JP2014209812A - Semiconductor element and wiring structure of power conversion device - Google Patents

Semiconductor element and wiring structure of power conversion device Download PDF

Info

Publication number
JP2014209812A
JP2014209812A JP2013085758A JP2013085758A JP2014209812A JP 2014209812 A JP2014209812 A JP 2014209812A JP 2013085758 A JP2013085758 A JP 2013085758A JP 2013085758 A JP2013085758 A JP 2013085758A JP 2014209812 A JP2014209812 A JP 2014209812A
Authority
JP
Japan
Prior art keywords
semiconductor element
conductor
pair
conductors
wiring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085758A
Other languages
Japanese (ja)
Other versions
JP6109630B2 (en
Inventor
政臣 小西出
Masaomi Konishide
政臣 小西出
河野 恭彦
Yasuhiko Kono
恭彦 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013085758A priority Critical patent/JP6109630B2/en
Publication of JP2014209812A publication Critical patent/JP2014209812A/en
Application granted granted Critical
Publication of JP6109630B2 publication Critical patent/JP6109630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Abstract

PROBLEM TO BE SOLVED: To solve a problem occurring when gate wiring is composed of wide plate-like conductors and the plate-like conductors of the gate wiring and plate-like conductors of main wiring are laminated in the same direction with each other, that the gate wiring is interfered with an influence of a magnetic field generated by a current that flows in the main wiring and an induced current flows in the gate wiring to cause malfunction of a power semiconductor element.SOLUTION: In a wiring structure of semiconductor elements, which is included in a power conversion device, gate wiring is arranged in a manner such that a lamination direction of the gate wiring composed of plate-like conductor pairs becomes almost orthogonal to a lamination direction of main wiring which is a plate-like conductor.

Description

本発明は、電力変換装置に係り、特に半導体素子と半導体素子の駆動装置を接続するゲート配線の構造に関する。   The present invention relates to a power conversion device, and more particularly to a structure of a gate wiring for connecting a semiconductor element and a driving device for the semiconductor element.

直流電力を交流電力に変換するインバータや、交流電力を直流電力に変換するコンバータ、或いは直流電圧の昇圧や降圧を行う直流チョッパ回路等の電力変換装置では、IGBT等のパワー半導体素子が広く使われている。このパワー半導体素子は、ゲート駆動装置からのオン、オフ信号により駆動される。このゲート駆動装置は、電力変換装置のコントローラである制御論理部からの信号により制御されている。パワー半導体素子とゲート駆動装置とは、ゲート配線と呼ばれる配線で接続されている。   In power converters such as inverters that convert DC power into AC power, converters that convert AC power into DC power, or DC chopper circuits that boost or step down DC voltage, power semiconductor elements such as IGBTs are widely used. ing. This power semiconductor element is driven by an on / off signal from a gate driving device. This gate driving device is controlled by a signal from a control logic unit which is a controller of the power conversion device. The power semiconductor element and the gate driving device are connected by a wiring called a gate wiring.

一般に、このゲート配線は、ゲート駆動装置からパワー半導体素子へのゲート駆動信号に遅延が発生しないように、できるだけインダクタンスが低くなるように構成されるのが好ましい。このため、従来の二本の配線を縒った構造に対して、ゲート配線を幅の広い平板状の導体で形成する方法が、特許文献1及び特許文献2に開示されている。   In general, the gate wiring is preferably configured to have as low an inductance as possible so that a delay does not occur in the gate drive signal from the gate drive device to the power semiconductor element. For this reason, Patent Document 1 and Patent Document 2 disclose a method of forming a gate wiring with a wide flat-plate conductor in contrast to a conventional structure in which two wirings are provided.

特開昭61−227661号公報Japanese Patent Laid-Open No. 61-227661 特開2006−211805号公報JP 2006-21805 A

しかし、前記開示された先行技術には、以下に述べる問題点があった。
一般に、鉄道用電力変換装置などのように大電力を扱う電力変換装置では、パワー半導体素子の主電流を流す主端子(IGBTではコレクタ端子及びエミッタ端子)に接続する主配線の方も、低インダクタンス化のために幅の広い平板状の導体構造で構成されており、できるだけインダクタンスを低減するために、パワー半導体素子の上部を覆うように全面的に配置される。
この主配線の導体に流れる電流は数百Aから数千Aという大電流であり、この大電流により主配線の導体周辺に大きな磁界を発生させる。
However, the disclosed prior art has the following problems.
In general, in power converters that handle large amounts of power, such as power converters for railways, the main wiring connected to the main terminals (collector terminals and emitter terminals in IGBTs) through which the main current of the power semiconductor element flows is also low in inductance. In order to reduce the inductance as much as possible, it is arranged over the entire surface of the power semiconductor element in order to reduce the inductance as much as possible.
The current flowing through the conductor of the main wiring is a large current of several hundred A to several thousand A, and this large current generates a large magnetic field around the conductor of the main wiring.

前述のゲート配線は、この主配線の導体の直下にレイアウトされることになるため、この磁界の影響を受け易い。特に、前述した先行技術文献である特許文献1及び2に開示された公知技術のゲート配線構造では、ゲート配線を平板状の導体構造としているために、主配線の導体からの磁界の影響を受け易くなり、この磁界によりゲート配線に電流が誘起されてしまう懸念がある。ところが、前述の公知技術では、この相互干渉を考慮しておらず、そのまま実施すると発生磁界による電磁誘導によりゲート配線に誘起電流が流れてパワー半導体素子を誤動作させる恐れがあった。   Since the above-described gate wiring is laid out immediately below the conductor of the main wiring, it is easily affected by this magnetic field. In particular, in the gate wiring structure of the known technology disclosed in Patent Documents 1 and 2 which are the prior art documents described above, the gate wiring is a flat conductor structure, and therefore, it is affected by the magnetic field from the conductor of the main wiring. There is a concern that current may be induced in the gate wiring by the magnetic field. However, in the above-described known technology, this mutual interference is not taken into consideration, and if it is carried out as it is, there is a possibility that an induced current flows through the gate wiring due to electromagnetic induction by the generated magnetic field, causing the power semiconductor element to malfunction.

