JP2013258791A - Five-level power converter - Google Patents

Five-level power converter Download PDF

Info

Publication number
JP2013258791A
JP2013258791A JP2012131466A JP2012131466A JP2013258791A JP 2013258791 A JP2013258791 A JP 2013258791A JP 2012131466 A JP2012131466 A JP 2012131466A JP 2012131466 A JP2012131466 A JP 2012131466A JP 2013258791 A JP2013258791 A JP 2013258791A
Authority
JP
Japan
Prior art keywords
phase
capacitor
switching element
voltage
switching elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012131466A
Other languages
Japanese (ja)
Other versions
JP5910334B2 (en
Inventor
Masakazu Muneshima
正和 宗島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2012131466A priority Critical patent/JP5910334B2/en
Publication of JP2013258791A publication Critical patent/JP2013258791A/en
Application granted granted Critical
Publication of JP5910334B2 publication Critical patent/JP5910334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck

Abstract

PROBLEM TO BE SOLVED: To provide a five-level power converter that performs charge control of first capacitors in consideration of phase switching.SOLUTION: Three phase inverter units 2U, 2V, 2W employed each have: a first series circuit of switching elements S1-S4 connected in series to a DC voltage source V; a second series circuit of switching elements S5, S6 connected in series to the DC voltage source V; a first capacitor C1 connected to the DC voltage source Vin parallel with the first series circuit and the second series circuit; a second capacitor C2 connected between a common junction of the switching element S1 and the switching element S2 and a common junction of the switching element S3 and the switching element S4; and switching elements S7, S8 interposed between the DC voltage source Vand the first capacitor C1. An intermediate phase is selected from U, V and W phases of voltage command value, and the seventh switching element and the eighth switching element of the selected phase are turned on.

Description

本発明は、1つの直流電圧源の正負極間の直流電圧を5つの電圧レベルに変換した交流相電圧を出力する5レベル電力変換器に関する。   The present invention relates to a five-level power converter that outputs an AC phase voltage obtained by converting a DC voltage between positive and negative electrodes of one DC voltage source into five voltage levels.

図6は5レベル電力変換器における主回路の一例を示す回路構成図であり、図7はその制御部を示す図である。図7に示す制御部には、三相電圧指令値V*と、第2コンデンサ電圧指令値VC2 *が入力され、第2コンデンサ電圧VC2はVC2 *に制御し、第1コンデンサ電圧VC1はVC2の2倍に制御する。 第2コンデンサ電 圧VC2を所望の電圧に制御しながら、5レベル電圧を出力するスイッチングパターンを選択し、ゲート信号を各インバータユニットヘ出力する。図6に示す5レベル電力変換器の他にも5レベルインバータとして、特許文献1が開示されている。 FIG. 6 is a circuit configuration diagram illustrating an example of a main circuit in the five-level power converter, and FIG. 7 is a diagram illustrating a control unit thereof. The three-phase voltage command value V * and the second capacitor voltage command value VC 2 * are input to the control unit shown in FIG. 7, the second capacitor voltage VC 2 is controlled to VC 2 * , and the first capacitor voltage VC is controlled. 1 is controlled to twice VC 2 . While the second capacitor voltage VC 2 is controlled to a desired voltage, select the switching pattern for outputting a 5-level voltage, a gate signal and outputs the inverter unit f. In addition to the 5-level power converter shown in FIG. 6, Patent Document 1 is disclosed as a 5-level inverter.

特開2011−72118号公報JP 2011-72118 A

図6に示す5レベル電力変換器は、直流電源VDCにリアクトルLを介して、各相のインバータユニット内の第1コンデンサC1を充電する制御と、5レベルの交流相電圧を出力しながら負荷電流を利用して第2コンデンサC2における電圧の制御と、を行う必要がある。 The five-level power converter shown in FIG. 6 controls the charging of the first capacitor C1 in the inverter unit of each phase via the reactor L to the DC power source V DC and outputs the five-level AC phase voltage. It is necessary to control the voltage in the second capacitor C2 using the current.

図6に示す5レベル電力変換器のように、直流電源VDCに接続するリアクトルLを各相のインバータユニットで共通に用いる場合、各相のインバータユニット内における第1コンデンサC1を時分割に充電する必要がある。しかしながら、従来の5レベル電力変換器は、第1コンデンサC1の充電方法について検討されておらず、各相のインバータユニットにおける第1コンデンサC1の相切り換えを考慮した充電制御ができなかった。また、特許文献1はコンデンサC1,C2の制御ができるものではなかった。 When the reactor L connected to the DC power source V DC is used in common for each phase inverter unit as in the 5-level power converter shown in FIG. 6, the first capacitor C1 in each phase inverter unit is charged in a time-sharing manner. There is a need to. However, the conventional 5-level power converter has not been studied for the charging method of the first capacitor C1, and charging control considering phase switching of the first capacitor C1 in the inverter unit of each phase has not been possible. Further, Patent Literature 1 cannot control the capacitors C1 and C2.

以上示したようなことから、相切り換えを考慮した第1コンデンサの充電制御を行うことが可能な5レベル電力変換器を提供することが課題となる。   As described above, it is an object to provide a 5-level power converter capable of performing charging control of the first capacitor in consideration of phase switching.

本発明は、前記従来の問題に鑑み、案出されたもので、直流電圧を複数の電圧レベルに変換した交流出力を生成する5レベル電力変換器であって、直流電圧源と、前記直流電圧源の正負極間に第1〜第4スイッチング素子を順次直列接続した第1直列回路と、前記直流電圧源の正負極間に第5,第6スイッチング素子を順次直列接続した第2直列回路と、前記直流電圧源の正負極間に第1直列回路と第2直列回路に対して並列接続された第1コンデンサと、前記第1スイッチング素子と第2スイッチング素子の共通接続点と第3スイッチング素子と第4スイッチング素子の共通接続点との間に接続された第2コンデンサと、直流電圧源の正極端と第1コンデンサとの間に介挿された第7スイッチング素子と、直流電圧源の負極端と第1コンデンサとの間に介挿された第8スイッチング素子と、を有し、第5スイッチング素子と第6スイッチング素子の共通接続点を三相のインバータユニットの中性点として共通接続し、第2スイッチング素子と第3スイッチング素子の共通接続点をU相,V相,W相の各出力端とする三相のインバータユニットと、を備え、U,V,W相の電圧指令値のうち中間相を選択し、選択された相の前記第7スイッチング素子と第8スイッチング素子とをオンにすることを特徴とする。   The present invention has been devised in view of the above-described conventional problems, and is a five-level power converter that generates an AC output obtained by converting a DC voltage into a plurality of voltage levels, and includes a DC voltage source and the DC voltage. A first series circuit in which first to fourth switching elements are sequentially connected in series between the positive and negative electrodes of the source; and a second series circuit in which fifth and sixth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source; A first capacitor connected in parallel to the first series circuit and the second series circuit between the positive and negative electrodes of the DC voltage source, a common connection point of the first switching element and the second switching element, and a third switching element A second capacitor connected between the first and fourth switching elements, a seventh switching element interposed between the positive terminal of the DC voltage source and the first capacitor, and a negative voltage of the DC voltage source. Extreme and first conde An eighth switching element interposed between the second switching element, the common connection point of the fifth switching element and the sixth switching element as a neutral point of the three-phase inverter unit, and the second switching element A three-phase inverter unit having a common connection point of the element and the third switching element as output terminals of the U phase, the V phase, and the W phase, and an intermediate phase among the voltage command values of the U, V, and W phases. And the seventh switching element and the eighth switching element of the selected phase are turned on.

