JP2014015369A - Production method of oxidation-resistant active carbon - Google Patents

Production method of oxidation-resistant active carbon Download PDF

Info

Publication number
JP2014015369A
JP2014015369A JP2012155281A JP2012155281A JP2014015369A JP 2014015369 A JP2014015369 A JP 2014015369A JP 2012155281 A JP2012155281 A JP 2012155281A JP 2012155281 A JP2012155281 A JP 2012155281A JP 2014015369 A JP2014015369 A JP 2014015369A
Authority
JP
Japan
Prior art keywords
activated carbon
silica gel
oxidation
silica
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012155281A
Other languages
Japanese (ja)
Inventor
Tomohiro Wada
智宏 和田
Taiki Horino
太希 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2012155281A priority Critical patent/JP2014015369A/en
Publication of JP2014015369A publication Critical patent/JP2014015369A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a production method of an oxidation-resistant active carbon capable of improving oxidation resistance in an oxidizing atmosphere at high temperature.SOLUTION: Coating containing silicon carbide as a main component is applied onto the surface of active carbon. The coating is performed by steps of: generating silica gel-containing liquid by hydrolyzing an alkoxide compound of silicon in a solvent; removing the solvent; allowing the silica gel-containing liquid generated in the step to adhere onto the surface of the active carbon; removing the solvent; converting silica gel into silica by heating in an inert atmosphere the active carbon having the silica gel-containing liquid adhering onto the surface in the step; and reacting the silica with the active carbon to be converted into silicon carbide by heating the silica converted in the step at a temperature of 2,000°C or higher in an argon atmosphere or in a helium atmosphere.

Description

本発明は、耐酸化性活性炭の製造方法に関し、詳しくは、酸素や水蒸気などを含有する高温の酸化性雰囲気中における耐酸化性を有する耐酸化性活性炭の製造方法に関する。   The present invention relates to a method for producing an oxidation-resistant activated carbon, and more particularly to a method for producing an oxidation-resistant activated carbon having oxidation resistance in a high-temperature oxidizing atmosphere containing oxygen, water vapor and the like.

脱臭剤や浄水器などの吸着剤、各種触媒などに用いられる活性炭は、炭素を主成分としているため、自動車などの排気ガスや燃焼炉から排出されるような高温かつ酸化性のガスに曝されると炭素が酸化されて一酸化炭素や二酸化炭素になり、活性炭としての機能が徐々に失われていく。このため、活性炭の表面を耐熱性かつ耐酸化性を有するセラミックス、金属又は有機材料で被覆することが提案されている(例えば、特許文献1参照。)。   Activated carbon used in adsorbents such as deodorizers and water purifiers and various catalysts is mainly composed of carbon, so it is exposed to high-temperature and oxidizing gases such as those exhausted from automobiles and combustion furnaces. Then, carbon is oxidized to carbon monoxide and carbon dioxide, and the function as activated carbon is gradually lost. For this reason, it has been proposed to coat the surface of activated carbon with a ceramic, metal or organic material having heat resistance and oxidation resistance (see, for example, Patent Document 1).

特開平9−225299号公報JP-A-9-225299

前記特許文献1では、活性炭の耐熱性かつ耐酸化性が向上すると記載しているものの、実施例の記載から、140℃での性能向上は認められるが、前述のような自動車などの排気ガスや燃焼炉から排出されるような高温で酸化性を有するガスに対する耐性は不十分であり、このような高温かつ酸化性雰囲気でのガスの浄化には、高温での耐酸化性に優れた炭化ケイ素やアルミナ、ジルコニアなどのセラミックスを基材とした多孔体が使用されている。しかし、これらのセラミックスは、活性炭のような細孔を持たないため、ハニカムやスポンジなどの形状にして表面積を増大させなければならなかった。   Although Patent Document 1 describes that the heat resistance and oxidation resistance of activated carbon are improved, the performance improvement at 140 ° C. is recognized from the description of the examples. Silicon carbide with high resistance to oxidation at high temperatures is not sufficient for the purification of gases at high temperatures and in oxidizing atmospheres. Porous bodies based on ceramics such as alumina, zirconia and the like are used. However, since these ceramics do not have pores like activated carbon, it has been necessary to increase the surface area in the form of a honeycomb or sponge.

そこで本発明は、活性炭が有する比表面積の大きさを損なうことなく、高温かつ酸化性雰囲気での耐酸化性を向上させることができる耐酸化性活性炭の製造方法を提供することを目的としている。   Then, this invention aims at providing the manufacturing method of the oxidation resistant activated carbon which can improve the oxidation resistance in high temperature and an oxidizing atmosphere, without impairing the magnitude | size of the specific surface area which activated carbon has.