本発明は、上記課題を解決するものであり、主配線に流れる電流による干渉を受けないゲート配線を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide a gate wiring that is not subject to interference caused by a current flowing in the main wiring.

上記の目的を達成するために、本発明の電力変換装置のゲート配線には次のような技術手段を講じた。すなわち、
(1)ゲート配線の平板状導体の積層方向は、主配線の平板状導体の積層方向に対して略90°異なるように配置した。
(2)上記の電力変換装置において、ゲート配線をパワー半導体素子の制御端子の下側に折り曲げ、冷却装置の表面から見てゲート配線は、制御端子より常に低い位置となるように配置した。
(3)複数のゲート配線を1箇所にまとめて配置する場合、冷却器から見て縦方向に並べて配置した。
In order to achieve the above-mentioned object, the following technical means were taken for the gate wiring of the power converter of the present invention. That is,
(1) The stacking direction of the flat conductors of the gate wiring is arranged to be approximately 90 ° different from the stacking direction of the flat conductors of the main wiring.
(2) In the power conversion device described above, the gate wiring is bent below the control terminal of the power semiconductor element, and the gate wiring is arranged so as to be always lower than the control terminal when viewed from the surface of the cooling device.
(3) When a plurality of gate wirings are arranged in one place, they are arranged in the vertical direction as viewed from the cooler.

本発明によれば、ゲート配線が、主配線の導体に流れる電流により発生する磁界の影響を受けなくなり、パワー半導体素子の誤動作を防止することができる。   According to the present invention, the gate wiring is not affected by the magnetic field generated by the current flowing through the conductor of the main wiring, and the malfunction of the power semiconductor element can be prevented.

本発明の実施例1の鳥瞰図Bird's-eye view of Embodiment 1 of the present invention 本発明の実施例1の下層の上面構造図Top view structural diagram of lower layer of Example 1 of the present invention 本発明の実施例1の最上層の上面構造図FIG. 3 is a top structural view of the uppermost layer according to the first embodiment of the present invention. 本発明の実施例1の左側面構造図Left side structure diagram of Example 1 of the present invention 本発明の実施例1の正面構造図Front structural diagram of Embodiment 1 of the present invention 本発明の実施例1で上アームIGBTがターンオンして転流した時の電流経路を示す図The figure which shows the electric current path | route when the upper arm IGBT turns on and commutates in Example 1 of this invention. IGBTの高さ方向の寸法を示す図The figure which shows the dimension of the height direction of IGBT 本発明の実施例2の鳥瞰図Bird's-eye view of embodiment 2 of the present invention 本発明の実施例3の鳥瞰図Bird's eye view of Embodiment 3 of the present invention

低インダクタンス化のために平板状導体にしたゲート配線が、同じく平板状導体の主配線に流れる電流により発生する磁界の影響を受けないようにする目的を、ゲート配線の平板状導体の積層方向と主配線の平板状導体の積層方向が略直交するように配置することにより実現した。   For the purpose of preventing the gate wiring made of a flat conductor for low inductance from being affected by the magnetic field generated by the current flowing in the main wiring of the flat conductor, This was realized by arranging the flat conductors of the main wiring so that the lamination directions were substantially orthogonal.

図1は、本発明の実施例1の2レベル電力変換装置の1相分を示す鳥瞰図であり、図2は、図1の上面図で最上層の導体バーを外した下層の導体バーレイアウトを示した図、図3は、図1の上面図で最上層の導体バーの配置を示した図、図4は、図1の左側面図、図5は、図1の正面図である。   FIG. 1 is a bird's-eye view showing one phase of the two-level power conversion device according to the first embodiment of the present invention. FIG. 2 shows a lower-layer conductor bar layout in which the uppermost conductor bar is removed from the top view of FIG. FIG. 3 is a top view of FIG. 1 showing the arrangement of the uppermost conductor bars, FIG. 4 is a left side view of FIG. 1, and FIG. 5 is a front view of FIG.

図1から図5において、4は2レベル電力変換装置の上アームIGBTモジュール、5は下アームIGBTモジュール、403から405は上アームIGBTモジュールのコレクタ端子、406から408は上アームIGBTモジュールのエミッタ端子、503から505は下アームIGBTのコレクタ端子、506から508は下アームIGBTのエミッタ端子、301は上アームIGBTのコレクタ端子403から405を図示していない正側の電源に接続する正側導体板、303は下アームIGBTモジュールのエミッタ端子506から508を図示していない負側の電源に接続する負側導体板、302は上アームIGBTモジュールのエミッタ端子406から408を下アームIGBTモジュールのコレクタ端子503から505に接続する中間導体板、321は中間導体板302を図示していない出力配線に接続する出力接続端子、401、402は上アームIGBTのゲート端子、501、502は下アームIGBTのゲート端子、101、102は上アームIGBTのゲート配線導体、201、202は下アームIGBTのゲート配線導体、1は積層された上アームIGBTのゲート配線導体対、2は積層された下アームIGBTのゲート配線導体対、6はゲート駆動装置、7はIGBTモジュール4と5の冷却装置である。   1 to 5, 4 is an upper arm IGBT module of a two-level power converter, 5 is a lower arm IGBT module, 403 to 405 are collector terminals of the upper arm IGBT module, and 406 to 408 are emitter terminals of the upper arm IGBT module. , 503 to 505 are collector terminals of the lower arm IGBT, 506 to 508 are emitter terminals of the lower arm IGBT, and 301 is a positive conductor plate for connecting the collector terminals 403 to 405 of the upper arm IGBT to a positive power source (not shown). , 303 is a negative conductor plate for connecting the emitter terminals 506 to 508 of the lower arm IGBT module to a negative power source (not shown), and 302 is an emitter terminal 406 to 408 of the upper arm IGBT module. From 503 to 505 The intermediate conductor plate to be connected, 321 is an output connection terminal for connecting the intermediate conductor plate 302 to an output wiring (not shown), 401 and 402 are gate terminals of the upper arm IGBT, 501 and 502 are gate terminals of the lower arm IGBT, 101, 102 is a gate wiring conductor of the upper arm IGBT, 201 and 202 are gate wiring conductors of the lower arm IGBT, 1 is a gate wiring conductor pair of the stacked upper arm IGBT, 2 is a gate wiring conductor pair of the stacked lower arm IGBT, 6 is a gate driving device, and 7 is a cooling device for the IGBT modules 4 and 5.