また、他の態様は、直流電圧を複数の電圧レベルに変換した交流出力を生成する5レベル電力変換器であって、直流電圧源と、前記直流電圧源の正負極間に第1〜第4スイッチング素子を順次直列接続した第1直列回路と、前記直流電圧源の正負極間に第5,第6スイッチング素子を順次直列接続した第2直列回路と、前記直流電圧源の正負極間に第1直列回路と第2直列回路に対して並列接続された第1コンデンサと、前記第1スイッチング素子と第2スイッチング素子の共通接続点と第3スイッチング素子と第4スイッチング素子の共通接続点との間に接続された第2コンデンサと、直流電圧源の正極端と第1コンデンサとの間に介挿された第7スイッチング素子と、直流電圧源の負極端と第1コンデンサとの間に介挿された第8スイッチング素子と、を有し、第5スイッチング素子と第6スイッチング素子の共通接続点を三相のインバータユニットの中性点として共通接続し、第2スイッチング素子と第3スイッチング素子の共通接続点をU相,V相,W相の各出力端とする三相のインバータユニットと、を備え、U,V,W相の電圧指令値の位相を20度ずつに分割し、中間相となる電圧指令値がゼロクロスとなる期間は中間相を選択し、その他の期間は中間相となる電圧指令値と同符号の他相を選択し、選択された相の第7,第8スイッチング素子をオンにすることを特徴とする。   Another aspect is a five-level power converter that generates an AC output obtained by converting a DC voltage into a plurality of voltage levels, and includes a first to a fourth between a DC voltage source and the positive and negative electrodes of the DC voltage source. A first series circuit in which switching elements are sequentially connected in series, a second series circuit in which fifth and sixth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source, and a first series circuit between the positive and negative electrodes of the DC voltage source. A first capacitor connected in parallel to one series circuit and a second series circuit; a common connection point of the first switching element and the second switching element; and a common connection point of the third switching element and the fourth switching element. A second capacitor connected in between, a seventh switching element interposed between the positive electrode end of the DC voltage source and the first capacitor, and an insertion between the negative electrode end of the DC voltage source and the first capacitor. 8th switch A common connection point of the fifth switching element and the sixth switching element as a neutral point of the three-phase inverter unit, and a common connection point of the second switching element and the third switching element. A three-phase inverter unit having U-phase, V-phase, and W-phase output terminals, and dividing the phase of the voltage command values of the U, V, and W phases into 20-degree increments to provide an intermediate voltage command During the period when the value is zero-crossing, the intermediate phase is selected, and during other periods, the other phase having the same sign as the voltage command value that is the intermediate phase is selected, and the seventh and eighth switching elements of the selected phase are turned on. It is characterized by that.

さらに、その一態様は、第7,第8スイッチング素子がオンからオフに切り換わるタイミングを遅らせて、相切り換え前後において前記選択された相の第7,第8スイッチング素子を同時にオンにする転流期間を設けることを特徴とする。   Further, in one embodiment, the commutation for delaying the timing at which the seventh and eighth switching elements are switched from on to off and simultaneously turning on the seventh and eighth switching elements of the selected phase before and after the phase switching is performed. A period is provided.

また、その一態様は、前記選択された相の第7,第8スイッチング素子は、選択されている期間のうち任意の期間においてオンにすることを特徴とする。   In one aspect thereof, the seventh and eighth switching elements of the selected phase are turned on in an arbitrary period among the selected periods.

さらに、その一態様は、直流電圧源と三相のインバータユニットとの間に介挿されるリアクトルと第3コンデンサとを有する保護回路を備えたことを特徴とする。   Furthermore, the one aspect is characterized in that a protection circuit having a reactor and a third capacitor inserted between the DC voltage source and the three-phase inverter unit is provided.

本発明によれば、5レベル電力変換器において、相切り換えを考慮した第1コンデンサの充電制御を行うことが可能となる。   According to the present invention, in the five-level power converter, it is possible to perform charging control of the first capacitor in consideration of phase switching.

本願発明における5レベル電力変換器の一例を示す構成図である。It is a block diagram which shows an example of the 5-level power converter in this invention. 本願発明における第1コンデンサの充電モード,充電電路遮断モードを示す図である。It is a figure which shows the charge mode of the 1st capacitor | condenser in this invention, and charging circuit interruption | blocking mode. U相,V相のインバータユニットの出力電圧とY結線の中点の接続状態を示す図である。It is a figure which shows the connection state of the output voltage of a U-phase and a V-phase inverter unit, and the midpoint of Y connection. 実施形態1における電圧指令値と第7,第8スイッチング素子のオン・オフ状態を示すタイムチャートである。It is a time chart which shows the voltage command value in Embodiment 1, and the ON / OFF state of a 7th, 8th switching element. 実施形態2における電圧指令値と第7,第8スイッチング素子のオン・オフ状態を示すタイムチャートである。It is a time chart which shows the voltage command value in Embodiment 2, and the ON / OFF state of a 7th, 8th switching element. 従来における5レベル電力変換器の主回路を示す構成図である。It is a block diagram which shows the main circuit of the conventional 5 level power converter. 従来における5レベル電力変換器の制御部を示す構成図である。It is a block diagram which shows the control part of the conventional 5 level power converter.

図1は、図6に示す5レベル電力変換器を力行のみに変形した5レベルDC/AC(電力)変換器を示す構成図である。原理は図6に示す5レベル電力変換器と同様である。   FIG. 1 is a configuration diagram showing a 5-level DC / AC (power) converter in which the 5-level power converter shown in FIG. 6 is modified only to power running. The principle is the same as that of the 5-level power converter shown in FIG.

図1において、直流電源VDCの正負極端間には、保護回路1が接続され、この保護回路1の出力PNを各相のインバータユニット2U,2V,2Wへ入力している。前記保護回路1は、リアクトルLと,第3ダイオードD3と、第3コンデンサC3と、回生用の抵抗Rと、を備えている。 In FIG. 1, a protection circuit 1 is connected between the positive and negative terminals of a DC power source V DC , and the output PN of this protection circuit 1 is input to the inverter units 2U, 2V, 2W of each phase. The protection circuit 1 includes a reactor L, a third diode D3, a third capacitor C3, and a regenerative resistor R.

