12か所に描かれているが、当該三相五脚型鉄心10bを用いた静止電磁機器の大きさや巻鉄心1の重量に応じて、適切な強度を持ち、適切な数で固定するものであれば、その材質や数を限定するものではない。   In the present embodiment, twelve rectangular parallelepiped additional iron cores 2b are used. And each additional iron core 2b comprises each of the two wound cores 1 on the side surfaces of the upper and lower yoke parts constituting the magnetic legs of the U phase, V phase and W phase and adjacent to each other. Are connected to each other. At this time, an insulating material 6a having a thickness G (see FIG. 3; not shown in FIG. 9) is sandwiched between the wound core 1 and the additional iron core 2b, as in the first embodiment. The wound iron core 1 and the additional iron core 2b are fastened and fixed by a string-like or tape-like nonmagnetic binding material 3. In FIG. 9, the binding material 3 is drawn at a total of twelve places. However, depending on the size of the stationary electromagnetic device using the three-phase five-legged core 10 b and the weight of the wound core 1, As long as it has strength and is fixed with an appropriate number, the material and the number are not limited.

以上のように構成された三相五脚型鉄心10bを用いた静止電磁機器においても、追加鉄心2bは、程度の差はあっても、U相およびW相と示された磁脚間のリラクタンス(磁気抵抗)を低下させることには変わりない。すなわち、追加鉄心2bは、中央のV相の磁脚に流れ込む磁束を他の磁脚へ分散させるので、本実施形態でも、中央のV相の磁脚の過熱を防止する効果を認めることができる。   Even in the static electromagnetic device using the three-phase five-legged core 10b configured as described above, the additional iron core 2b has a reluctance between the magnetic legs indicated as the U-phase and the W-phase, to some extent. It does not change to reduce (magnetic resistance). In other words, the additional iron core 2b disperses the magnetic flux flowing into the central V-phase magnetic leg to other magnetic legs, so that the effect of preventing overheating of the central V-phase magnetic leg can be recognized also in this embodiment. .

また、本実施形態では、追加鉄心2bの重量は、第1の実施形態での追加鉄心2だけでなく、第2実施形態での追加鉄心2aに比べも軽量化される。従って、本実施形態は、静止電磁機器の重量を抑制したい場合や、大容量大型の静止電磁機器に対して好適である。   Moreover, in this embodiment, the weight of the additional iron core 2b is reduced not only in the additional iron core 2 in 1st Embodiment but compared with the additional iron core 2a in 2nd Embodiment. Therefore, this embodiment is suitable for the case where it is desired to suppress the weight of the static electromagnetic device or for a large capacity large size static electromagnetic device.

なお、本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。   The present invention is not limited to the above-described embodiments and modifications, and further includes various modifications. For example, the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of an embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of another embodiment or modification can be replaced with another embodiment or modification. It is also possible to add the following configuration. In addition, with respect to a part of the configuration of each embodiment or modification, the configuration included in another embodiment or modification may be added, deleted, or replaced.

1 巻鉄心
1a 単位巻鉄心
2,2a,2b 追加鉄心(第2の鉄心)
3 バインド材
4a 高圧コイル
4b 低圧コイル
5a 高圧電極
5b 低圧電極
6、6a 絶縁材
7 固定金具
8 スタッドボルト
10,10a,10b 三相五脚型鉄心
20 静止電磁機器
1 Rolled iron core 1a Unit wound iron core 2, 2a, 2b Additional iron core (second iron core)
DESCRIPTION OF SYMBOLS 3 Binding material 4a High voltage coil 4b Low voltage coil 5a High voltage electrode 5b Low voltage electrode 6, 6a Insulation material 7 Fixing bracket 8 Stud bolt 10, 10a, 10b Three-phase five-legged iron core 20 Static electromagnetic device

Claims (9)