上記目的を達成するため、本発明の耐酸化性活性炭の製造方法は、活性炭の表面に、炭化ケイ素を主成分とするコーティングを施すことを特徴としている。さらに、本発明の耐酸化性活性炭の製造方法では、前記活性炭は、前記炭化ケイ素を主成分とするコーティングを行う前に、加熱処理を行って活性炭に吸着している不純物成分を除去することが好ましい。   In order to achieve the above object, the method for producing an oxidation-resistant activated carbon of the present invention is characterized in that the surface of activated carbon is coated with silicon carbide as a main component. Furthermore, in the method for producing an oxidation-resistant activated carbon of the present invention, the activated carbon may be subjected to a heat treatment to remove impurity components adsorbed on the activated carbon before performing the coating containing silicon carbide as a main component. preferable.

また、前記炭化ケイ素を主成分とするコーティングは、ケイ素のアルコキシド化合物を出発原料としたゾルゲル法により得たシリカゲル含有液を用いて行うこと、具体的には、前記炭化ケイ素を主成分とするコーティングは、溶媒中でケイ素のアルコキシド化合物を加水分解してシリカゲル含有液を生成する工程と、該工程で生成した前記シリカゲル含有液を活性炭の表面に付着させる工程と、該工程でシリカゲル含有液を活性炭の表面に付着させた後に前記溶媒を除去する工程と、該工程で溶媒を除去した後に不活性雰囲気中で加熱することによりシリカゲルを脱水してシリカに転換する工程と、該工程で転換したシリカをアルゴン雰囲気又はヘリウム雰囲気で2000℃以上の温度に加熱し、シリカを活性炭と反応させて炭化ケイ素に転換する工程とによって行うことが好ましい。さらに、本発明は、これらの製造方法によって得られた耐酸化性活性炭も含んでいる。   In addition, the coating containing silicon carbide as a main component is performed using a silica gel-containing liquid obtained by a sol-gel method using a silicon alkoxide compound as a starting material, specifically, the coating containing silicon carbide as a main component. A step of hydrolyzing a silicon alkoxide compound in a solvent to produce a silica gel-containing liquid, a step of attaching the silica gel-containing liquid produced in the step to the surface of the activated carbon, Removing the solvent after adhering to the surface of the substrate, removing the solvent in the step and then heating in an inert atmosphere to dehydrate the silica gel to convert to silica, and the silica converted in the step Is heated to 2000 ° C. or higher in an argon atmosphere or helium atmosphere, and silica is reacted with activated carbon to convert it to silicon carbide. It is preferred to carry out the steps of the. Furthermore, the present invention also includes oxidation-resistant activated carbon obtained by these production methods.

本発明の製造方法によって製造された耐酸化性活性炭は、表面に、炭化ケイ素を主成分とするセラミック質の耐熱性コーティングが施されているので、高温で、酸素や水蒸気などを含有する酸化性雰囲気で使用しても活性炭の炭素が反応することはなく、活性炭の基本性能を損なうことなく、耐熱性、耐酸化性を大幅に向上させることができる。また、炭化ケイ素のケイ素源として、ケイ素のアルコキシド化合物を出発原料としたゾルゲル法により得たシリカゲル含有液を用いることにより、容易かつ確実にコーティングを行うことができる。   Since the oxidation-resistant activated carbon produced by the production method of the present invention has a ceramic heat-resistant coating mainly composed of silicon carbide on the surface, the oxidation-resistant activated carbon contains oxygen, water vapor, and the like at high temperatures. Even when used in an atmosphere, the carbon of the activated carbon does not react, and the heat resistance and oxidation resistance can be greatly improved without impairing the basic performance of the activated carbon. Further, by using a silica gel-containing liquid obtained by a sol-gel method using a silicon alkoxide compound as a starting material as a silicon source of silicon carbide, coating can be performed easily and reliably.

本発明の耐酸化性活性炭の製造方法の一形態例を示す工程図である。It is process drawing which shows one example of the manufacturing method of the oxidation-resistant activated carbon of this invention. 実施例における熱重量分析の結果を示す図である。It is a figure which shows the result of the thermogravimetric analysis in an Example. 実施例における焼成温度による酸化開始温度の相違を示す図である。It is a figure which shows the difference of the oxidation start temperature by the calcination temperature in an Example.

