JP2015136202A - chopper circuit - Google Patents

chopper circuit Download PDF

Info

Publication number
JP2015136202A
JP2015136202A JP2014005693A JP2014005693A JP2015136202A JP 2015136202 A JP2015136202 A JP 2015136202A JP 2014005693 A JP2014005693 A JP 2014005693A JP 2014005693 A JP2014005693 A JP 2014005693A JP 2015136202 A JP2015136202 A JP 2015136202A
Authority
JP
Japan
Prior art keywords
down chopper
chopper circuit
current
output current
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014005693A
Other languages
Japanese (ja)
Inventor
金林 張
Jinlin Zhang
金林 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2014005693A priority Critical patent/JP2015136202A/en
Publication of JP2015136202A publication Critical patent/JP2015136202A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance efficiency of a step-up/down chopper circuit, paralleled by an interleave system, during low output.SOLUTION: Efficiency of a step-up/down chopper circuit, paralleled by an interleave system, during low output is enhanced by controlling the number of step-up/down chopper circuits to be operated by comparing the output current and a set threshold. Furthermore, the step-up/down chopper circuits are started and stopped while shifting the phase by (360°/the number of step-up/down chopper circuits started in parallel), depending on the number of step-up/down chopper circuits operated in parallel.

Description

本発明は、太陽電池や燃料電池などの直流電源を系統と連系させた分散電源システムなどに用いられ、直流電源を昇圧あるいは降圧する直流−直流変換装置(DC−DCコンバータ)を構成する昇降圧チョッパ回路に用いられ、さらに詳しくは、その昇降圧チョッパ回路が並列多重化された回路に関する。   The present invention is used in a distributed power supply system in which a direct current power supply such as a solar battery or a fuel cell is connected to a system, etc. More particularly, the present invention relates to a circuit in which the step-up / step-down chopper circuit is multiplexed in parallel.

太陽電池や燃料電池を分散電源として商用電源と連系させて負荷に電力を供給する分散電源システムでは、太陽電池や燃料電池の発電電圧が低いためにその出力電圧を昇圧するDC−DCコンバータを具備するのが一般的である。太陽電池や負荷に大電流を供給する場合には、単位チョッパ回路を複数台多重並列に接続して、出力電流を分担させるようにしている。しかしながら多重並列接続チョッパ回路においては、出力が大きい場合には、効率はさほど悪くないが、低出力時において、効率が低下するという課題があった。   In a distributed power supply system that supplies power to a load by connecting a solar battery or a fuel cell to a commercial power supply as a distributed power supply, a DC-DC converter that boosts the output voltage of the solar battery or the fuel cell because the power generation voltage is low. It is common to have. When a large current is supplied to a solar cell or a load, a plurality of unit chopper circuits are connected in parallel to share the output current. However, in the multiple parallel connection chopper circuit, the efficiency is not so bad when the output is large, but there is a problem that the efficiency is lowered at the time of low output.

特開平09−215322号公報JP 09-215322 A

特開平09−215322では、各々のチョッパごとに電流検出器を設け、この出力電流と平均電流との偏差を求めて、電流偏差の時間的変化の大きさに対応した補正量を出力する。更に電流偏差の絶対値を演算し、この絶対値が基準電圧源をこえたか否かを、判定し、この判定結果に対応してPID調節器の出力側に設けたスイッチをオン・オフさせ、僅かな電流偏差で無用な補正動作を妨げる昇降圧チョッパ回路が並列多重化された回路において、低出力時における効率向上を図るようにしている。   In Japanese Patent Laid-Open No. 09-215322, a current detector is provided for each chopper, a deviation between the output current and the average current is obtained, and a correction amount corresponding to the magnitude of the temporal variation of the current deviation is output. Further, the absolute value of the current deviation is calculated, it is determined whether or not the absolute value exceeds the reference voltage source, and the switch provided on the output side of the PID controller is turned on / off corresponding to the determination result, In a circuit in which a step-up / step-down chopper circuit that prevents unnecessary correction operation with a small current deviation is multiplexed in parallel, efficiency is improved at low output.