前記各相のインバータユニット2U,2V,2Wは、第1〜第4スイッチング素子S1〜S4を順次直列接続した第1直列回路と、第5,第6スイッチング素子S5,S6を順次直列接続した第2直列回路と、第1コンデンサC1と、が並列に接続されている。また、第1,第2スイッチング素子S1,S2の共通接続点と、第3,第4スイッチング素子S3,S4の共通接続点との間に第2コンデンサC2が接続され、保護回路1の正極端と第1コンデンサC1,第1直列回路,第2直列回路から成る並列回路との間には第1ダイオードD1と第7スイッチング素子S7が介挿され、保護回路1の負極端と第1コンデンサC1,第1直列回路,第2直列回路からなる並列回路との間には第2ダイオードD2と第8スイッチング素子S8とが介挿されている。   The inverter units 2U, 2V, and 2W of the respective phases include a first series circuit in which first to fourth switching elements S1 to S4 are sequentially connected in series, and fifth and sixth switching elements S5 and S6 are sequentially connected in series. Two series circuits and a first capacitor C1 are connected in parallel. A second capacitor C2 is connected between the common connection point of the first and second switching elements S1 and S2 and the common connection point of the third and fourth switching elements S3 and S4. A first diode D1 and a seventh switching element S7 are interposed between the first capacitor C1, a parallel circuit composed of the first series circuit and the second series circuit, and the negative terminal of the protection circuit 1 and the first capacitor C1. The second diode D2 and the eighth switching element S8 are interposed between the parallel circuit including the first series circuit and the second series circuit.

図6における5レベル電力変換器では、スイッチング素子5a,5b,6a,6b,7a,7b,8a,8bと各箇所にスイッチング素子が2つずつ設けれているが、耐圧を考慮しなければ図1に示すように、第5,第6,第7,第8スイッチング素子S5,S6,S7,S8と各箇所に1つずつ設ければよい。   In the five-level power converter in FIG. 6, switching elements 5a, 5b, 6a, 6b, 7a, 7b, 8a, 8b and two switching elements are provided at each location. As shown in FIG. 1, the fifth, sixth, seventh, and eighth switching elements S5, S6, S7, and S8 may be provided one at each location.

なお、第5,第6スイッチング素子S5,S6の共通接続点を第1出力端子Aとし、第2,第3スイッチング素子S2,S3の共通接続点を第2出力端子Bとする。そして、U相,V相,W相におけるインバータユニット2U,2V,2Wの第1出力端子A同士を接続してY結線の中性点とし、各相の第2出力端子BはU相,V相,W相の出力端子として負荷2へ接続する。   The common connection point of the fifth and sixth switching elements S5 and S6 is the first output terminal A, and the common connection point of the second and third switching elements S2 and S3 is the second output terminal B. The first output terminals A of the U-phase, V-phase, and W-phase inverter units 2U, 2V, and 2W are connected to each other as the neutral point of the Y connection, and the second output terminal B of each phase is the U-phase, V-phase. Connect to load 2 as phase and W phase output terminals.

制御部3は、第1コンデンサC1,第2コンデンサC2の各電圧VCU1,VCU2,VCV1,VCV2,VCW1,VCW2,3相の電圧指令値V*,3相の電圧検出値の正弦波信号を入力し、第1〜第8スイッチング素子S1〜S8にゲート信号を出力して、各スイッチング素子S1〜S8を制御する。 The control unit 3 includes the voltages V CU1 , V CU2 , V CV1 , V CV2 , V CW1 , V CW2 , three-phase voltage command value V * , three-phase voltage detection value of the first capacitor C1 and the second capacitor C2. The sine wave signal is input and a gate signal is output to the first to eighth switching elements S1 to S8 to control the switching elements S1 to S8.

前記第1〜第6スイッチング素子S1〜S6は後述する表1のモード1〜モード8を有するスイッチングパターンに従ってオン,オフ制御され、第7,第8スイッチング素子S7,S8は前記第1〜第6スイッチング素子とは別個に制御部3によってオン,オフ制御される。   The first to sixth switching elements S1 to S6 are on / off controlled according to a switching pattern having modes 1 to 8 in Table 1 to be described later, and the seventh and eighth switching elements S7 and S8 are the first to sixth switching elements. Separately from the switching element, the controller 3 performs on / off control.

図2(a)に示すように、第1コンデンサC1の電圧が直流電源VDCよりも小さいときに第7,第8スイッチング素子S7,S8をオンすることで第1コンデンサC1を充電できるが、図2(b)に示すように第7,第8スイッチング素子S7,S8をオフしたときのリアクトルLのエネルギー は、第1コンデンサC1に充電できない。そのため、前記保護回路1を直流電源VDCの正負極端間に設け、第7,第8スイッチング素子S7,S8をオフしたときのリアクトルLのエネルギーを第3コンデンサC3に吸収させている。 As shown in FIG. 2A, when the voltage of the first capacitor C1 is smaller than the DC power source V DC , the first capacitor C1 can be charged by turning on the seventh and eighth switching elements S7, S8. As shown in FIG. 2B, the energy of the reactor L when the seventh and eighth switching elements S7 and S8 are turned off cannot be charged in the first capacitor C1. Therefore, the protection circuit 1 is provided between the positive and negative ends of the DC power source V DC so that the energy of the reactor L when the seventh and eighth switching elements S7 and S8 are turned off is absorbed by the third capacitor C3.

前記各相のインバータユニット2U,2V,2Wは、第1コンデンサC1の電圧が2E,第2コンデンサC2の電圧がEのとき、下記表1に示すスイッチングパターンにより、負荷2へ5レベルの相電圧2E,E,0,−E,−2Eを出力できる。 第2コンデンサC2の電圧は、各相におけるインバータユニット2U,2V,2Wの交流出力電圧がEまたは、−Eのときに充電または放電するスイッチングパターン(表1のSwitching StateV2,V3,V6,V7)を利用して制御することができる。 The inverter units 2U, 2V, 2W of the respective phases have a five-level phase voltage to the load 2 according to the switching pattern shown in Table 1 below when the voltage of the first capacitor C1 is 2E and the voltage of the second capacitor C2 is E. 2E, E, 0, -E, -2E can be output. The voltage of the second capacitor C2, inverter unit 2U in each phase, 2V, AC output voltage of 2W is E or switching pattern for charging or discharging when -E (Table 1 Switching StateV 2, V 3, V 6 , V 7 ).

Figure 2013258791
Figure 2013258791

表1は、第1〜第6スイッチング素子S1〜S6のモード1〜8(表1ではSwitching StateV1〜V8と表記している。)により出力端子A,B間に出力される電圧と第2コンデンサC2の充放電の有無を示している。 Table 1 voltage output first to sixth (denoted as in Table 1 Switching StateV 1 ~V 8.) Mode 1-8 switching elements S1~S6 the output terminal A, between B and the 2 indicates whether the capacitor C2 is charged or discharged.

ここで、表1のスイッチングパターンの各モード1〜8と出力端子A,B間の電流Iの経路を説明する。   Here, the path of the current I between the modes 1 to 8 of the switching pattern in Table 1 and the output terminals A and B will be described.

〈モード1〉
第3,第4,第5スイッチング素子S3,S4,S5がオフ,第1,第2,第6スイッチング素子S1,S2,S6がオンとなり、電流Iは出力端子A→S6→第1コンデンサC1→S1→S2→出力端子Bの経路で流れる。出力端子A,B間には第1コンデンサC1の負側→正側が接続され、出力端子A,B間の電圧は2Eとなる。
<Mode 1>
The third, fourth, and fifth switching elements S3, S4, and S5 are turned off, the first, second, and sixth switching elements S1, S2, and S6 are turned on, and the current I is output from the output terminal A → S6 → first capacitor C1. → S1 → S2 → Output terminal B Between the output terminals A and B, the negative side → positive side of the first capacitor C1 is connected, and the voltage between the output terminals A and B is 2E.