本発明における耐酸化性活性炭は、活性炭の表面に、炭化ケイ素を主成分とするコーティングを施すことによって得られる。コーティングの主成分となる炭化ケイ素は、出発原料としてケイ素のアルコキシド化合物、例えば、オルトケイ酸テトラエチル、オルトケイ酸テトラメチル、オルトケイ酸テトラ−n−プロピルを使用することができる。   The oxidation-resistant activated carbon in the present invention is obtained by applying a coating mainly composed of silicon carbide on the surface of the activated carbon. As silicon carbide which is the main component of the coating, silicon alkoxide compounds such as tetraethyl orthosilicate, tetramethyl orthosilicate, and tetra-n-propyl orthosilicate can be used as starting materials.

以下、炭化ケイ素の出発原料としてオルトケイ酸テトラエチル(TEOS;Si(OC)を用いた場合の手順を説明する。まず、活性炭については、あらかじめ不活性ガス雰囲気中あるいは減圧下で加熱し、活性炭の細孔内に吸着している水分などの不純物成分を除去する前処理工程を行う。この前処理工程における加熱温度や加熱時間は任意であり、従来からこの種の処理で行われている温度及び時間を選択することができる。 Hereinafter, a procedure when tetraethyl orthosilicate (TEOS; Si (OC 2 H 5 ) 4 ) is used as a starting material of silicon carbide will be described. First, activated carbon is heated in advance in an inert gas atmosphere or under reduced pressure, and a pretreatment process is performed to remove impurity components such as moisture adsorbed in the pores of the activated carbon. The heating temperature and heating time in this pretreatment step are arbitrary, and the temperature and time conventionally used in this type of treatment can be selected.

出発原料であるオルトケイ酸テトラエチルは、水を加えて加水分解し、いわゆるゲルゾル法によりシリカゲルを生成させる加水分解工程を行う。この加水分解工程では、適当な量のエタノールを溶媒として使用し、エタノール中でオルトケイ酸テトラエチルを加水分解させることにより、シリカゲルが生成する際に発生するエタノールを吸収することができる。出発原料としてオルトケイ酸テトラメチルを用いた場合は、溶媒としてメタノールを用いればよい。また、必要に応じて加水分解を促進する触媒として酸や塩基を加えることができる。   Tetraethyl orthosilicate, which is a starting material, is hydrolyzed by adding water, and a hydrolysis step is performed in which silica gel is generated by a so-called gel sol method. In this hydrolysis step, ethanol generated when silica gel is produced can be absorbed by hydrolyzing tetraethyl orthosilicate in ethanol using an appropriate amount of ethanol as a solvent. When tetramethyl orthosilicate is used as a starting material, methanol may be used as a solvent. Moreover, an acid and a base can be added as a catalyst which accelerates | stimulates a hydrolysis as needed.

次に、十分に撹拌して生成したシリカゲル微粒子をエタノール中で均一に分散させた状態のシリカゲル含有液に、前記前処理工程を行った活性炭を投入し、活性炭の表面にシリカゲル含有液を付着させるシリカゲル含有液付着工程を行う。シリカゲル含有液を活性炭の表面に十分に付着させた後、溶媒であるエタノールを減圧乾燥などの適宜な乾燥手法で除去する溶媒除去工程を行い、活性炭表面をシリカゲルで完全にコーティングした状態とする。   Next, the activated carbon that has been subjected to the pretreatment step is added to a silica gel-containing liquid in which silica gel fine particles generated by sufficiently stirring are uniformly dispersed in ethanol, and the silica gel-containing liquid is adhered to the surface of the activated carbon. A silica gel containing liquid adhesion process is performed. After the silica gel-containing liquid is sufficiently adhered to the surface of the activated carbon, a solvent removal step is performed to remove ethanol as a solvent by an appropriate drying technique such as drying under reduced pressure, so that the activated carbon surface is completely coated with silica gel.