特許文献1に記載されているフィードバック制御を行う回路で、出力電流のアンバランスを解消し、低出力時における効率向上を図ることは、可能であるが、検出器が単位チョッパ分必要になり、制御部が複雑になるという課題がある。   In the circuit that performs feedback control described in Patent Document 1, it is possible to eliminate the imbalance of the output current and improve the efficiency at the time of low output, but the detector is required for the unit chopper, There exists a subject that a control part becomes complicated.

本発明は、多重並列接続チョッパ回路において、制御部を複雑にせずに簡単な制御で、低出力時においても、効率が低下しないようにすることを目的とする。   An object of the present invention is to prevent the efficiency of a multiple parallel-connected chopper circuit from decreasing even at low output by simple control without complicating the control unit.

上記課題を解決する為に、本発明に係わる昇降圧チョッパ回路は、入力・出力電流を計測し、負荷状態を確認し、その値により運転する昇降圧チョッパ回路の台数を制御する。低出力時(軽負荷時)に、昇降圧チョッパ回路を止め、中高出力時には、止めていた昇降圧チョッパ回路を起動するように制御を行う。具体的には、共通の直流電源に並列に接続された昇降圧チョッパ回路において、出力電流を測定する手段を備え、出力電流がn台運転上限閾値以上になった時に、(n+1)台目の昇降圧チョッパ回路を規定の電流位相差でソフトスタート起動し、出力電流がn台運転下限閾値以下になった時に、n台目の昇降圧チョッパ回路を停止する手段を備えている。   In order to solve the above problems, the step-up / step-down chopper circuit according to the present invention measures the input / output current, confirms the load state, and controls the number of step-up / step-down chopper circuits to be operated according to the value. Control is performed so that the buck-boost chopper circuit is stopped at low output (light load) and the stopped buck-boost chopper circuit is started at medium-high output. Specifically, in a step-up / step-down chopper circuit connected in parallel to a common DC power supply, a means for measuring the output current is provided, and when the output current exceeds the n-unit operation upper limit threshold, the (n + 1) -th unit The step-up / step-down chopper circuit is soft-started with a specified current phase difference, and has means for stopping the n-th step-up / step-down chopper circuit when the output current falls below the n-unit operation lower limit threshold.

並列接続された昇降圧チョッパ回路において、各々の昇降圧チョッパ回路のMAX効率点(電流・電圧)をあらかじめ計測し、入力・出力電流により運転する昇降圧チョッパ回路の台数を制御する。入力・出力電流と閾値を比較して、運転する昇降圧チョッパの台数を算出する。具体的には、図2のフローチャートに従い決定する。まず、1台の昇降圧チョッパ回路のMAX効率点(電流・電圧)を把握する(S20)。入力電流、入力電圧、出力電流、出力電圧の測定を行う(S21)。昇降圧チョッパ回路の台数=INT(計測電流/MAX効率点電流)(S22)。次に、チョッパ回路の投入/停止に伴う切り替え後の電流位相を算出する。切り替え後の電流位相計算値=360度/昇降圧チョッパ回路の並列台数(S23)。   In the step-up / step-down chopper circuits connected in parallel, the MAX efficiency point (current / voltage) of each step-up / step-down chopper circuit is measured in advance, and the number of step-up / step-down chopper circuits operated by the input / output current is controlled. Compare the input / output current and the threshold value to calculate the number of step-up / down choppers to be operated. Specifically, it is determined according to the flowchart of FIG. First, the MAX efficiency point (current / voltage) of one step-up / down chopper circuit is grasped (S20). The input current, input voltage, output current, and output voltage are measured (S21). Number of step-up / down chopper circuits = INT (measurement current / MAX efficiency point current) (S22). Next, the current phase after switching accompanying the turning on / off of the chopper circuit is calculated. Calculated current phase value after switching = 360 degrees / parallel number of step-up / down chopper circuits (S23).