本実施例1の特徴は、平行した平板状導体の対で構成される上アームIGBTのゲート配線導体101、102及び下アームIGBTのゲート配線導体201、201の積層方向を、主配線の導体である正側導体板301、中間導体板302及び負側導体板303の積層方向に対して略90度の(略直交する)角度を持って配置した点である。   The feature of the first embodiment is that the stacking direction of the gate wiring conductors 101 and 102 of the upper arm IGBT and the gate wiring conductors 201 and 201 of the lower arm IGBT configured by a pair of parallel flat conductors is determined by the conductor of the main wiring. This is a point arranged with an angle of about 90 degrees (substantially orthogonal) with respect to the stacking direction of a certain positive conductor plate 301, intermediate conductor plate 302, and negative conductor plate 303.

この実施例の作用を、上アームIGBTモジュール4がオンした時の動作を例にとって、図6を用いて説明する。図6は、IGBTモジュール4がオンする前後の電流の流線が変化する様子を示したものであり、図1〜5と同じ構成要素には同一の符号を付してある。図6において、801は上アームIGBTがオンする前の電流流線、802は上アームIGBT4がオンした後の電流流線を示す。   The operation of this embodiment will be described with reference to FIG. 6, taking as an example the operation when the upper arm IGBT module 4 is turned on. FIG. 6 shows how current flow lines change before and after the IGBT module 4 is turned on, and the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals. In FIG. 6, 801 indicates a current stream line before the upper arm IGBT is turned on, and 802 indicates a current stream line after the upper arm IGBT 4 is turned on.

上アームIGBTモジュール4がオンする前は、負側導体板303から図示していない下アームIGBTモジュール5の内蔵ダイオードを通して、中間導体板302を経由して出力接続端子321に電流が流れている状態を仮定する。この電流流線は801で表される。   Before the upper arm IGBT module 4 is turned on, a current is flowing from the negative conductor plate 303 to the output connection terminal 321 via the intermediate conductor plate 302 through a built-in diode of the lower arm IGBT module 5 (not shown). Assuming This current flow line is represented by 801.

IGBTモジュール4がゲート駆動装置6からの指令によりオンすると、前記801の電流流線で表されていた電流は、正側導体板301の図示していない正極端子から上アームIGBTモジュールのコレクタ端子403〜405、上アームIGBTモジュールのエミッタ端子406〜408を経て中間導体板302を流れ、出力接続端子321に流れ出る電流に転流する。この電流の流線を図6では802で表す。ゲート配線101、102にはゲート駆動装置6からゲート制御端子401、402に上アームIGBTモジュール4を駆動するためのゲート駆動電流が流れる。   When the IGBT module 4 is turned on by a command from the gate driving device 6, the current represented by the current flow line 801 is changed from the positive terminal (not shown) of the positive conductor plate 301 to the collector terminal 403 of the upper arm IGBT module. ˜405, flows through the intermediate conductor plate 302 via the emitter terminals 406 to 408 of the upper arm IGBT module, and is commutated to the current flowing out to the output connection terminal 321. This current flow line is represented by 802 in FIG. A gate driving current for driving the upper arm IGBT module 4 flows from the gate driving device 6 to the gate control terminals 401 and 402 through the gate wirings 101 and 102.

この時、正側導体板301、中間導体板302及び負側導体板303には数百から数千アンペアの大電流が流れており、この電流が数百nsから数μsの短時間に変化するため、それぞれの導体板の周辺には非常に強い磁界が発生する。   At this time, a large current of several hundred to several thousand amperes flows through the positive-side conductor plate 301, the intermediate conductor plate 302, and the negative-side conductor plate 303, and this current changes in a short time of several hundred ns to several μs. Therefore, a very strong magnetic field is generated around each conductor plate.

本実施例1では、ゲート配線導体101、102の配置の方向が、上記正側、中間、負側の導体板301〜303の配置の方向と略90°異なるため、前述の磁界の影響を受けにくくなり、磁界による誘導電流がゲート配線101〜102に流れることを防止できる。なぜならば、上記正側、中間、負側の導体板301〜303により発生する磁界は上記正側、中間、負側の導体板301〜303に平行しているため、本実施例のようにこの磁界に直交する方向にゲート配線導体101、102を積層配置すると、ゲート配線導体101と102の間に磁界が通りにくくなるためである。一般に積層されている導体板は、導体板間に外部からの磁界が通らない限り外部磁界の影響を受けにくく、本実施例1に示す方向に導体を積層すれば、上記正側、中間、負側の導体板301〜303による磁界の影響を排除することが可能となる。   In the first embodiment, the arrangement direction of the gate wiring conductors 101 and 102 differs from the arrangement direction of the positive, intermediate, and negative side conductor plates 301 to 303 by approximately 90 °, and therefore is affected by the magnetic field. It becomes difficult, and it can prevent that the induced current by a magnetic field flows into the gate wirings 101-102. This is because the magnetic fields generated by the positive, intermediate and negative conductor plates 301 to 303 are parallel to the positive, intermediate and negative conductor plates 301 to 303. This is because if the gate wiring conductors 101 and 102 are stacked in a direction perpendicular to the magnetic field, it is difficult for the magnetic field to pass between the gate wiring conductors 101 and 102. In general, the laminated conductor plates are not easily affected by an external magnetic field unless an external magnetic field passes between the conductor plates. If the conductors are laminated in the direction shown in the first embodiment, the positive side, intermediate, negative It becomes possible to eliminate the influence of the magnetic field by the conductor plates 301 to 303 on the side.