〈モード2〉
第2,第4,第5スイッチング素子S2,S4,S5はオフ,第1,第3,第6スイッチング素子S1,S3,S6がオンとなり、電流Iは出力端子A→S6→第1コンデンサC1→S1→第2コンデンサC2→S3→出力端子Bの経路で流れる。出力端子A,B間には第1コンデンサC1の負側→正側→第2コンデンサC2の正側→負側が直列に接続され、出力端子A,B間の電圧は2E−E=Eとなる。このモード2では、電流I>0のとき第2コンデンサC2は充電される。
<Mode 2>
The second, fourth and fifth switching elements S2, S4 and S5 are turned off, the first, third and sixth switching elements S1, S3 and S6 are turned on, and the current I is output from the output terminal A → S6 → first capacitor C1. → S1 → Second capacitor C2 → S3 → Output terminal B Between the output terminals A and B, the negative side of the first capacitor C1 → the positive side → the positive side of the second capacitor C2 → the negative side is connected in series, and the voltage between the output terminals A and B becomes 2E−E = E. . In this mode 2, the second capacitor C2 is charged when the current I> 0.

〈モード3〉
第1,第3,第5スイッチング素子S1,S3,S5はオフ,第2,第4,第6スイッチング素子S2,S4,S6がオンとなり、電流Iは出力端子A→S6→S4→第2コンデンサC2→S2→出力端子Bの経路で流れる。出力端子A,B間には第2コンデンサC2の負側→正側が接続され、出力端子A,B間の電圧はEとなる。このモード3では、電流I>0のとき第2コンデンサC2は放電される。
<Mode 3>
The first, third, and fifth switching elements S1, S3, and S5 are turned off, the second, fourth, and sixth switching elements S2, S4, and S6 are turned on, and the current I is output from the output terminals A → S6 → S4 → second. It flows through the path of the capacitor C2 → S2 → output terminal B. Between the output terminals A and B, the negative side → positive side of the second capacitor C2 is connected, and the voltage between the output terminals A and B is E. In this mode 3, when the current I> 0, the second capacitor C2 is discharged.

〈モード4〉
第1,第2,第5スイッチング素子S1,S2,S5はオフ,第3,第4,第6スイッチング素子S3,S4,S6がオンとなり、電流Iは出力端子A→S6→S4→S3→出力端子Bの経路で流れる。出力端子A,B間には第6,第4,第3スイッチング素子S6,S4,S3を介して直送され、出力端子A,B間の電圧は0となる。
<Mode 4>
The first, second and fifth switching elements S1, S2 and S5 are turned off, the third, fourth and sixth switching elements S3, S4 and S6 are turned on, and the current I is output from the output terminals A → S6 → S4 → S3 → It flows through the path of the output terminal B. Directly sent between the output terminals A and B via the sixth, fourth and third switching elements S6, S4 and S3, the voltage between the output terminals A and B becomes zero.

〈モード5〉
第3,第4,第6スイッチング素子S3,S4,S6はオフ、第1,第2,第5スイッチング素子S1,S2,S5がオンとなり、電流Iは出力端子A→S5→S1→S2→出力端子Bの経路で流れる。出力端子A,B間には第5,第1,第2スイッチング素子S5,S1,S2を介して直送され、出力端子A,B間の電圧は0となる。
<Mode 5>
The third, fourth, and sixth switching elements S3, S4, and S6 are turned off, the first, second, and fifth switching elements S1, S2, and S5 are turned on, and the current I is output from the output terminals A → S5 → S1 → S2 → It flows through the path of the output terminal B. Directly sent between the output terminals A and B via the fifth, first and second switching elements S5, S1 and S2, the voltage between the output terminals A and B becomes zero.

〈モード6〉
第2,第4,第6スイチング素子S2,S4,S6はオフ,第1,第3,第5スイッチング素子S1,S3,S5がオンとなり、電流Iは出力端子A→S5→S1→第2コンデンサC2→S3→出力端子Bの経路で流れる。出力端子A,B間には第2コンデンサC2の正側→負側が接続され、出力端子A,B間の電圧は−Eとなる。このモード6では、電流I<0のとき第2コンデンサC2は放電される。
<Mode 6>
The second, fourth, and sixth switching elements S2, S4, and S6 are turned off, the first, third, and fifth switching elements S1, S3, and S5 are turned on, and the current I is output from the output terminals A → S5 → S1 → second. It flows through the path of the capacitor C2 → S3 → output terminal B. Between the output terminals A and B, the positive side → the negative side of the second capacitor C2 is connected, and the voltage between the output terminals A and B becomes −E. In this mode 6, when the current I <0, the second capacitor C2 is discharged.

〈モード7〉
第1,第3,第6スイチング素子S1,S3,S6はオフ,第2,第4,第5スイッチング素子S2,S4,S5がオンとなり、電流Iは出力端子A→S5→第1コンデンサC1→S4→第2コンデンサC2→S2→出力端子Bの経路で流れる。出力端子A,B間には第1コンデンサの正側→負側→第2コンデンサC2の負側→正側が直列に接続され、出力端子A,B間の電圧は、−2E+E=Eとなる。このモード7では、電流I<0のとき第2コンデンサC2は充電される。
<Mode 7>
The first, third, and sixth switching elements S1, S3, and S6 are turned off, the second, fourth, and fifth switching elements S2, S4, and S5 are turned on, and the current I is output from the output terminal A → S5 → first capacitor C1. → S4 → second capacitor C2 → S2 → output terminal B Between the output terminals A and B, the positive side of the first capacitor → the negative side → the negative side of the second capacitor C2 → the positive side is connected in series, and the voltage between the output terminals A and B is −2E + E = E. In this mode 7, when the current I <0, the second capacitor C2 is charged.

〈モード8〉
第1,第2,第6スイッチング素子S1,S2,S6はオフ,第3,第4,第5スイッチング素子S3,S4,S5がオンとなり、電流Iは出力端子A→S5→第1コンデンサC1→S4→S3→出力端子Bの経路で流れる。出力端子A,B間には第1コンデンサの正側→負側が順に接続され、出力端子A,B間の電圧は−2Eとなる。
<Mode 8>
The first, second and sixth switching elements S1, S2 and S6 are turned off, the third, fourth and fifth switching elements S3, S4 and S5 are turned on, and the current I is output from the output terminal A → S5 → first capacitor C1. → S4 → S3 → Output terminal B Between the output terminals A and B, the positive side and the negative side of the first capacitor are connected in order, and the voltage between the output terminals A and B is −2E.

表1に示すように、出力電圧が2E,E,+0のときには、第6スイッチング素子S6がオン、第5スイッチング素子S5がオフとなり、出力電圧が−2E,−E,−0のときには、第6スイッチング素子S6がオ フ、第5スイッチング素子S5がオンとなる。   As shown in Table 1, when the output voltage is 2E, E, +0, the sixth switching element S6 is on, the fifth switching element S5 is off, and when the output voltage is -2E, -E, -0, The 6 switching element S6 is turned off and the fifth switching element S5 is turned on.