また、本発明では、頻繁に運転台数の切り替えが発生しないように1台の装置の最大出力を参考にして、運転台数の切り替え閾値を設定する。図3にその設定例を示す。モード1、1台運転を行う場合、例えば、90Aを2台目の切り替え設定値にした時、90Aを少し越えて、モード2の2台運転に切り替わった後、すぐに90Aを割った場合、またモード1に切り替えることになる。頻繁に切り替えが起こると、切り替えロスが何度も発生することになる。頻繁な切り替えを防ぐ為、切り替えの下限閾値を、たとえば85Aとして頻繁に切り替えが、発生しないようにしている。又、ソフトスタートをかけて、昇降圧チョッパの起動・停止を行い運転台数の切り替えを行う。   In the present invention, the threshold for switching the number of operating units is set with reference to the maximum output of one device so that the number of operating units does not frequently switch. FIG. 3 shows an example of the setting. When mode 1 or 1 unit operation is performed, for example, when 90A is set to the second switch setting value, 90A is slightly exceeded, and after switching to mode 2 unit operation, 90A is immediately divided. The mode is switched to mode 1. If frequent switching occurs, switching loss will occur many times. In order to prevent frequent switching, the switching lower limit threshold is set to 85A, for example, so that frequent switching does not occur. In addition, a soft start is performed to start and stop the buck-boost chopper and to switch the number of operating units.

本発明により、回路構成を変更することなく低出力から、定格出力まで安定した、高効率運転が可能となる。   According to the present invention, it is possible to perform a stable and highly efficient operation from a low output to a rated output without changing the circuit configuration.

本発明における回路構成例(3並列降圧チョッパ回路)Circuit configuration example in the present invention (3-parallel step-down chopper circuit) 本発明の動作フローチャートOperation flowchart of the present invention 本発明の台数決定フローチャートNumber determination flowchart of the present invention チョッパ投入台数制御の設定例(3台)Chopper input unit control setting example (3 units) チョッパ投入台数制御の動きMovement of controlling the number of chopper inputs チョッパ回路の効率計算シミュレーションEfficiency calculation simulation of chopper circuit 従来回路と本発明の力率比較Power factor comparison between conventional circuit and the present invention

図1から図7を用いて本発明を説明する。図1は、3並列降圧チョッパ回路で構成した30kwシステムで、1台が10kwの回路(定格入力電圧200V、定格出力電流100A、出力電圧100V)が3台並列につながれている。この回路構成で、一般的なスイッチングデバイスIGBTでのシミュレーション結果を図6に示す。   The present invention will be described with reference to FIGS. FIG. 1 shows a 30 kW system composed of three parallel step-down chopper circuits, each of which has a 10 kW circuit (rated input voltage 200 V, rated output current 100 A, output voltage 100 V) connected in parallel. FIG. 6 shows a simulation result of a general switching device IGBT with this circuit configuration.

図1から図7を用いて3並列降圧チョッパ回路での本発明の動作を説明する。図4は、投入台数の設定例を示す。モード1、 1台起動(1号機起動)。モード2、2台起動(1号機と2号機起動)、モード3、3台起動(1号機、2号機、3号機全て起動)。モード1状態から、出力電流があがり、モード2へ移行する時の出力電流値の値を1台上限閾値と定義する。本実施例では90Aとする。前記1台上限閾値以上になったとき、モード2の2台運転に移行させる。モード2の2台運転中で、モード3へ移行する時の出力電流値の値を2台上限閾値と定義する。本実施例では180Aとする。以下同様にモード3から、モード2へ移行する時の出力電流値の値を3台下限閾値と定義し、モード2からモード1へ移行する時の、出力電流値の値を2台下限閾値と定義する。
本実施例では、前記3台下限閾値を170A、前記2台下限閾値を85Aとする。
The operation of the present invention in a three parallel step-down chopper circuit will be described with reference to FIGS. FIG. 4 shows a setting example of the input number. Mode 1, 1 unit start (Unit 1 start). Mode 2 and 2 units start (Unit 1 and Unit 2 start), Mode 3 and 3 units start (Unit 1, Unit 2, Unit 3 all start). The value of the output current when the output current rises from the mode 1 state and shifts to the mode 2 is defined as one unit upper limit threshold value. In this embodiment, it is 90A. When the above-mentioned one-unit upper limit threshold is exceeded, the mode is shifted to two-unit operation. The value of the output current when shifting to mode 3 during the operation of two units in mode 2 is defined as the upper limit threshold value for two units. In this embodiment, it is 180A. Similarly, the value of the output current when shifting from mode 3 to mode 2 is defined as the lower limit threshold of three units, and the value of the output current value when shifting from mode 2 to mode 1 is defined as the lower limit threshold of two units. Define.
In this embodiment, the lower limit threshold value for the three units is set to 170A, and the lower limit threshold value for the two units is set to 85A.