薄帯状磁性材を複数枚重ねて構成された略矩形環状の巻鉄心が4個、互いに隣接する巻鉄心の外周部同士が接するように一列に配置されて構成される巻鉄心の組と、
前記巻鉄心の組を構成するそれぞれの巻鉄心の鉄心部分のうち、前記互いに隣接する巻鉄心の外周部同士が接し、コイルが巻回されてそれぞれ3つの磁脚となる鉄心部分を除いた部分であるヨーク部の側面部に、絶縁材を挟んで取り付け固定される第2の鉄心と、
を備えることを特徴とする三相五脚型鉄心。
Four substantially rectangular annular wound cores configured by laminating a plurality of thin ribbon magnetic materials, and a set of wound cores arranged in a row so that the outer peripheral portions of the adjacent wound cores are in contact with each other;
Out of the core parts of the wound cores constituting the set of wound cores, the outer peripheral parts of the adjacent wound cores are in contact with each other, and the coils are wound to remove the core parts that are respectively three magnetic legs. A second iron core attached and fixed to the side surface of the yoke part with an insulating material interposed therebetween;
A three-phase five-legged iron core characterized by comprising
前記第2の鉄心は、略矩形環状の鉄心であり、前記ヨーク部を周回するように、そのヨーク部の側面部に取り付けられること
を特徴とする請求項1に記載の三相五脚型鉄心。
2. The three-phase five-legged core according to claim 1, wherein the second iron core is a substantially rectangular annular iron core, and is attached to a side surface portion of the yoke portion so as to go around the yoke portion. .
前記第2の鉄心は、直線角材状の鉄心であり、前記ヨーク部のうち前記3つの磁脚の上方部または下方部の前記磁脚に略垂直な4つのヨーク部をそれぞれ連続してつなぐように、それらのヨーク部の側面部に取り付けられること
を特徴とする請求項1に記載の三相五脚型鉄心。
The second iron core is a straight rectangular iron core, and continuously connects four yoke portions substantially perpendicular to the magnetic legs at the upper part or the lower part of the three magnetic legs among the yoke parts. The three-phase five-legged iron core according to claim 1, wherein the three-phase five-legged iron core is attached to side surfaces of the yoke portions.
前記第2の鉄心は、直方体状の鉄心であり、前記3つの磁脚の上方部および下方部で互いに隣接する前記巻鉄心のヨーク部同士をそれぞれつなぐように、それらのヨーク部の側面部に取り付けられること
を特徴とする請求項1に記載の三相五脚型鉄心。
The second iron core is a rectangular parallelepiped iron core, and the yoke portions of the wound cores adjacent to each other at the upper part and the lower part of the three magnetic legs are respectively connected to the side parts of the yoke parts. The three-phase five-legged iron core according to claim 1, wherein the three-phase five-legged iron core is attached.
前記第2の鉄心は、紐状またはテープ状の非磁性のバインド材で前記巻鉄心の側面部に取り付け固定されること
を特徴とする請求項1に記載の三相五脚型鉄心。
2. The three-phase five-legged core according to claim 1, wherein the second iron core is attached and fixed to a side surface portion of the wound iron core with a string-like or tape-like nonmagnetic binding material.
前記第2の鉄心は、前記巻鉄心の両側面部に配置された前記第2の鉄心の外側の両側面部にそれぞれ設けられた固定金具と、前記第2の鉄心の両側面部に設けられた固定金具をつないで締付けるスタットボルトとで、前記巻鉄心の側面部に取り付け固定されること
を特徴とする請求項1に記載の三相五脚型鉄心。
The second iron core includes fixing metal fittings provided on both side surface portions of the second iron core disposed on both side surface portions of the wound iron core, and fixing metal fittings provided on both side surface portions of the second iron core. The three-phase five-legged iron core according to claim 1, wherein the three-phase five-legged iron core is fixed to a side surface portion of the wound core with a stat bolt that is connected and tightened.
前記第2の鉄心は、薄帯状磁性材を複数枚重ねて構成された鉄心であること
を特徴とする請求項1に記載の三相五脚型鉄心。
2. The three-phase five-legged core according to claim 1, wherein the second iron core is an iron core formed by stacking a plurality of thin ribbon-like magnetic materials.
前記第2の鉄心を構成する薄帯状磁性材の薄帯の方向および面の方向は、当該第2の鉄心が取り付けられた近傍における前記巻鉄心を構成する薄帯状磁性材の薄帯の方向および面の方向と略同じであること
を特徴とする請求項7に記載の三相五脚型鉄心。
The direction of the ribbon and the surface direction of the ribbon-shaped magnetic material constituting the second iron core are the direction of the ribbon of the ribbon-like magnetic material constituting the wound iron core in the vicinity where the second iron core is attached and The three-phase five-legged iron core according to claim 7, wherein the three-phase five-legged iron core is substantially the same as a surface direction.
請求項1ないし請求項8のいずれか1項に記載の三相五脚型鉄心の前記3つの磁脚に三相交流用のコイルが巻回されて構成されること
を特徴とする静止電磁機器。
A static electromagnetic device comprising a three-phase alternating current coil wound around the three magnetic legs of the three-phase five-legged iron core according to any one of claims 1 to 8. .
JP2015027379A 2015-02-16 2015-02-16 Three-phase five-legged iron core and stationary electromagnetic equipment Active JP6397349B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015027379A JP6397349B2 (en) 2015-02-16 2015-02-16 Three-phase five-legged iron core and stationary electromagnetic equipment
CN201610066154.XA CN105895328B (en) 2015-02-16 2016-01-29 Three-phase five-limb iron core and stationary electromagnetic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027379A JP6397349B2 (en) 2015-02-16 2015-02-16 Three-phase five-legged iron core and stationary electromagnetic equipment

Publications (2)