例えば、U相とV相の出力電圧が正ならば、図3(a)に示すように、Y結線の中点MP(出力端子A)には第1コンデンサC1の負側同士が接続される。 一方、U相とV相の出力電圧が負の場合は、図3(b)に示すように、Y結線の中点MP(出力端子A)には第1コンデンサC1 の正側同士が接続される。   For example, if the U-phase and V-phase output voltages are positive, the negative sides of the first capacitor C1 are connected to the midpoint MP (output terminal A) of the Y connection as shown in FIG. . On the other hand, when the U-phase and V-phase output voltages are negative, the positive sides of the first capacitor C1 are connected to the midpoint MP (output terminal A) of the Y connection as shown in FIG. The

図3(a)または図3(b)に示す状態であれば、直流電源VDCからリアクトルLを介して第1コンデンサC1を充電するとき、直流電源VDCの短絡を伴わず、U相のインバータユニット2UからV相のインバータユニット2Vへの切り換えができる。 In the state shown in FIG. 3 (a) or FIG. 3 (b), when charging the first capacitor C1 from the DC power source V DC via the reactor L, the DC power source V DC is not short-circuited, and the U-phase Switching from the inverter unit 2U to the V-phase inverter unit 2V can be performed.

この充電の切り換え時に第7スイッチング素子S7と第8スイッチング素子S8に転流期間を設けることで、リアクトルLの電流をU相のインバータユニット2UからV相のインバータユニット2Vヘ転流できる。前記転流期間は、第7,第8スイッチング素子S7,S8がオンからオフに切り換わるタイミングを遅らせることにより、異なる2つの相の第7,第8スイッチング素子S7,S8が同時にオンとなっている期間とする。転流期間を用いない場合は、図2(b)に示すように保護回路1の第3コンデンサC3がリアクトルLのエネルギーを吸収する。   By providing a commutation period for the seventh switching element S7 and the eighth switching element S8 during the switching of the charging, the current of the reactor L can be commutated from the U-phase inverter unit 2U to the V-phase inverter unit 2V. In the commutation period, the seventh and eighth switching elements S7 and S8 of two different phases are simultaneously turned on by delaying the timing at which the seventh and eighth switching elements S7 and S8 are switched from on to off. Period. When the commutation period is not used, the third capacitor C3 of the protection circuit 1 absorbs the energy of the reactor L as shown in FIG.

[実施形態1]
図4は、本実施形態1における5レベル電力変換器の電圧指令値V* U,V* V,V* Wと、第7,第8スイッチング素子S7,S8のオン・オフの状態を示すタイムチャートである。
[Embodiment 1]
FIG. 4 shows voltage command values V * U , V * V , V * W of the five-level power converter in the first embodiment, and times indicating the on / off states of the seventh and eighth switching elements S7, S8. It is a chart.

実施形態1は、図4に示すように、電圧指令値V* U,V* V,V* Wのうち中間の値となる中間相のインバータユニットを選択し、選択された相の第1コンデンサC1を60度(1/3π)ずつ充電することを特徴としている。具体的には、選択された中間相のインバータユニットにおける第7,第8スイッチング素子S7,S8をオンして第1コンデンサC1に充電し、その他の相におけるインバータユニットの第7,第8スイッチング素子S7,S8をオフし、充電経路を遮断している。 In the first embodiment, as shown in FIG. 4, an intermediate phase inverter unit having an intermediate value among the voltage command values V * U , V * V , and V * W is selected, and the first capacitor of the selected phase is selected. It is characterized by charging C1 by 60 degrees (1 / 3π). Specifically, the seventh and eighth switching elements S7 and S8 in the selected intermediate phase inverter unit are turned on to charge the first capacitor C1, and the seventh and eighth switching elements of the inverter unit in the other phases are charged. S7 and S8 are turned off to block the charging path.

以下、電圧指令値V* U,V* V,V* Wの各位相における第1コンデンサC1の充電と、第1コンデンサC1に対する充電経路の遮断の一例を示す。
[0から1/6π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[1/6πから1/2π]W相の第1コンデンサC1を充電,V相とU相は第1コンデンサC1の充電経路を遮断
[1/2πから5/6π]V相の第1コンデンサC1を充電,U相とW相は第1コンデンサC1の充電経路を遮断
[5/6πから7/6π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[7/6πから3/2π]W相の第1コンデンサC1を充電,V相とU相は第1コンデンサC1の充電経路を遮断
[3/2πから11/6π]V相の第1コンデンサC1を充電、U相とW相は第1コンデンサC1の充電経路を遮断
[11/6πから2π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断。
Hereinafter, an example of charging the first capacitor C1 in each phase of the voltage command values V * U , V * V , and V * W and blocking the charging path for the first capacitor C1 will be described.
[0 to 1 / 6π] Charges U-phase first capacitor C1, V phase and W phase cut off charging path of first capacitor C1 [1 / 6π to 1 / 2π] Charges W phase first capacitor C1 , V phase and U phase cut off the charging path of the first capacitor C1 [1 / 2π to 5 / 6π] charge the V phase first capacitor C1, U phase and W phase cut off the charging path of the first capacitor C1 [5 / 6π to 7 / 6π] The U-phase first capacitor C1 is charged, and the V-phase and W-phase block the charging path of the first capacitor C1. [7 / 6π to 3 / 2π] W-phase first capacitor C1 V phase and U phase block the charging path of the first capacitor C1 [3 / 2π to 11 / 6π] charging the V phase first capacitor C1, U phase and W phase charging path of the first capacitor C1 [11 / 6π to 2π] charge the U-phase first capacitor C1, V phase and W phase are 1 cut off the charging path of the capacitor C1.

図4に示すように、本実施形態1における5レベル電力変換器は、第1コンデンサC1の充電を他の相へ切り換える転流期間を設けている。例えば、転流を考慮しなければ、U相のインバータユニット2Uの第7,第8スイッチング素子S7は1/6πでオフとなるが、転流を考慮してオフとなるタイミングを遅らせ、U相とV相のインバータユニット2U,2Vを同時にオンとする転流期間を設ける。この転流期間においてリアクトルのエネルギー(電流)をU相からV相へ転流させる。   As shown in FIG. 4, the five-level power converter according to the first embodiment has a commutation period in which charging of the first capacitor C1 is switched to another phase. For example, if commutation is not considered, the seventh and eighth switching elements S7 of the U-phase inverter unit 2U are turned off at 1 / 6π, but the timing of turning off is delayed in consideration of commutation, and the U-phase And a commutation period in which the V-phase inverter units 2U and 2V are simultaneously turned on. During this commutation period, the reactor energy (current) is commutated from the U phase to the V phase.