図3の動作フローチャートと図4、図5により本実施例の動作を説明する。<モード1>、まず1号機を起動する(S1)。出力電流を常に計測しており、出力電流が1台運転上限設定閾値90A以上になった時に、モード2へ移行する(S2)。2号機がスタンバイし、1号機の電流位相が、180°遅れる時点で2号機にソフトスタートをかけて起動する(S3)。出力電流量が2台運転上限設定閾値180A以上になると、モード3に移行する(S5)。2号機の電流位相遅れが180°から、120°まで段々進相すると同時に、1号機電流位相より240°遅れる時点で3号機にソフトスタートをかけて起動する(S6)。   The operation of this embodiment will be described with reference to the operation flowchart of FIG. 3 and FIGS. <Mode 1> First, the first unit is activated (S1). The output current is constantly measured, and when the output current becomes equal to or higher than the single-unit operation upper limit setting threshold 90A, the mode is shifted to mode 2 (S2). Unit 2 is on standby, and when the current phase of Unit 1 is delayed by 180 °, Unit 2 is soft-started and activated (S3). When the output current amount is equal to or greater than the two-unit operation upper limit setting threshold value 180A, the mode shifts to mode 3 (S5). At the same time that the current phase delay of Unit 2 gradually advances from 180 ° to 120 °, and at the time of 240 ° delay from the Unit 1 current phase, Unit 3 is soft-started and started (S6).

3台並列降圧チョッパ回路では、高出力の時は、このまま3台並列運転を継続する(モード3の状態が持続する)。出力電流量が3台運転下限設定閾値170A以下に下がると(S7)、3号機にソフトスタートをかけて停止する(S8)。モードに移行し、2号機の電流位相遅れを120°から、遅れ180°まで、段々進相させる。出力電流量が2台運転下限設定閾値85A以下になると(S4)、2号機にソフトスタートをかけ停止し、モード1へ移行する(S9)。   In the three-unit parallel step-down chopper circuit, at the time of high output, the three-unit parallel operation is continued as it is (the mode 3 state is maintained). When the output current amount falls below the three-unit operation lower limit setting threshold 170A (S7), the third unit is soft-started and stopped (S8). The mode is changed and the current phase delay of Unit 2 is gradually advanced from 120 ° to 180 °. When the output current amount falls below the two-unit operation lower limit setting threshold 85A (S4), the second unit is soft-started and stopped, and the mode 1 is entered (S9).

従来例と本発明の台数制御を行った場合の効率の比較を図7に示す。従来方式でも、出力定格付近では、効率が、98.4%と高い効率が維持されているが、出力が低下するに伴い、効率が下がって行き、出力電流が60Aの時には、効率が97.6%まで下がっている。本発明の実施例のように出力電流により、運転台数を制御することで、負荷率20%〜100%まで、効率は定格時の高効率98.4%を維持できており、低負荷時の効率をあげることができる。   FIG. 7 shows a comparison in efficiency between the conventional example and the number control of the present invention. Even in the conventional method, the efficiency is maintained as high as 98.4% near the output rating. However, the efficiency decreases as the output decreases. When the output current is 60 A, the efficiency is 97. It has dropped to 6%. By controlling the number of operating units according to the output current as in the embodiment of the present invention, the load factor is 20% to 100%, and the efficiency can be maintained at the high efficiency of 98.4% at the rated time. Efficiency can be increased.

本実施例では、3台並列降圧チョッパ回路を用いたが、昇圧チョッパ回路でも同様の制御を行うことで、低負荷時の効率をあげることができる。並列台数が4台以上の場合も、同様の制御を実施することで、適応が可能である。   In the present embodiment, three parallel step-down chopper circuits are used, but the same control is also performed in the step-up chopper circuit, so that the efficiency at low load can be increased. When the number of units in parallel is four or more, adaptation is possible by performing the same control.