また、一般に鉄道車両のような大電力を制御する電力変換装置に使われるIGBTでは、絶縁確保のために冷却装置と接続するIGBTのベース面とIGBTの制御端子間は、IGBTの制御端子と主端子間よりも広い距離を空けることが知られている。具体的に、3.3kV耐圧1200A定格のIGBTを例にとり、図7を使って説明する。   In addition, in an IGBT that is generally used in a power conversion device that controls a large amount of power such as a railway vehicle, the IGBT control terminal and the main control terminal are connected between the IGBT base surface connected to the cooling device and the IGBT control terminal to ensure insulation. It is known to have a wider distance than between terminals. Specifically, an IGBT with a 3.3 kV withstand voltage 1200 A rating will be described as an example with reference to FIG.

図7は、IGBTモジュールの寸法を示す図で有り、図1〜6と同じ構成要素には同一の符号を付している。図7に示すとおり、ベース面からIGBTゲート端子401、402間の距離は28mm空いているが、ゲート端子401、402と主端子403〜408間は高さ方向では10mmしか空いていない。このため、図1の実施例1に示すとおり、冷却装置7から見てIGBTのゲート配線導体101、102を下側に折り曲げると、ゲート配線導体101、102はより幅を広くできるため、ゲート配線のインダクタンスを小さくする観点では好ましい。   FIG. 7 is a diagram showing dimensions of the IGBT module, and the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals. As shown in FIG. 7, the distance between the IGBT gate terminals 401 and 402 from the base surface is 28 mm, but the distance between the gate terminals 401 and 402 and the main terminals 403 to 408 is only 10 mm in the height direction. Therefore, as shown in the first embodiment of FIG. 1, when the gate wiring conductors 101 and 102 of the IGBT are bent downward as viewed from the cooling device 7, the width of the gate wiring conductors 101 and 102 can be increased. This is preferable from the viewpoint of reducing the inductance.

さらに、図1の実施例1に示すとおり、ゲート駆動装置6の直近などのように、複数のIGBTのゲート配線を集約して配置しなければならない場合には、それぞれのゲート配線導体に流れる電流による相互干渉を防止するために、ゲート配線導体対1と2相互の間隔を、それぞれの積層の間隔より広く空ける必要がある。ゲート配線対同士で相互干渉が発生すると、一方のゲート駆動電流により他方のゲートに電流が誘起されて誤動作の原因となるためである。   Further, as shown in the first embodiment of FIG. 1, when the gate wirings of a plurality of IGBTs must be arranged in a concentrated manner, such as in the immediate vicinity of the gate driving device 6, the currents flowing through the respective gate wiring conductors In order to prevent mutual interference due to the above, it is necessary to make the gap between the gate wiring conductor pairs 1 and 2 wider than the gap between the stacked layers. This is because when mutual interference occurs between the pair of gate wirings, a current is induced in the other gate by one gate drive current, causing malfunction.

具体的な構成としては、図1において、積層された上アームゲート配線導体対1と2との間隔を、101と102との積層間隔、及び、201と202との積層間隔より広くする(併せて、図5の正面図も参照)。   As a specific configuration, in FIG. 1, the interval between the stacked upper arm gate wiring conductor pairs 1 and 2 is made wider than the interval between 101 and 102 and the interval between 201 and 202. (See also the front view of FIG. 5).

なお、本実施例1ではゲート配線導体対1、2の積層方向と、上記正側、中間、負側の導体板301〜303の積層方向について、相互干渉防止に最も効果のある略90°異なる配置について例示したが、厳密に90°に限るものではなく、ゲート配線導体101、102の積層方向及び201、202の積層方向と、上記正側、中間、負側の導体板301〜303の積層方向が平行しなければ、90°以外の角度であっても同様の効果を得られることは当業者にとって明らかであろう。例えば、10°、20°ではさほどの効果は期待できないが、45°以上では相応の効果が期待できるものである。   In the first embodiment, the stacking direction of the gate wiring conductor pairs 1 and 2 differs from the stacking direction of the positive, intermediate and negative conductor plates 301 to 303 by about 90 ° which is most effective in preventing mutual interference. Although the arrangement is exemplified, the arrangement is not strictly limited to 90 °, and the lamination direction of the gate wiring conductors 101 and 102 and the lamination direction of 201 and 202, and the lamination of the above-described positive side, intermediate, and negative side conductor plates 301 to 303 are illustrated. It will be apparent to those skilled in the art that if the directions are not parallel, similar effects can be obtained at angles other than 90 °. For example, a significant effect cannot be expected at 10 ° and 20 °, but a corresponding effect can be expected at 45 ° or more.

図8に、本発明の実施例2を示す。図8において、図1〜7と同じ構成要素には同一の符号を付している。図8では、説明の都合上、上記正側、中間、負側の導体板301〜303を省略している。   FIG. 8 shows a second embodiment of the present invention. In FIG. 8, the same components as those in FIGS. In FIG. 8, the positive side, intermediate, and negative side conductor plates 301 to 303 are omitted for convenience of explanation.