以上示したように、本実施形態1における5レベル電力変換器によれば、三相の電圧指令値V* U,V* V,V* Wから中間相とインバータユニットを選択し、各相のインバータユニット2U,2V,2Wの第7,第8スイッチング素子S7,S8のオン・オフ状態を制御することにより、各相の第1コンデンサC1を時分割に60度(1/3π)ずつ充電することが可能となり、短絡を伴わずに、第1コンデンサC1の相切り換えを行うことができ、5レベル電力変換器におけるコンデンサ電圧制御を簡素な制御構成で行うことが可能となる。 As described above, according to the five-level power converter in the first embodiment, the intermediate phase and the inverter unit are selected from the three-phase voltage command values V * U , V * V , and V * W , and By controlling the on / off states of the seventh and eighth switching elements S7, S8 of the inverter units 2U, 2V, 2W, the first capacitor C1 of each phase is charged 60 degrees (1 / 3π) by time division. Thus, the phase of the first capacitor C1 can be switched without causing a short circuit, and the capacitor voltage control in the five-level power converter can be performed with a simple control configuration.

また、転流期間を設けることにより、リアクトルLに蓄えられたエネルギーを他の相へ転流することが可能となる。さらに、転流期間を設けない場合も、保護回路1を追加することによりリアクトルLのエネルギーを吸収することが可能となる。   Further, by providing the commutation period, it is possible to commutate the energy stored in the reactor L to another phase. Furthermore, even when the commutation period is not provided, it is possible to absorb the energy of the reactor L by adding the protection circuit 1.

[実施形態2]
図5は、本実施形態2における5レベル電力変換器の電圧指令値V* U,V* V,V* Wと、第7,第8スイッチング素子S7,S8のオン・オフの状態を示すタイムチャートである。
[Embodiment 2]
FIG. 5 shows voltage command values V * U , V * V , V * W of the five-level power converter according to the second embodiment, and times indicating the on / off states of the seventh and eighth switching elements S7, S8. It is a chart.

本実施形態2は、電圧指令値V* U,V* V,V* Wの中間相と、中間相と同符号の他の相の電圧指令値V* U,V* V,V* Wと、を選択して20度(1/9π)ずつ各相の第1コンデンサC1を充電するものである。具体的には、電圧指令値V* U,V* V,V* Wの位相を20度(1/9π)に分割した期間のうち中間相となる電圧指令値がゼロクロスとなる期間は中間相を選択し、それ以外の期間は電圧指令値が中間相と同符号の他の相を選択する。 In the second embodiment, the voltage command values V * U , V * V , V * W , and the intermediate phase of the voltage command values V * U , V * V , V * W , And the first capacitor C1 of each phase is charged by 20 degrees (1 / 9π). Specifically, in the period in which the phase of the voltage command values V * U , V * V , and V * W is divided into 20 degrees (1 / 9π), the period in which the voltage command value serving as the intermediate phase is zero crossing is the intermediate phase. In other periods, the voltage command value selects another phase having the same sign as the intermediate phase.

以下、電圧指令値V* U,V* V,V* Wの各位相における第1コンデンサC1の充電と、第1コンデンサC1に対する充電経路の遮断を示す。 Hereinafter, charging of the first capacitor C1 in each phase of the voltage command values V * U , V * V , and V * W and blocking of the charging path for the first capacitor C1 are shown.

[0から1/18π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[1/18πから1/6π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[1/6πから5/18π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[5/18πから7/18π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[7/18πから1/2π]V相の第1コンデンサC1を充電,U相とW相は第1コンデンサC1の充電経路を遮断
[1/2πから11/18π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[11/18πから13/18π]V相の第1コンデンサC1を充電、U相とW相は第1コンデンサC1の充電経路を遮断
[13/18πから5/6π]U相の第1コンデンサC1を充電、V相とW相は第1コンデンサC1の充電経路を遮断
[5/6πから17/18π]V相の第1コンデンサC1を充電、U相とW相は第1コンデンサC1の充電経路を遮断
[17/18πから19/18π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[19/18πから7/6π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[7/6πから23/18π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[23/18πから25/18π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[25/18πから3/2π]V相の第1コンデンサC1を充電,U相とW相は第1コンデンサC1の充電経路を遮断
[3/2πから29/18π]W相の第1コンデンサC1を充電,U相とV相は第1コンデンサC1の充電経路を遮断
[29/18πから31/18π]V相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[31/18πから11/6π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断
[11/6πから35/18π]V相の第1コンデンサC1を充電,U相とW相は第1コンデンサC1の充電経路を遮断
[35/18πから2π]U相の第1コンデンサC1を充電,V相とW相は第1コンデンサC1の充電経路を遮断。
[0 to 1 / 18π] Charges U-phase first capacitor C1, V phase and W phase cut off charging path of first capacitor C1 [1 / 18π to 1 / 6π] Charges W phase first capacitor C1 , U phase and V phase cut off the charging path of the first capacitor C1 [1 / 6π to 5 / 18π] charge the U phase first capacitor C1, V phase and W phase cut off the charging path of the first capacitor C1 [5 / 18π to 7 / 18π] Charge W-phase first capacitor C1, U phase and V phase cut off charging path of first capacitor C1 [7 / 18π to 1 / 2π] V-phase first capacitor C1 The U phase and the W phase block the charging path of the first capacitor C1 [1 / 2π to 11 / 18π] The W phase first capacitor C1 is charged, the U phase and the V phase are charging paths for the first capacitor C1 [11 / 18π to 13 / 18π] V-phase first capacitor 1 is charged, U phase and W phase block the charging path of the first capacitor C1 [13 / 18π to 5 / 6π] U phase first capacitor C1 is charged, V phase and W phase are charged to the first capacitor C1 The path is cut off [5 / 6π to 17 / 18π] charging the V-phase first capacitor C1, and the U and W phases cut off the charging path of the first capacitor C1 [17 / 18π to 19 / 18π] 1 capacitor C1 is charged, V-phase and W-phase block the charging path of the first capacitor C1 [19 / 18π to 7 / 6π] W-phase first capacitor C1 is charged, U-phase and V-phase are the first capacitor C1 [7 / 6π to 23 / 18π] charge the U-phase first capacitor C1, V phase and W phase block the charging path of the first capacitor C1 [23 / 18π to 25 / 18π] W phase The first capacitor C1 is charged, the U phase and the V phase are the first capacitor Density C1 charging path cut off [25 / 18π to 3 / 2π] V-phase first capacitor C1 is charged, U phase and W phase cut off charging path for first capacitor C1 [3 / 2π to 29 / 18π] Charge the first capacitor C1 of the W phase, the U phase and the V phase cut off the charging path of the first capacitor C1 [29 / 18π to 31 / 18π] The first capacitor C1 of the V phase is charged, the V phase and the W phase are The charging path of the first capacitor C1 is cut off [31 / 18π to 11 / 6π] The U-phase first capacitor C1 is charged, and the V phase and the W phase cut off the charging path of the first capacitor C1 [11 / 6π to 35 / 18π] V-phase first capacitor C1 is charged, U-phase and W-phase cut off charging path of first capacitor C1 [35 / 18π to 2π] U-phase first capacitor C1 is charged, V-phase and W-phase are The charging path of the first capacitor C1 is cut off.