1 直流電源
2 C1(コンデンサ)
3 SW1
4 SW2
5 SW3
6 D1(ダイオード)
7 D2(ダイオード)
8 D3(ダイオード)
9 L1(リアクトル)
10 L2(リアクトル)
11 L3(リアクトル)
12 C2(コンデンサ)
13 負荷
14 合計入力電流
15 合計出力電流
16 負荷電流
1 DC power supply 2 C1 (capacitor)
3 SW1
4 SW2
5 SW3
6 D1 (diode)
7 D2 (diode)
8 D3 (diode)
9 L1 (reactor)
10 L2 (reactor)
11 L3 (reactor)
12 C2 (capacitor)
13 Load 14 Total input current 15 Total output current 16 Load current

Claims (3)

共通の直流電源に並列に接続された昇降圧チョッパ回路において、出力電流を測定する手段と、出力電流がn台運転上限閾値以上になった時に、(n+1)台目の昇降圧チョッパ回路を規定の電流位相差でソフトスタートをかけて起動し、出力電流がn台運転下限閾値以下になった時に、n台目の昇降圧チョッパ回路を規定の電流位相差でソフトスタートをかけて停止する手段を備えたことを特徴とする昇降圧チョッパ回路 In a buck-boost chopper circuit connected in parallel to a common DC power supply, the means to measure the output current and the (n + 1) th buck-boost chopper circuit are specified when the output current exceeds the upper limit threshold of n units Starts with a soft start with a current phase difference of, and when the output current falls below the n-unit operation lower threshold, the nth step-up / down chopper circuit is stopped with a soft-start with a specified current phase difference Step-up / down chopper circuit characterized by comprising 前記並列接続された昇降圧チョッパ回路において、各々の昇降圧チョッパ回路のMAX効率点(電流・電圧)をあらかじめ計測し、入力・出力電流により運転する昇降圧チョッパ回路の運転台数を決定するn台運転上限閾値とn台運転下限閾値を設定する手段を備えたことを特徴とする請求項1記載の昇降圧チョッパ回路 In the step-up / step-down chopper circuits connected in parallel, the MAX efficiency point (current / voltage) of each step-up / step-down chopper circuit is measured in advance, and n units for determining the number of step-up / step-down chopper circuits to be operated by input / output current are determined. 2. The step-up / step-down chopper circuit according to claim 1, further comprising means for setting an operation upper limit threshold value and an n-unit operation lower limit threshold value. 前記昇降圧チョッパ回路の起動・停止に伴う台数変更後の前記規定の電流位相差は、(360°/昇降圧チョッパ回路の並列起動台数)、であることを特徴とする請求項1又は2に記載の昇降圧チョッパ回路 The specified current phase difference after changing the number of units according to the start / stop of the step-up / step-down chopper circuit is (360 ° / number of parallel start-up / step-down chopper circuits). The described buck-boost chopper circuit
JP2014005693A 2014-01-16 2014-01-16 chopper circuit Pending JP2015136202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014005693A JP2015136202A (en) 2014-01-16 2014-01-16 chopper circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014005693A JP2015136202A (en) 2014-01-16 2014-01-16 chopper circuit

Publications (1)

Publication Number Publication Date
JP2015136202A true JP2015136202A (en) 2015-07-27

Family

ID=53767694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014005693A Pending JP2015136202A (en) 2014-01-16 2014-01-16 chopper circuit

Country Status (1)

Country Link
JP (1) JP2015136202A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073179A1 (en) * 2015-10-28 2017-05-04 株式会社オートネットワーク技術研究所 Multiphase converter
WO2017073182A1 (en) * 2015-10-28 2017-05-04 株式会社オートネットワーク技術研究所 Multiphase converter
WO2017145306A1 (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, machine, and control method
CN107634652A (en) * 2017-10-19 2018-01-26 安徽科达自动化集团股份有限公司 Staggered-parallel-type numeral DC D/C powers
CN107979265A (en) * 2016-10-20 2018-05-01 雅达电子国际有限公司 Alternating expression power supply and corresponding control method
JP2018107966A (en) * 2016-12-27 2018-07-05 株式会社京三製作所 Power supply device and control method of power supply device
US10520967B2 (en) 2016-11-29 2019-12-31 Omron Corporation Power converter with a boost unit including at least two boost chopper circuits connected in parallel
CN111600485A (en) * 2020-06-22 2020-08-28 广东省大湾区集成电路与系统应用研究院 Control method and device for power tube in multiphase interleaving parallel circuit and storage medium