Publication Number Publication Date
JP2016152248A JP2016152248A (en) 2016-08-22
JP6397349B2 true JP6397349B2 (en) 2018-09-26

Family

ID=56695514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027379A Active JP6397349B2 (en) 2015-02-16 2015-02-16 Three-phase five-legged iron core and stationary electromagnetic equipment

Country Status (2)

Country Link
JP (1) JP6397349B2 (en)
CN (1) CN105895328B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411930A (en) * 2020-03-26 2020-07-14 中国石油大学(北京) Visual dynamic filtration and drainage simulation device and simulation method for tight gas reservoir fracturing fluid

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836359B2 (en) * 2016-08-30 2021-03-03 東芝産業機器システム株式会社 Transformers, transformer manufacturing methods
JP2018117061A (en) 2017-01-19 2018-07-26 株式会社日立製作所 Iron core for stationary induction electric appliance
JP7300270B2 (en) * 2019-01-18 2023-06-29 株式会社日立製作所 Iron core for stationary induction electric machine
JP7149908B2 (en) * 2019-09-06 2022-10-07 株式会社日立産機システム Static induction device
JP7356852B2 (en) 2019-09-25 2023-10-05 株式会社日立製作所 Iron core for stationary induction appliances
CN112285431B (en) * 2020-10-14 2023-06-23 武汉钢铁有限公司 Single-frame iron core loss measuring device and method for three-dimensional wound iron core transformer
CN117334433B (en) * 2023-12-01 2024-03-01 保定市恒光电气机械有限公司 Miniaturized high-frequency high-voltage transformer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB693288A (en) * 1950-05-04 1953-06-24 British Thomson Houston Co Ltd Improvements in and relating to electric induction apparatus
JPS50157422U (en) * 1974-06-13 1975-12-26
JPS56126908A (en) * 1980-03-12 1981-10-05 Meidensha Electric Mfg Co Ltd Core for transformer
JPS59121809A (en) * 1982-12-27 1984-07-14 Mitsubishi Electric Corp Core supporting method
JPH05234783A (en) * 1991-12-06 1993-09-10 Toshiba Corp Three-phase transformer
JP2002075752A (en) * 2000-08-25 2002-03-15 Hitachi Ltd Stationary induction apparatus
JP2003133141A (en) * 2001-10-22 2003-05-09 Aichi Electric Co Ltd Wound core transformer and its manufacturing method
JP2005333057A (en) * 2004-05-21 2005-12-02 Toshiba Corp Transformer iron core and three-phase transformer
CN201066611Y (en) * 2007-04-13 2008-05-28 佛山市伊戈尔电业制造股份有限公司 A non crystal alloy transformer
CN103093942B (en) * 2011-11-01 2016-03-09 株式会社日立产机系统 Amorphous iron core transformer
CN103794340A (en) * 2013-12-03 2014-05-14 柳州市五环水暖器材经营部 Three-phase and five-column planar rolled iron core and manufacturing method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411930A (en) * 2020-03-26 2020-07-14 中国石油大学(北京) Visual dynamic filtration and drainage simulation device and simulation method for tight gas reservoir fracturing fluid
CN111411930B (en) * 2020-03-26 2020-10-16 中国石油大学(北京) Visual dynamic filtration and drainage simulation device and simulation method for tight gas reservoir fracturing fluid

Also Published As

Publication number Publication date
CN105895328B (en) 2017-11-14
JP2016152248A (en) 2016-08-22
CN105895328A (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
EP2590187A2 (en) Amorphous core transformer
JP5544393B2 (en) Winding iron core for stationary equipment and stationary equipment having the same
KR20150002731A (en) Three-phase choke
JP2007043040A (en) Iron core for stillness apparatus
JP7047931B2 (en) Winding core and transformer
JP2018107180A (en) Electromagnetic apparatus
JP6407549B2 (en) Static induction machine
EP2787515B1 (en) Inductor gap spacer
JP6184768B2 (en) Winding cores, three-phase transformers and three-phase reactors for stationary electromagnetic equipment
JP5988712B2 (en) Transformer
JP6158579B2 (en) Static induction machine
JP2009259971A (en) Coil product and reactor
JP5701120B2 (en) Magnetic shielding device for transformer
JP6857494B2 (en) Static induction electric device
JP2017157789A (en) Stationary induction machine
KR101573813B1 (en) Low loss type hybrid transformer, and manufacturing method thereof
JP7365120B2 (en) stationary induction equipment
JP3189478U (en) Assembly structure of steel core
JP2019071341A (en) Transformer
JP6491835B2 (en) Static induction machine
JP2013098351A (en) Amorphous iron core transformer
JP7149908B2 (en) Static induction device
JP2016157890A (en) Coil component
WO2021049076A1 (en) Stationary induction apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180831

R150 Certificate of patent or registration of utility model

Ref document number: 6397349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150