そして、シリカゲル含有液が付着した活性炭を不活性雰囲気中、例えば窒素雰囲気中で加熱し、シリカゲル中の水分を蒸発させて除去する脱水処理工程を行い、シリカゲルを脱水して仮焼成することによりシリカに転換する。脱水処理工程における加熱温度や加熱時間は、シリカゲルをシリカに転換できれば、任意の温度及び時間を選択できるが、加熱温度が低いと十分な脱水を行うのに長時間を要する。一方、加熱温度を高くすることも可能であるが、例えば1000℃を超える高温を得るためには、特殊で高価な加熱炉を必要とし、仮焼成中に発生する水分によって加熱炉を劣化させることがあるので、一般的な加熱炉を使用して1000℃以下で行うことが好ましい。雰囲気には、窒素以外に、アルゴンなどの不活性ガスを用いることができる。溶媒除去工程と脱水処理工程とは、一体的に行うことができ、例えば、比較的低温で溶媒を除去する段階と、比較的高温でシリカゲルを脱水する段階とを連続して行うことができる。   Then, the activated carbon to which the silica gel-containing liquid is attached is heated in an inert atmosphere, for example, in a nitrogen atmosphere, and a dehydration process is performed to evaporate and remove the water in the silica gel. Convert to As the heating temperature and heating time in the dehydration treatment step, any temperature and time can be selected as long as the silica gel can be converted into silica. However, if the heating temperature is low, it takes a long time to perform sufficient dehydration. On the other hand, although it is possible to increase the heating temperature, for example, in order to obtain a high temperature exceeding 1000 ° C., a special and expensive heating furnace is required, and the heating furnace is deteriorated by moisture generated during temporary baking. Therefore, it is preferable to use a general heating furnace at 1000 ° C. or lower. In addition to nitrogen, an inert gas such as argon can be used for the atmosphere. The solvent removal step and the dehydration treatment step can be performed integrally. For example, the step of removing the solvent at a relatively low temperature and the step of dehydrating the silica gel at a relatively high temperature can be continuously performed.

最後に、脱水処理工程後のシリカが付着した状態の活性炭をアルゴン又はヘリウムの雰囲気下で2000℃以上の高温に加熱して焼成する加熱反応工程を行い、活性炭表面に付着しているシリカと活性炭表面の炭素とを反応させて炭化ケイ素とする。これにより、活性炭の表面に炭化ケイ素がコーティングされた状態の耐酸化性活性炭が得られる。加熱反応工程でアルゴン及びヘリウム以外の不活性ガス、例えば窒素を使用すると、2000℃以上の高温下では、窒素がケイ素や炭素と反応して炭化ケイ素の生成が十分に行えなくなる。また、雰囲気をアルゴンとしておくことにより、前述の溶媒を除去する段階及びシリカゲルを脱水する仮焼成の段階と、シリカと炭素とを反応させる焼成の段階とを連続的に行うこともできるが、仮焼成で発生する水分を考慮すると、仮焼成と焼成とを別の加熱炉で行う方が経済的である。   Lastly, the silica and activated carbon adhered to the activated carbon surface are subjected to a heating reaction step in which the activated carbon with silica attached after the dehydration process is heated to a high temperature of 2000 ° C. or higher in an atmosphere of argon or helium. It reacts with the surface carbon to form silicon carbide. Thereby, the oxidation-resistant activated carbon in which the surface of activated carbon is coated with silicon carbide is obtained. If an inert gas other than argon and helium, such as nitrogen, is used in the heating reaction step, nitrogen reacts with silicon or carbon at a high temperature of 2000 ° C. or higher, and silicon carbide cannot be produced sufficiently. In addition, by setting the atmosphere to argon, the above-mentioned solvent removal step, the pre-baking step of dehydrating the silica gel, and the baking step of reacting silica and carbon can be performed continuously. In consideration of the moisture generated in the firing, it is more economical to perform the preliminary firing and firing in separate heating furnaces.

このようにして得られた耐酸化性活性炭は、活性炭の表面が、高温での耐酸化性に優れた炭化ケイ素からなるセラミック層でコーティングされているため、酸素や二酸化炭素、水などの酸化性成分との高温での接触による炭素の酸化分解を抑制することができる。さらに、炭化ケイ素は、電気伝導性を有しており、通電することによって発熱させることができるので、外部からの加熱よりも効率よく活性炭の温度を上昇させることができ、吸着能の再生を容易かつ確実に行うことができる。   The oxidation-resistant activated carbon thus obtained is coated with a ceramic layer made of silicon carbide that has excellent oxidation resistance at high temperatures, so that the oxidation resistance of oxygen, carbon dioxide, water, etc. Oxidative decomposition of carbon due to contact with a component at a high temperature can be suppressed. Furthermore, since silicon carbide has electrical conductivity and can generate heat when energized, it can raise the temperature of activated carbon more efficiently than external heating, making it easy to regenerate the adsorption capacity. And it can be done reliably.

また、固体のシリカ源、例えば、ケイ酸ゲルを脱水・乾燥させた固体のシリカゲルを使用すると、活性炭の表面にシリカゲルを十分に付着させることが困難であるが、ゾルゲル法によりケイ素のアルコキシド化合物を加水分解したシリカゲル含有液は、シリカゲルが溶媒中に微細な粒子となって高分散しているため、活性炭の細孔内面などの空隙にも容易に侵入し、活性炭の細孔内を含む表面全体にケイ素成分であるシリカゲルを十分に付着させることができる。これにより、活性炭の細孔内を含む表面全体に、炭化ケイ素を主成分とした高密度で欠陥のないセラミック質の耐熱性コーティングを確実に施すことができる。また、対象となる活性炭の形状は任意であり、粉末、ペレット、繊維、表面を賦活したカーボン製品などに適用することが可能である。   In addition, when a solid silica source such as a solid silica gel obtained by dehydrating and drying a silicate gel is used, it is difficult to sufficiently adhere the silica gel to the surface of the activated carbon. Since the hydrolyzed silica gel-containing liquid is highly dispersed as fine particles in silica gel, it easily penetrates into voids such as the inner surface of the pores of the activated carbon, and the entire surface including the inside of the pores of the activated carbon. Silica gel, which is a silicon component, can be sufficiently adhered to the surface. Accordingly, a high-density and defect-free ceramic heat-resistant coating composed mainly of silicon carbide can be reliably applied to the entire surface including the inside of the pores of the activated carbon. Moreover, the shape of the target activated carbon is arbitrary, and can be applied to powder, pellets, fibers, carbon products with activated surfaces, and the like.

以下に本発明の実施例を説明するが、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

図1に示す手順で耐酸化性活性炭を製造した。まず、溶媒であるエタノール100gに加水分解用触媒として85%りん酸0.5g、加水分解用の水として蒸留水1.8gを混合したものに、オルトケイ酸テトラエチル10gを投入し、25℃にて2時間撹拌し、オルトケイ酸テトラエチルを加水分解させたシリカゲル含有液を生成した。このシリカゲル含有液に、あらかじめ窒素気流中にて1000℃で加熱処理を行って吸着している水などの不純物を除去した直径3〜5mmのペレット状活性炭を12.5g投入し、25℃で24時間静置して活性炭の表面にシリカゲル含有液を付着させた。   An oxidation-resistant activated carbon was produced by the procedure shown in FIG. First, 100 g of ethanol as a solvent was mixed with 0.5 g of 85% phosphoric acid as a hydrolysis catalyst and 1.8 g of distilled water as hydrolysis water, and 10 g of tetraethyl orthosilicate was added at 25 ° C. It stirred for 2 hours and the silica gel containing liquid which hydrolyzed the tetraethyl orthosilicate was produced | generated. To this silica gel-containing liquid, 12.5 g of pellet-shaped activated carbon having a diameter of 3 to 5 mm from which impurities such as water adsorbed by heat treatment at 1000 ° C. in advance in a nitrogen stream was added, and 24 ° C. at 24 ° C. The solution containing the silica gel was allowed to stand on the surface of the activated carbon for a period of time.

その後、ペレット状活性炭を浸漬したシリカゲル含有液を60℃にて減圧乾燥し、溶媒であるエタノールを蒸発させることにより、表面にシリカゲルが付着したペレット状活性炭を得た。続いて、シリカゲルが付着したペレット状活性炭を窒素気流下にて1000℃で2時間加熱して仮焼成し、脱水処理することにより、シリカゲルを脱水分解してシリカとした。次に、アルゴン気流下にて2400℃で5時間加熱して焼成することにより、活性炭表面の炭素と付着しているシリカとを反応させて炭化ケイ素に転換した。   Thereafter, the silica gel-containing liquid in which the pellet-like activated carbon was immersed was dried under reduced pressure at 60 ° C., and ethanol as a solvent was evaporated to obtain pellet-like activated carbon having silica gel attached to the surface. Subsequently, the pelleted activated carbon to which the silica gel was adhered was heated and calcined at 1000 ° C. for 2 hours under a nitrogen stream and dehydrated to dehydrate and decompose the silica gel to obtain silica. Next, the carbon on the surface of the activated carbon was reacted with the adhering silica by heating at 2400 ° C. for 5 hours under an argon stream to convert it into silicon carbide.

溶媒であるメタノール100gに加水分解用触媒として85%りん酸0.5g、加水分解用の水として蒸留水1.8gを混合したものにオルトケイ酸テトラメチル7.3gを投入し、25℃にて2時間撹拌し、オルトケイ酸テトラメチルを加水分解させたシリカゲル含有液を生成した。このときのオルトケイ酸テトラメチルの投入量は、実施例1で用いたオルトケイ酸テトラエチルのケイ素量と同量である。このシリカゲル含有液に、実施例1と同じ加熱処理を行ったペレット状活性炭を12.5g投入し、24時間静置して活性炭の表面にシリカゲル含有液を付着させた。   A mixture of 100 g of methanol as a solvent and 0.5 g of 85% phosphoric acid as a hydrolysis catalyst and 1.8 g of distilled water as hydrolysis water was charged with 7.3 g of tetramethyl orthosilicate at 25 ° C. It stirred for 2 hours and the silica gel containing liquid which hydrolyzed the tetramethyl orthosilicate was produced | generated. The amount of tetramethyl orthosilicate used at this time is the same as the amount of silicon of tetraethyl orthosilicate used in Example 1. To this silica gel-containing liquid, 12.5 g of pellet-like activated carbon that had been subjected to the same heat treatment as in Example 1 was charged, and allowed to stand for 24 hours to adhere the silica gel-containing liquid to the surface of the activated carbon.

その後、ペレット状活性炭を浸漬したシリカゲル含有液を60℃にて減圧乾燥し、溶媒であるメタノールを蒸発させることにより、表面にシリカゲルが付着したペレット状活性炭を得た。続いて、このペレット状活性炭を窒素気流下にて1000℃で2時間、仮焼成してシリカゲルを脱水分解してシリカとした。その後、アルゴン気流下にて2400℃で5時間焼成することにより、炭素とシリカとを反応させて炭化ケイ素に転換した。   Thereafter, the silica gel-containing liquid in which the pellet-like activated carbon was immersed was dried under reduced pressure at 60 ° C., and methanol as a solvent was evaporated to obtain pellet-like activated carbon with silica gel attached to the surface. Subsequently, the pellet-like activated carbon was temporarily calcined at 1000 ° C. for 2 hours under a nitrogen stream to dehydrate and decompose the silica gel to obtain silica. Then, it baked at 2400 degreeC under argon stream for 5 hours, carbon and silica were made to react and it changed into silicon carbide.

活性炭には 実施例1及び実施例2と同様に、窒素気流中にて1000℃で加熱処理を行って吸着している水などの不純物を除去した直径3〜5mmのペレット状活性炭を用いた。一方、市販の除湿用シリカゲル(白ゲル)2.0gをエタノール38.3gに投入し、ボールミルで1時間粉砕してシリカゲル粉末が分散したシリカゲル分散液を作成した。   As in Example 1 and Example 2, pelletized activated carbon having a diameter of 3 to 5 mm from which impurities such as adsorbed water were removed by heat treatment at 1000 ° C. in a nitrogen stream was used. On the other hand, 2.0 g of commercially available silica gel for dehumidification (white gel) was added to 38.3 g of ethanol and pulverized with a ball mill for 1 hour to prepare a silica gel dispersion in which silica gel powder was dispersed.

このシリカゲル分散液に活性炭4.8gを投入して24時間静置した後、60℃で減圧乾燥することでエタノールを除去し、表面にシリカゲルが付着したペレット状活性炭を得た。続いて、前記両実施例と同様に、窒素気流下にて1000℃で2時間仮焼成してシリカゲルを脱水分解してシリカとした後、アルゴン気流下にて2400℃で5時間焼成処理を行った。 After 4.8 g of activated carbon was added to this silica gel dispersion and allowed to stand for 24 hours, ethanol was removed by drying under reduced pressure at 60 ° C. to obtain pelleted activated carbon with silica gel attached to the surface. Subsequently, in the same manner as in both the above examples, the silica gel was dehydrated and decomposed into silica by pre-baking at 1000 ° C. for 2 hours under a nitrogen stream, followed by baking at 2400 ° C. for 5 hours under an argon stream. It was.

各実施例で製造したコーティング済み活性炭ペレットと未処理の活性炭ペレットとについて、大気中にて熱重量分析を行った。熱重量分析の結果を、実施例1を線A,実施例2を線B、実施例3を線C、未処理品を線Dとして図2に示す。また、実施例1において、炭素とシリカとを反応させる焼成温度を、1800℃、2200℃に設定してコーティング済み活性炭ペレットをそれぞれ製造した。これらについても、同様に大気中にて熱重量分析を行った。焼成温度による酸化開始温度の相違を2400℃を線E,2200℃を線F、1800℃を線G、未処理品を線Dとして図3に示す。   Thermogravimetric analysis was performed in the atmosphere for the coated activated carbon pellets and untreated activated carbon pellets produced in each example. The results of thermogravimetric analysis are shown in FIG. 2, with Example 1 as Line A, Example 2 as Line B, Example 3 as Line C, and untreated product as Line D. Moreover, in Example 1, the calcination temperature which makes carbon and a silica react was set to 1800 degreeC and 2200 degreeC, and the coated activated carbon pellet was each manufactured. These were similarly subjected to thermogravimetric analysis in the atmosphere. The difference in the oxidation start temperature depending on the firing temperature is shown in FIG. 3 with line E being 2400 ° C., line F being 2200 ° C., line G being 1800 ° C.

図2の結果から、未処理の活性炭における酸化開始温度が490℃であるのに対し、各実施例で製造したコーティング済み活性炭ペレットは、酸化開始温度がいずれも上昇していることがわかる。特に、ゲルゾル法によって生成したシリカゲル含有液を用いた実施例1、2では、固体のシリカゲルを用いた実施例3に比べて酸化開始温度が更に高くなっていることがわかる。また、焼成温度については、1800℃でも酸化開始温度を上昇させることができるが、2000℃以上の2200℃、2400℃まで温度を上昇させることにより、酸化開始温度を更に上昇させることができる。   From the results of FIG. 2, it can be seen that the oxidation start temperature of the untreated activated carbon is 490 ° C., whereas the coated activated carbon pellets produced in each example have an increased oxidation start temperature. In particular, in Examples 1 and 2 using the silica gel-containing liquid produced by the gel sol method, it can be seen that the oxidation start temperature is higher than that in Example 3 using solid silica gel. As for the firing temperature, the oxidation start temperature can be increased even at 1800 ° C., but the oxidation start temperature can be further increased by increasing the temperature to 20000 ° C. or higher 2200 ° C. or 2400 ° C.

Claims (5)

活性炭の表面に、炭化ケイ素を主成分とするコーティングを施す耐酸化性活性炭の製造方法。   A method for producing oxidation-resistant activated carbon, in which a coating containing silicon carbide as a main component is applied to the surface of activated carbon. 前記活性炭は、前記炭化ケイ素を主成分とするコーティングを行う前に、加熱処理を行って活性炭に吸着している不純物成分を除去する請求項1記載の耐酸化性活性炭の製造方法。   The method for producing oxidation-resistant activated carbon according to claim 1, wherein the activated carbon is subjected to heat treatment to remove impurity components adsorbed on the activated carbon before coating with the silicon carbide as a main component. 前記炭化ケイ素を主成分とするコーティングは、ケイ素のアルコキシド化合物を出発原料としたゾルゲル法により得たシリカゲル含有液を用いて行う請求項1又は2記載の耐酸化性活性炭の製造方法。   The method for producing an oxidation-resistant activated carbon according to claim 1 or 2, wherein the coating containing silicon carbide as a main component is performed using a silica gel-containing liquid obtained by a sol-gel method using a silicon alkoxide compound as a starting material. 前記炭化ケイ素を主成分とするコーティングは、溶媒中でケイ素のアルコキシド化合物を加水分解してシリカゲル含有液を生成する工程と、該工程で生成した前記シリカゲル含有液を活性炭の表面に付着させる工程と、該工程でシリカゲル含有液を活性炭の表面に付着させた後に前記溶媒を除去する工程と、該工程で溶媒を除去した後に不活性雰囲気中で加熱することによりシリカゲルを脱水してシリカに転換する工程と、該工程で転換したシリカをアルゴン雰囲気又はヘリウム雰囲気で2000℃以上の温度に加熱し、シリカを活性炭と反応させて炭化ケイ素に転換する工程とによって行われる請求項1又は2記載の耐酸化性活性炭の製造方法。   The coating containing silicon carbide as a main component includes a step of hydrolyzing a silicon alkoxide compound in a solvent to produce a silica gel-containing liquid, and a step of attaching the silica gel-containing liquid produced in the step to the surface of activated carbon. In the step, the silica gel-containing liquid is attached to the surface of the activated carbon, and then the solvent is removed. After removing the solvent in the step, the silica gel is dehydrated by heating in an inert atmosphere and converted to silica. The acid resistance according to claim 1 or 2, which is carried out by a step and a step of heating the silica converted in the step to a temperature of 2000 ° C or higher in an argon atmosphere or a helium atmosphere and reacting the silica with activated carbon to convert to silicon carbide. A method for producing activated carbon. 請求項1乃至4のいずれか1項記載の耐酸化性活性炭の製造方法によって得られた耐酸化性活性炭。   An oxidation-resistant activated carbon obtained by the method for producing an oxidation-resistant activated carbon according to any one of claims 1 to 4.
JP2012155281A 2012-07-11 2012-07-11 Production method of oxidation-resistant active carbon Pending JP2014015369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012155281A JP2014015369A (en) 2012-07-11 2012-07-11 Production method of oxidation-resistant active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012155281A JP2014015369A (en) 2012-07-11 2012-07-11 Production method of oxidation-resistant active carbon

Publications (1)

Publication Number Publication Date
JP2014015369A true JP2014015369A (en) 2014-01-30

Family

ID=50110411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012155281A Pending JP2014015369A (en) 2012-07-11 2012-07-11 Production method of oxidation-resistant active carbon

Country Status (1)

Country Link
JP (1) JP2014015369A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218357A (en) * 2016-06-09 2017-12-14 株式会社オメガ Adjustment method for activated carbon
CN109939642A (en) * 2019-03-19 2019-06-28 农业部沼气科学研究所 A kind of preparation method and application of oxidation modification biomass carbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104010A (en) * 1981-12-11 1983-06-21 Central Glass Co Ltd Preparation of silicon carbide powder
JPH01261215A (en) * 1988-04-13 1989-10-18 Agency Of Ind Science & Technol Production of silicon carbide
JP2003277037A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc Porous activated carbon for hydrogen storage and manufacturing method thereof
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method
US20100190639A1 (en) * 2009-01-28 2010-07-29 Worsley Marcus A High surface area, electrically conductive nanocarbon-supported metal oxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104010A (en) * 1981-12-11 1983-06-21 Central Glass Co Ltd Preparation of silicon carbide powder
JPH01261215A (en) * 1988-04-13 1989-10-18 Agency Of Ind Science & Technol Production of silicon carbide
JP2003277037A (en) * 2002-03-22 2003-10-02 Toyota Central Res & Dev Lab Inc Porous activated carbon for hydrogen storage and manufacturing method thereof
JP2006056750A (en) * 2004-08-20 2006-03-02 Shinshu Univ Porous carbonaceous material and its manufacturing method
US20100190639A1 (en) * 2009-01-28 2010-07-29 Worsley Marcus A High surface area, electrically conductive nanocarbon-supported metal oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218357A (en) * 2016-06-09 2017-12-14 株式会社オメガ Adjustment method for activated carbon
CN109939642A (en) * 2019-03-19 2019-06-28 农业部沼气科学研究所 A kind of preparation method and application of oxidation modification biomass carbon

Similar Documents

Publication Publication Date Title
CN103030424B (en) Method for preparing anti-oxidation coating of carbonaceous material
Iwamoto et al. A hydrogen-permselective amorphous silica membrane derived from polysilazane
JP2020514230A (en) Method for purifying boron nitride nanotubes
JP2011525889A (en) Method for producing porous acicular mullite body
JP2014015369A (en) Production method of oxidation-resistant active carbon
RU2011128405A (en) METHOD FOR PRODUCING SEALED PRODUCTS FROM CARBON-SILICON MATERIAL
CN106192371A (en) A kind of high temperature resistant 3Al2o32SiO2the preparation method of SiBNC carbon fiber composite coating
CN113620302B (en) Sulfonic modified silicon dioxide aerogel and preparation method and application thereof
CN105948800A (en) Preparation method for preparing lightweight and porous zirconium phosphate-aluminum phosphate ceramic ball
JP2008212772A (en) Solid catalyst for manufacturing bio-diesel oil and manufacturing method of the catalyst
JP6523769B2 (en) Hydrogen molecule storage material and hydrogen generation method thereof
JP2010089021A (en) Method of producing catalyst for exhaust gas purification
JP5202034B2 (en) Method for producing exhaust gas purification catalyst
JP6297683B2 (en) Process for producing polyaromatic oxide and polyaromatic oxide produced thereby
KR101635095B1 (en) Method of manufacturing silica-carbon nanotube composite introduced amine functions
KR101573373B1 (en) Nanoparticle complex and manufacturing method thereof
JP2020132514A (en) Process for producing highly thermostable active alumina
CN112624166A (en) Preparation method of silicon-aluminum-based aerogel and application of prepared silicon-aluminum-based aerogel in aspect of adsorbing heavy metal gas
JPH05319928A (en) Production of highly functional carbon/ceramic composite material
CN111495410A (en) Honeycomb ceramic-porous carbon monolithic catalyst, honeycomb ceramic-porous carbon monolithic adsorbent and preparation method and application thereof
KR101559121B1 (en) Supported catalyst for fuel cell and manufacturing method thereof
JP5188267B2 (en) Heat resistant ceramics and insulation
Manocha et al. Formation of silicon carbide whiskers from organic precursors via sol-gel method
CN103396124A (en) Synthesis method of porous silicon carbide material
CN101054309A (en) Method for preparing porous silicon carbonitride by oxygen-free sol-gel reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160927