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141132B (en) * 2015-10-28 2020-06-16 株式会社自动网络技术研究所 Multi-phase converter
WO2017073179A1 (en) * 2015-10-28 2017-05-04 株式会社オートネットワーク技術研究所 Multiphase converter
JP2017085771A (en) * 2015-10-28 2017-05-18 株式会社オートネットワーク技術研究所 Polyphase converter
JP2017085772A (en) * 2015-10-28 2017-05-18 株式会社オートネットワーク技術研究所 Polyphase converter
US10305382B2 (en) 2015-10-28 2019-05-28 Autonetworks Technologies, Ltd. Multiphase converter
US10148184B2 (en) 2015-10-28 2018-12-04 Autonetworks Technologies, Ltd. Multiphase converter
WO2017073182A1 (en) * 2015-10-28 2017-05-04 株式会社オートネットワーク技術研究所 Multiphase converter
CN108141132A (en) * 2015-10-28 2018-06-08 株式会社自动网络技术研究所 Multiphase converter
CN108141131A (en) * 2015-10-28 2018-06-08 株式会社自动网络技术研究所 Multiphase converter
CN108141131B (en) * 2015-10-28 2020-01-21 株式会社自动网络技术研究所 Multi-phase converter
WO2017145306A1 (en) * 2016-02-24 2017-08-31 本田技研工業株式会社 Power supply device, machine, and control method
US10574143B2 (en) 2016-02-24 2020-02-25 Honda Motor Co., Ltd. Power supply device, machine, and control method for performing power conversion using a multiphase converter
CN107979265A (en) * 2016-10-20 2018-05-01 雅达电子国际有限公司 Alternating expression power supply and corresponding control method
CN107979265B (en) * 2016-10-20 2021-05-25 雅达电子国际有限公司 Interleaved power supply and corresponding control method
US10520967B2 (en) 2016-11-29 2019-12-31 Omron Corporation Power converter with a boost unit including at least two boost chopper circuits connected in parallel
WO2018123079A1 (en) * 2016-12-27 2018-07-05 株式会社京三製作所 Power supply device and method for controlling power supply device
CN110168885A (en) * 2016-12-27 2019-08-23 株式会社京三制作所 The control method of power supply device and power supply device
JP2018107966A (en) * 2016-12-27 2018-07-05 株式会社京三製作所 Power supply device and control method of power supply device
US10978950B2 (en) 2016-12-27 2021-04-13 Kyosan Electric Mfg. Co., Ltd. Power supply device and method for controlling power supply device
CN107634652A (en) * 2017-10-19 2018-01-26 安徽科达自动化集团股份有限公司 Staggered-parallel-type numeral DC D/C powers
CN111600485A (en) * 2020-06-22 2020-08-28 广东省大湾区集成电路与系统应用研究院 Control method and device for power tube in multiphase interleaving parallel circuit and storage medium
CN111600485B (en) * 2020-06-22 2021-04-02 广东省大湾区集成电路与系统应用研究院 Control method and device for power tube in multiphase interleaving parallel circuit and storage medium

Similar Documents

Publication Publication Date Title
JP2015136202A (en) chopper circuit
JP5940946B2 (en) Power conditioner and control method thereof
TWI538351B (en) Uninterruptible power supply device
TWI593213B (en) Uninterruptable power device
JP2008228362A (en) Power supply unit
JP7228949B2 (en) power converter
JP5589141B2 (en) Operation control device for photovoltaic power generation system
US20210028705A1 (en) Switching power supply device
EP3240138B1 (en) Uninterruptible power supply system
JP2017060303A (en) Power supply device
JP6825691B2 (en) Uninterruptible power supply system and uninterruptible power supply
JP2017192166A5 (en)
JP6289714B2 (en) Power control device, power control system, power control method, and storage battery
JP6902719B2 (en) Converter system
JP6242128B2 (en) Power converter
JP2018157737A5 (en)
JP6171180B2 (en) Power converter
JP6296878B2 (en) Grid-connected inverter and generated power estimation method
JP2005354756A (en) Uninterruptible power supply apparatus
JP2010172105A (en) Power conversion apparatus
JP6271638B2 (en) Power conditioner and control method thereof
JP6618870B2 (en) Power conversion device for solar power generation, control method, and solar power generation system
JP6245467B2 (en) Power converter for wind power generation
JP7415703B2 (en) DC uninterruptible power supply and control method for DC uninterruptible power supply
JP2010098778A (en) Dc-dc converter