図5に示すように、本実施形態2における5レベル電力変換器は、第1コンデンサC1の充電を他の相へ切り換える転流期間を設けている。例えば、転流を考慮しなければ、U相のインバータユニット2Uの第7,第8スイッチング素子S7,S8は1/18πでオフとなるが、転流を考慮してオフとなるタイミングを遅らせることにより、U相とW相のインバータユニット2U,2Wを同時にオンとする転流期間を設ける。この転流期間においてリアクトルLのエネルギー(電流)をU相からW相へ転流させる。   As shown in FIG. 5, the five-level power converter according to the second embodiment has a commutation period in which charging of the first capacitor C1 is switched to another phase. For example, if commutation is not taken into account, the seventh and eighth switching elements S7 and S8 of the U-phase inverter unit 2U are turned off at 1 / 18π, but the timing of turning off is delayed in consideration of commutation. Thus, a commutation period during which the U-phase and W-phase inverter units 2U and 2W are simultaneously turned on is provided. In this commutation period, the energy (current) of the reactor L is commutated from the U phase to the W phase.

以上示したように、本実施形態2における5レベル電力変換器によれば、保護回路1を追加することにより、コンデンサ電圧制御を簡素な制御構成で行うことが可能となる。   As described above, according to the five-level power converter in the second embodiment, it is possible to perform capacitor voltage control with a simple control configuration by adding the protection circuit 1.

また、三相の電圧指令値V* U,V* V,V* Wから電圧指令値V* U,V* V,V* Wの中間相のインバータユニットと、中間相となる電圧指令値V* U,V* V,V* Wと同符号の他の相と、を選択し、各相のインバータユニット2U,2V,2Wの第7,第8スイッチング素子S7,S8のオン・オフ状態を制御することにより、各相の第1コンデンサC1を時分割に20度(1/9π)ずつ充電することが可能となり、短絡を伴わずに、第1コンデンサC1の相切り換えを行うことができる。 In addition, the three-phase voltage command values V * U , V * V , V * W to the voltage command values V * U , V * V , V * W are intermediate phase inverter units, and the intermediate phase voltage command value V * U , V * V , V * W and other phases of the same sign are selected, and the ON / OFF states of the seventh and eighth switching elements S7, S8 of the inverter units 2U, 2V, 2W of the respective phases are selected. By controlling, it becomes possible to charge the first capacitor C1 of each phase by 20 degrees (1 / 9π) by time division, and the phase of the first capacitor C1 can be switched without causing a short circuit.

また、転流期間を設けることにより、リアクトルLに蓄えられたエネルギーを他の相へ転流することが可能となる。さらに、転流期間を設けない場合も、保護回路1によりリアクトルLのエネルギーを吸収することが可能となる。   Further, by providing the commutation period, it is possible to commutate the energy stored in the reactor L to another phase. Furthermore, even when no commutation period is provided, the protection circuit 1 can absorb the energy of the reactor L.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、実施形態1,2では、直流電圧源として直流電源VDCを使用した例を示したが、交流電源を整流した直流電圧とする構成でも良い。また、第7,第8スイッチング素子S7,S8の選択をU,V,W相の各相電圧指令値で説明したが、電圧検出器や演算で求めた電圧など、各相の電圧値を表すものであってもよい。 For example, in the first and second embodiments, the DC power source V DC is used as the DC voltage source. However, the AC power source may be a rectified DC voltage. In addition, the selection of the seventh and eighth switching elements S7 and S8 has been described using the phase voltage command values of the U, V, and W phases, but the voltage values of the respective phases such as the voltage detector and the voltage obtained by calculation are represented. It may be a thing.

さらに、実施形態1,2では充電期間を60度または20度に時分割したが、60度または20度の期間のうち充電する期間を任意とすることにより、第1コンデンサC1電圧の調節も可能である。すなわち、第7,第8スイッチング素子S7,S8をオンとする期間を任意とすることにより第1コンデンサC1の電圧を5レベル(2E,E,0,−E,−2E)のみではなく、例えば1.5E,0.5E,−0.5E,−1.5E等に制御することが可能となる。   Further, in the first and second embodiments, the charging period is time-divided into 60 degrees or 20 degrees. However, the voltage of the first capacitor C1 can be adjusted by arbitrarily setting the charging period in the period of 60 degrees or 20 degrees. It is. That is, by setting the period during which the seventh and eighth switching elements S7 and S8 are turned on arbitrarily, the voltage of the first capacitor C1 is not limited to five levels (2E, E, 0, −E, −2E), for example, It is possible to control to 1.5E, 0.5E, -0.5E, -1.5E, and the like.

1…保護回路
2U,2V,2W…インバータユニット
S1〜S8…第1〜第8スイッチング素子
3…制御部
4…負荷
A,B…出力端子
C1〜C3…第1〜第3コンデンサ
DC…直流電源
DESCRIPTION OF SYMBOLS 1 ... Protection circuit 2U, 2V, 2W ... Inverter unit S1-S8 ... 1st-8th switching element 3 ... Control part 4 ... Load A, B ... Output terminal C1-C3 ... 1st-3rd capacitor VDC ... DC Power supply

Claims (5)