本実施例2は、積層したゲート配線導体対1と2とを、図8に図示のとおり縦方向に並べて配置したことが特徴である。縦方向に並べて配置した場合、ゲート配線導体対1と2相互による干渉が小さくなり、一方のゲートの駆動電流により他方のゲート配線導体対への電流の誘導を防止することができる。   The second embodiment is characterized in that the stacked gate wiring conductor pairs 1 and 2 are arranged in the vertical direction as shown in FIG. When arranged side by side in the vertical direction, interference between the gate wiring conductor pairs 1 and 2 is reduced, and current induction to the other gate wiring conductor pair can be prevented by the driving current of one gate.

図9に、本発明による実施例3を示す。図9において、図1〜8と同じ構成要素には同一の符号を付してある。図9において、904は上アームIGBTモジュール4に並列接続された上アームIGBTモジュール、905は下アームIGBTモジュール5に並列接続された下アームIGBTモジュール、911は途中の一部分の幅を狭くしたゲート配線導体、912はこの並列接続された上アームIGBTモジュールのゲート配線導体である。   FIG. 9 shows a third embodiment according to the present invention. In FIG. 9, the same components as those in FIGS. In FIG. 9, 904 is an upper arm IGBT module connected in parallel to the upper arm IGBT module 4, 905 is a lower arm IGBT module connected in parallel to the lower arm IGBT module 5, and 911 is a gate wiring whose width is partially reduced in the middle A conductor 912 is a gate wiring conductor of the parallel-connected upper arm IGBT module.

図9では、正側、中間、負側の導体板301〜303を省略している。また、説明の都合上、ゲート配線911を上方に平行移動して表示している。   In FIG. 9, the positive side, intermediate, and negative side conductor plates 301 to 303 are omitted. For convenience of explanation, the gate wiring 911 is translated upward and displayed.

本実施例3の特徴は、IGBTモジュールを並列接続した大容量の電力変換装置において、並列接続されたIGBTモジュールのそれぞれのゲート配線導体のインピーダンスを等しくした点にある。   The feature of the third embodiment is that, in a large-capacity power conversion device in which IGBT modules are connected in parallel, the impedances of the gate wiring conductors of the IGBT modules connected in parallel are equalized.

一般に、IGBTを並列接続して使用する場合にはゲート配線の長さを揃える必要があることが知られている。これは、ゲート配線の長さが異なるとゲート配線のインピーダンスが異なってしまい、ゲート駆動装置からの指令信号に対し、インピーダンスの大きい配線(長い配線)に接続されたIGBTの動作が遅れ、並列するIGBT間でアンバランスが生じるためである。このため、ゲート駆動装置に近い方のゲート配線を長めに作り、配線を迂回したり、折り返して束ねるなどして、並列で使用するIGBTのゲート配線の長さを揃えているのである。   In general, it is known that when the IGBTs are used in parallel connection, it is necessary to equalize the length of the gate wiring. This is because when the length of the gate wiring is different, the impedance of the gate wiring is different, and the operation of the IGBT connected to the wiring having a large impedance (long wiring) is delayed with respect to the command signal from the gate driving device. This is because an imbalance occurs between the IGBTs. For this reason, the gate wiring closer to the gate driving device is made longer, and the lengths of the gate wirings of the IGBTs used in parallel are made uniform by detouring the wiring or bundling it.

本実施例3では、ゲート駆動装置6に近い方のIGBTモジュール4のゲート配線導体の幅を部分的に狭くすることによりインピーダンスを大きくし、ゲート配線導体の長さを長くすることなしに、ゲート駆動装置6から遠い方のIGBTモジュール904のゲート配線導体912と同じインピーダンスにして、並列動作するIGBTのアンバランスを解消している。
なお、図9では、ゲート駆動装置6から近いIGBTモジュール4のゲート配線導体911の導体幅を狭くすることでゲート配線インダクタンスを増やしているが、ゲート配線911の途中にスリットを設ける等によっても同様の効果を得ることができる。
In the third embodiment, the impedance is increased by partially narrowing the width of the gate wiring conductor of the IGBT module 4 closer to the gate driving device 6, and the gate wiring conductor is not lengthened. The same impedance as that of the gate wiring conductor 912 of the IGBT module 904 farther from the driving device 6 is used to eliminate the imbalance of IGBTs operating in parallel.
In FIG. 9, the gate wiring inductance is increased by narrowing the conductor width of the gate wiring conductor 911 of the IGBT module 4 close to the gate driving device 6, but the same may be achieved by providing a slit in the middle of the gate wiring 911. The effect of can be obtained.

1:積層された上アームIGBTのゲート配線導体対
2:積層された下アームIGBTのゲート配線導体対
4:上アームIGBTモジュール
5:下アームIGBTモジュール
6:ゲート駆動装置
7:IGBTモジュール4と5の冷却装置
101、102:上アームIGBTのゲート配線導体
201、202:下アームIGBTのゲート配線導体
301:正側導体板
302:中間導体板
303:負側導体板
321:出力接続端子
401、402:上アームIGBTのゲート端子
403、404、405:上アームIGBTモジュールのコレクタ端子
406、407、408:上アームIGBTモジュールのエミッタ端子
501、502:下アームIGBTのゲート端子
503、504、505:下アームIGBTのコレクタ端子
506、507、508:下アームIGBTのエミッタ端子
801:上アームIGBTがオンする前の電流流線
802:上アームIGBT4がオンした後の電流流線
904:並列接続された上アームIGBTモジュール
905:並列接続された下アームIGBTモジュール
911:一部分の幅を狭くしたゲート配線導体
912:並列接続された上アームIGBTモジュールのゲート配線導体
1: Gate wiring conductor pair of stacked upper arm IGBT 2: Gate wiring conductor pair of stacked lower arm IGBT 4: Upper arm IGBT module 5: Lower arm IGBT module 6: Gate driving device 7: IGBT modules 4 and 5 Cooling device 101, 102: gate wiring conductor 201, 202 of upper arm IGBT: gate wiring conductor 301 of lower arm IGBT 301: positive side conductor plate 302: intermediate conductor plate 303: negative side conductor plate 321: output connection terminals 401, 402 : Upper arm IGBT gate terminals 403, 404, 405: Upper arm IGBT module collector terminals 406, 407, 408: Upper arm IGBT module emitter terminals 501, 502: Lower arm IGBT gate terminals 503, 504, 505: Lower Arm IGBT collector terminals 506 and 507 508: Lower arm IGBT emitter terminal 801: Current flow line 802 before upper arm IGBT is turned on 802: Current flow line 904 after upper arm IGBT 4 is turned on 904: Upper arm IGBT module 905 connected in parallel: Parallel connection Lower arm IGBT module 911: Gate wiring conductor 912 having a partially narrowed width: Gate wiring conductor of upper arm IGBT module connected in parallel

Claims (7)

一対の主端子と一対の制御端子を有する半導体素子の配線構造において、
前記半導体素子の一方の主端子に接続された平板状の第一の導体と、
前記半導体素子の他方の主端子に接続された平板状の第二の導体と、
前記半導体素子の一方の制御端子に接続された平板状の第三の導体と、
前記半導体素子の他方の制御端子に接続された平板状の第四の導体とからなり、
前記第一と第二の導体が平行に近接して積層され、
前記第三と第四の導体が平行に近接して積層され、
前記第一と第二の導体の積層方向と前記第三と第四の導体の積層方向が略直交すること
を特徴とする半導体素子の配線構造。
In a wiring structure of a semiconductor element having a pair of main terminals and a pair of control terminals,
A flat first conductor connected to one main terminal of the semiconductor element;
A flat second conductor connected to the other main terminal of the semiconductor element;
A plate-like third conductor connected to one control terminal of the semiconductor element;
A flat fourth conductor connected to the other control terminal of the semiconductor element;
The first and second conductors are stacked close to each other in parallel,
The third and fourth conductors are stacked in close proximity to each other in parallel;
A wiring structure of a semiconductor element, wherein a stacking direction of the first and second conductors and a stacking direction of the third and fourth conductors are substantially orthogonal to each other.
請求項1に記載の半導体素子の配線構造において、
前記半導体素子を構成するモジュールのベース面と前記制御端子間の距離が前記制御端子と前記主端子間より広い場合には、前記第三と第四の導体を前記制御端子から前記ベース面に向けて折り曲げてその導体幅を広くすること
を特徴とする半導体素子の配線構造。
The wiring structure of a semiconductor device according to claim 1,
When the distance between the base surface of the module constituting the semiconductor element and the control terminal is wider than between the control terminal and the main terminal, the third and fourth conductors are directed from the control terminal to the base surface. A wiring structure of a semiconductor element, wherein the conductor width is widened by bending.
一対の主端子と一対の制御端子を有する第一の半導体素子の配線構造として、
前記第一の半導体素子の一方の主端子に接続された平板状の第一の導体と、
前記第一の半導体素子の他方の主端子に接続された平板状の第二の導体と、
前記第一の半導体素子の一方の制御端子に接続された平板状の第三の導体と、
前記第一の半導体素子の他方の制御端子に接続された平板状の第四の導体とからなり、
前記第一と第二の導体が平行に近接して積層され、
前記第三と第四の導体が第一の導体対として平行に近接して積層され、
前記第一と第二の導体の積層方向と前記第一の導体対の積層方向が略直交する配線構造を有する上アーム半導体素子と、
一対の主端子と一対の制御端子を有する第二の半導体素子の配線構造として、
前記第二の半導体素子の一方の主端子に接続された平板状の第五の導体と、
前記第二の半導体素子の他方の主端子に接続された平板状の第六の導体と、
前記第二の半導体素子の一方の制御端子に接続された平板状の第七の導体と、
前記第二の半導体素子の他方の制御端子に接続された平板状の第八の導体とからなり、
前記第五と第六の導体が平行に近接して積層され、
前記第七と第八の導体が第二の導体対として平行に近接して積層され、
前記第五と第六の導体の積層方向と前記第二の導体対の積層方向が略直交する配線構造を有する下アーム半導体素子と
を備えた電力変換装置において、
前記第一の導体対の積層方向と前記第二の導体対の積層方向が同方向であり、
かつ前記第一の導体対と前記第二の導体対相互の間隔が、前記第一の導体対を構成する前記第三と第四の導体の間隔及び前記第二の導体対を構成する前記第七と第八の導体の間隔よりも広いこと
を特徴とする電力変換装置の配線構造。
As the wiring structure of the first semiconductor element having a pair of main terminals and a pair of control terminals,
A flat first conductor connected to one main terminal of the first semiconductor element;
A flat second conductor connected to the other main terminal of the first semiconductor element;
A plate-like third conductor connected to one control terminal of the first semiconductor element;
A flat fourth conductor connected to the other control terminal of the first semiconductor element;
The first and second conductors are stacked close to each other in parallel,
The third and fourth conductors are stacked in close proximity in parallel as a first conductor pair;
An upper arm semiconductor element having a wiring structure in which the lamination direction of the first and second conductors and the lamination direction of the first conductor pair are substantially orthogonal;
As the wiring structure of the second semiconductor element having a pair of main terminals and a pair of control terminals,
A flat fifth conductor connected to one main terminal of the second semiconductor element;
A plate-like sixth conductor connected to the other main terminal of the second semiconductor element;
A plate-like seventh conductor connected to one control terminal of the second semiconductor element;
It consists of a plate-shaped eighth conductor connected to the other control terminal of the second semiconductor element,
The fifth and sixth conductors are stacked in close proximity in parallel;
The seventh and eighth conductors are stacked in close proximity in parallel as a second conductor pair;
In the power conversion device comprising a lower arm semiconductor element having a wiring structure in which the lamination direction of the fifth and sixth conductors and the lamination direction of the second conductor pair are substantially orthogonal to each other,
The laminating direction of the first conductor pair and the laminating direction of the second conductor pair are the same direction,
And the distance between the first conductor pair and the second conductor pair is the distance between the third and fourth conductors constituting the first conductor pair and the second conductor pair. A wiring structure for a power converter, characterized in that it is wider than the distance between the seventh and eighth conductors.
一対の主端子と一対の制御端子を有する第一の半導体素子の配線構造として、
前記第一の半導体素子の一方の主端子に接続された平板状の第一の導体と、
前記第一の半導体素子の他方の主端子に接続された平板状の第二の導体と、
前記第一の半導体素子の一方の制御端子に接続された平板状の第三の導体と、
前記第一の半導体素子の他方の制御端子に接続された平板状の第四の導体とからなり、
前記第一と第二の導体が平行に近接して積層され、
前記第三と第四の導体が第一の導体対として平行に近接して積層され、
前記第一と第二の導体の積層方向と前記第一の導体対の積層方向が略直交する配線構造を有する上アーム半導体素子と、
一対の主端子と一対の制御端子を有する第二の半導体素子の配線構造として、
前記第二の半導体素子の一方の主端子に接続された平板状の第五の導体と、
前記第二の半導体素子の他方の主端子に接続された平板状の第六の導体と、
前記第二の半導体素子の一方の制御端子に接続された平板状の第七の導体と、
前記第二の半導体素子の他方の制御端子に接続された平板状の第八の導体とからなり、
前記第五と第六の導体が平行に近接して積層され、
前記第七と第八の導体が第二の導体対として平行に近接して積層され、
前記第五と第六の導体の積層方向と前記第二の導体対の積層方向が略直交する配線構造を有する下アーム半導体素子と
を備えた電力変換装置において、
前記第一の導体対と前記第二の導体対は、両方の並びの方向が前記第一及び前記第二の導体対各々の積層方向とは直交するように配置されたこと
を特徴とする電力変換装置の配線構造。
As the wiring structure of the first semiconductor element having a pair of main terminals and a pair of control terminals,
A flat first conductor connected to one main terminal of the first semiconductor element;
A flat second conductor connected to the other main terminal of the first semiconductor element;
A plate-like third conductor connected to one control terminal of the first semiconductor element;
A flat fourth conductor connected to the other control terminal of the first semiconductor element;
The first and second conductors are stacked close to each other in parallel,
The third and fourth conductors are stacked in close proximity in parallel as a first conductor pair;
An upper arm semiconductor element having a wiring structure in which the lamination direction of the first and second conductors and the lamination direction of the first conductor pair are substantially orthogonal;
As the wiring structure of the second semiconductor element having a pair of main terminals and a pair of control terminals,
A flat fifth conductor connected to one main terminal of the second semiconductor element;
A plate-like sixth conductor connected to the other main terminal of the second semiconductor element;
A plate-like seventh conductor connected to one control terminal of the second semiconductor element;
It consists of a plate-shaped eighth conductor connected to the other control terminal of the second semiconductor element,
The fifth and sixth conductors are stacked in close proximity in parallel;
The seventh and eighth conductors are stacked in close proximity in parallel as a second conductor pair;
In the power conversion device comprising a lower arm semiconductor element having a wiring structure in which the lamination direction of the fifth and sixth conductors and the lamination direction of the second conductor pair are substantially orthogonal to each other,
The electric power characterized in that the first conductor pair and the second conductor pair are arranged such that the direction of both of them is perpendicular to the stacking direction of each of the first and second conductor pairs. Wiring structure of the conversion device.
請求項3又は請求項4のいずれかに記載の電力変換装置の配線構造において、
前記第一及び第二の半導体素子を構成する各モジュールのベース面と前記制御端子間の距離が前記制御端子と前記主端子間より広い場合には、前記第一及び第二の導体対を前記制御端子からベース面に向けて折り曲げてその導体幅を広くすること
を特徴とする電力変換装置の配線構造。
In the wiring structure of the power converter according to claim 3 or 4,
When the distance between the base surface of each module constituting the first and second semiconductor elements and the control terminal is wider than between the control terminal and the main terminal, the first and second conductor pairs are A wiring structure of a power conversion device, wherein the conductor width is increased by bending the control terminal toward a base surface.
請求項3又は請求項4のいずれかに記載の電力変換装置の配線構造において、
前記上アーム半導体素子及び前記下アーム半導体素子それぞれに並列接続された別の上アーム半導体素子及び別の下アーム半導体素子を備え、
前記上アーム半導体素子又は前記別の上アーム半導体素子の各制御端子からゲート駆動装置までの物理的距離が相違する場合に、同様に、前記下アーム半導体素子又は前記別の下アーム半導体素子の各制御端子からゲート駆動装置までの物理的距離が相違する場合に、前記ゲート駆動装置に近い側にある半導体素子の前記第一の導体対に相当する導体対、同様に、前記第二の導体対に相当する導体対、の一部分の幅を狭くしたこと
を特徴とする電力変換装置の配線構造。
In the wiring structure of the power converter according to claim 3 or 4,
Another upper arm semiconductor element and another lower arm semiconductor element connected in parallel to each of the upper arm semiconductor element and the lower arm semiconductor element;
Similarly, when the physical distance from each control terminal of the upper arm semiconductor element or the other upper arm semiconductor element to the gate driving device is different, each of the lower arm semiconductor element or the other lower arm semiconductor element When the physical distance from the control terminal to the gate driving device is different, the conductor pair corresponding to the first conductor pair of the semiconductor element on the side close to the gate driving device, similarly, the second conductor pair A wiring structure of a power conversion device, wherein a width of a part of a conductor pair corresponding to is narrowed.
請求項3又は請求項4のいずれかに記載の電力変換装置の配線構造において、
前記上アーム半導体素子及び前記下アーム半導体素子それぞれに並列接続された別の上アーム半導体素子及び別の下アーム半導体素子を備え、
前記上アーム半導体素子又は前記別の上アーム半導体素子の各制御端子からゲート駆動装置までの物理的距離が相違する場合に、同様に、前記下アーム半導体素子又は前記別の下アーム半導体素子の各制御端子からゲート駆動装置までの物理的距離が相違する場合に、前記ゲート駆動装置に近い側にある半導体素子の前記第一の導体対に相当する導体対、同様に、前記第二の導体対に相当する導体対、の一部分にスリットを設けたこと
を特徴とする電力変換装置の配線構造。
In the wiring structure of the power converter according to claim 3 or 4,
Another upper arm semiconductor element and another lower arm semiconductor element connected in parallel to each of the upper arm semiconductor element and the lower arm semiconductor element;
Similarly, when the physical distance from each control terminal of the upper arm semiconductor element or the other upper arm semiconductor element to the gate driving device is different, each of the lower arm semiconductor element or the other lower arm semiconductor element When the physical distance from the control terminal to the gate driving device is different, the conductor pair corresponding to the first conductor pair of the semiconductor element on the side close to the gate driving device, similarly, the second conductor pair A wiring structure of a power conversion device, wherein a slit is provided in a part of a conductor pair corresponding to.
JP2013085758A 2013-04-16 2013-04-16 Wiring structure of semiconductor element and power conversion device Active JP6109630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085758A JP6109630B2 (en) 2013-04-16 2013-04-16 Wiring structure of semiconductor element and power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085758A JP6109630B2 (en) 2013-04-16 2013-04-16 Wiring structure of semiconductor element and power conversion device

Publications (2)

Publication Number Publication Date
JP2014209812A true JP2014209812A (en) 2014-11-06
JP6109630B2 JP6109630B2 (en) 2017-04-05

Family

ID=51903693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085758A Active JP6109630B2 (en) 2013-04-16 2013-04-16 Wiring structure of semiconductor element and power conversion device

Country Status (1)

Country Link
JP (1) JP6109630B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220356A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Power converter
CN111801795A (en) * 2018-09-14 2020-10-20 富士电机株式会社 Semiconductor device with a plurality of semiconductor chips
WO2021117213A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Power conversion device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227661A (en) * 1985-04-02 1986-10-09 Fuji Electric Co Ltd Parallel device of gate turn-off thyristors
JPH0397257A (en) * 1989-09-11 1991-04-23 Toshiba Corp Large power semiconductor device
JPH07170723A (en) * 1993-12-14 1995-07-04 Toshiba Corp Semiconductor stack
JPH11332253A (en) * 1998-05-11 1999-11-30 Mitsubishi Electric Corp Power converter
JP2000023462A (en) * 1998-04-28 2000-01-21 Hitachi Ltd Main circuit structure of power converter
JP2006211805A (en) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The Switching device
JP2007185026A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Power conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227661A (en) * 1985-04-02 1986-10-09 Fuji Electric Co Ltd Parallel device of gate turn-off thyristors
JPH0397257A (en) * 1989-09-11 1991-04-23 Toshiba Corp Large power semiconductor device
JPH07170723A (en) * 1993-12-14 1995-07-04 Toshiba Corp Semiconductor stack
JP2000023462A (en) * 1998-04-28 2000-01-21 Hitachi Ltd Main circuit structure of power converter
JPH11332253A (en) * 1998-05-11 1999-11-30 Mitsubishi Electric Corp Power converter
JP2006211805A (en) * 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The Switching device
JP2007185026A (en) * 2006-01-05 2007-07-19 Hitachi Ltd Power conversion device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220356A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Power converter
CN111801795A (en) * 2018-09-14 2020-10-20 富士电机株式会社 Semiconductor device with a plurality of semiconductor chips
WO2021117213A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Power conversion device
JPWO2021117213A1 (en) * 2019-12-13 2021-06-17
JP7203249B2 (en) 2019-12-13 2023-01-12 三菱電機株式会社 power converter

Also Published As

Publication number Publication date
JP6109630B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US10153708B2 (en) Three-level power converter
JP5132175B2 (en) Power converter
JP2016119430A (en) Semiconductor power module and power conversion device using the same
JP5851267B2 (en) Inverter and vehicle control device
JP5150570B2 (en) Three-phase power converter
JP6109630B2 (en) Wiring structure of semiconductor element and power conversion device
CN104426385A (en) Power converter
JP5557891B2 (en) Three-phase power converter
JP2017055610A (en) Power semiconductor device
JP4356434B2 (en) 3-level inverter circuit
JP4842018B2 (en) Power converter
JP6498370B2 (en) Power converter
JP2015002564A (en) Power conversion device
CN104380587B (en) Power conversion device
JP4968528B2 (en) 3-level power converter
JP2003018860A (en) Power converter
JP4957842B2 (en) Power converter
JP3896940B2 (en) Semiconductor device
JP6658915B2 (en) Power converter
JP6720601B2 (en) Power converter
JP2015225988A (en) Semiconductor device
JP6011656B2 (en) Inverter device
JP6493171B2 (en) Power converter
JP6604097B2 (en) Switching circuit and power converter
JP6906431B2 (en) Flow reducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150