直流電圧を複数の電圧レベルに変換した交流出力を生成する5レベル電力変換器であって、
直流電圧源と、
前記直流電圧源の正負極間に第1〜第4スイッチング素子を順次直列接続した第1直列回路と、前記直流電圧源の正負極間に第5,第6スイッチング素子を順次直列接続した第2直列回路と、前記直流電圧源の正負極間に第1直列回路と第2直列回路に対して並列接続された第1コンデンサと、前記第1スイッチング素子と第2スイッチング素子の共通接続点と第3スイッチング素子と第4スイッチング素子の共通接続点との間に接続された第2コンデンサと、直流電圧源の正極端と第1コンデンサとの間に介挿された第7スイッチング素子と、直流電圧源の負極端と第1コンデンサとの間に介挿された第8スイッチング素子と、を有し、第5スイッチング素子と第6スイッチング素子の共通接続点を三相のインバータユニットの中性点として共通接続し、第2スイッチング素子と第3スイッチング素子の共通接続点をU相,V相,W相の各出力端とする三相のインバータユニットと、を備え、
U,V,W相の電圧指令値のうち中間相を選択し、選択された相の前記第7スイッチング素子と第8スイッチング素子とをオンにすることを特徴とする5レベル電力変換器。
A five-level power converter that generates an AC output by converting a DC voltage into a plurality of voltage levels,
A DC voltage source;
A first series circuit in which first to fourth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source, and a second series circuit in which fifth and sixth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source. A series circuit; a first capacitor connected in parallel to the first series circuit and the second series circuit between the positive and negative electrodes of the DC voltage source; a common connection point of the first switching element and the second switching element; A second capacitor connected between a common connection point of the three switching elements and the fourth switching element, a seventh switching element interposed between the positive terminal of the DC voltage source and the first capacitor, and a DC voltage And an eighth switching element interposed between the negative electrode end of the source and the first capacitor, and a common connection point of the fifth switching element and the sixth switching element is a neutral point of the three-phase inverter unit Commonly connected, it includes a second switching element U-phase common connection point of the third switching element, V-phase, and three-phase inverter unit to the output terminals of the W-phase, and
A five-level power converter, wherein an intermediate phase is selected from voltage command values of U, V, and W phases, and the seventh switching element and the eighth switching element of the selected phase are turned on.
直流電圧を複数の電圧レベルに変換した交流出力を生成する5レベル電力変換器であって、
直流電圧源と、
前記直流電圧源の正負極間に第1〜第4スイッチング素子を順次直列接続した第1直列回路と、前記直流電圧源の正負極間に第5,第6スイッチング素子を順次直列接続した第2直列回路と、前記直流電圧源の正負極間に第1直列回路と第2直列回路に対して並列接続された第1コンデンサと、前記第1スイッチング素子と第2スイッチング素子の共通接続点と第3スイッチング素子と第4スイッチング素子の共通接続点との間に接続された第2コンデンサと、直流電圧源の正極端と第1コンデンサとの間に介挿された第7スイッチング素子と、直流電圧源の負極端と第1コンデンサとの間に介挿された第8スイッチング素子と、を有し、第5スイッチング素子と第6スイッチング素子の共通接続点を三相のインバータユニットの中性点として共通接続し、第2スイッチング素子と第3スイッチング素子の共通接続点をU相,V相,W相の各出力端とする三相のインバータユニットと、を備え、
U,V,W相の電圧指令値の位相を20度ずつに分割し、中間相となる電圧指令値がゼロクロスとなる期間は中間相を選択し、その他の期間は中間相となる電圧指令値と同符号の他相を選択し、選択された相の第7,第8スイッチング素子をオンにすることを特徴とする5レベル電力変換器。
A five-level power converter that generates an AC output by converting a DC voltage into a plurality of voltage levels,
A DC voltage source;
A first series circuit in which first to fourth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source, and a second series circuit in which fifth and sixth switching elements are sequentially connected in series between the positive and negative electrodes of the DC voltage source. A series circuit; a first capacitor connected in parallel to the first series circuit and the second series circuit between the positive and negative electrodes of the DC voltage source; a common connection point of the first switching element and the second switching element; A second capacitor connected between a common connection point of the three switching elements and the fourth switching element, a seventh switching element interposed between the positive terminal of the DC voltage source and the first capacitor, and a DC voltage And an eighth switching element interposed between the negative electrode end of the source and the first capacitor, and a common connection point of the fifth switching element and the sixth switching element is a neutral point of the three-phase inverter unit Commonly connected, it includes a second switching element U-phase common connection point of the third switching element, V-phase, and three-phase inverter unit to the output terminals of the W-phase, and
The phase of the voltage command value of the U, V, W phase is divided by 20 degrees, the intermediate phase is selected during the period when the voltage command value as the intermediate phase is zero cross, and the voltage command value as the intermediate phase during the other periods A five-level power converter characterized by selecting the other phase with the same sign and turning on the seventh and eighth switching elements of the selected phase.
第7,第8スイッチング素子がオンからオフに切り換わるタイミングを遅らせて、相切り換え前後において前記選択された相の第7,第8スイッチング素子を同時にオンにする転流期間を設けることを特徴とする請求項1または2記載の5レベル電力変換器。   A commutation period is provided in which the timings at which the seventh and eighth switching elements are switched from on to off are delayed, and the seventh and eighth switching elements of the selected phase are simultaneously turned on before and after phase switching. A five-level power converter according to claim 1 or 2. 前記選択された相の第7,第8スイッチング素子は、選択されている期間のうち任意の期間においてオンにすることを特徴とする請求項1〜3のうち何れか1項に記載の5レベル電力変換器。   4. The 5 level according to claim 1, wherein the seventh and eighth switching elements of the selected phase are turned on in an arbitrary period of the selected period. Power converter. 直流電圧源と三相のインバータユニットとの間に介挿されるリアクトルと第3コンデンサとを有する保護回路を備えたことを特徴とする請求項1〜4のうち何れか1項に記載の5レベル電力変換器。   5. The five-level circuit according to claim 1, further comprising a protection circuit having a reactor and a third capacitor interposed between the DC voltage source and the three-phase inverter unit. Power converter.
JP2012131466A 2012-06-11 2012-06-11 5 level power converter Expired - Fee Related JP5910334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012131466A JP5910334B2 (en) 2012-06-11 2012-06-11 5 level power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012131466A JP5910334B2 (en) 2012-06-11 2012-06-11 5 level power converter

Publications (2)

Publication Number Publication Date
JP2013258791A true JP2013258791A (en) 2013-12-26
JP5910334B2 JP5910334B2 (en) 2016-04-27

Family

ID=49954755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012131466A Expired - Fee Related JP5910334B2 (en) 2012-06-11 2012-06-11 5 level power converter

Country Status (1)

Country Link
JP (1) JP5910334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028776A1 (en) * 2015-08-14 2017-02-23 汪洪亮 High-voltage-gain five-level inverter topological circuit
WO2017157338A1 (en) * 2016-03-17 2017-09-21 汪洪亮 Single-phase five-level active clamping converter unit and converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153090A (en) * 2000-11-15 2002-05-24 Toyota Motor Corp Power output device and control method therefor
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
WO2012055968A1 (en) * 2010-10-27 2012-05-03 Merus Aps Audio amplifier using multi-level pulse width modulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153090A (en) * 2000-11-15 2002-05-24 Toyota Motor Corp Power output device and control method therefor
JP2011072118A (en) * 2009-09-25 2011-04-07 Fuji Electric Holdings Co Ltd Five-level inverter
WO2012055968A1 (en) * 2010-10-27 2012-05-03 Merus Aps Audio amplifier using multi-level pulse width modulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028776A1 (en) * 2015-08-14 2017-02-23 汪洪亮 High-voltage-gain five-level inverter topological circuit
WO2017157338A1 (en) * 2016-03-17 2017-09-21 汪洪亮 Single-phase five-level active clamping converter unit and converter

Also Published As

Publication number Publication date
JP5910334B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
US9166501B2 (en) Power supply unit for converting power between DC and AC and operating method of the same
US8885377B2 (en) Matrix converter
TWI568139B (en) Uninterruptible power source device
TW201601419A (en) Uninterruptible power supply apparatus
JP5939411B2 (en) Power converter
JP2012029428A (en) Power conversion device
JP2012210066A (en) Multilevel conversion apparatus
TWI660566B (en) Power converter
US9991820B2 (en) Multi-level converter and method of operating same
JP5299541B1 (en) Inverter circuit
JP5072097B2 (en) Three-phase voltage type inverter system
JP5510146B2 (en) Power converter control circuit
JP2013230027A (en) Ac power supply system
JP5910334B2 (en) 5 level power converter
JP5828220B2 (en) DC-AC converter circuit and power converter using the same
TWI547088B (en) Dc-to-ac conversion apparatus and method of operating the same
JP2012191761A (en) Ac-dc conversion circuit
JP6337659B2 (en) 5-level power converter
JP2014045566A (en) Ac-ac bidirectional power converter
JP2010110179A (en) Rectifying circuit
JP5850182B2 (en) Power converter
KR102391590B1 (en) power converter
JP2010041744A (en) Uninterruptible power supply device, and method of manufacturing the same
JP2017046402A (en) Power conversion device
JP6172231B2 (en) Power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5910334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees