JP2013192448A - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
JP2013192448A
JP2013192448A JP2013103616A JP2013103616A JP2013192448A JP 2013192448 A JP2013192448 A JP 2013192448A JP 2013103616 A JP2013103616 A JP 2013103616A JP 2013103616 A JP2013103616 A JP 2013103616A JP 2013192448 A JP2013192448 A JP 2013192448A
Authority
JP
Japan
Prior art keywords
cmc
voltage
neutral point
converter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103616A
Other languages
Japanese (ja)
Other versions
JP5619212B2 (en
JP2013192448A5 (en
Inventor
Shuji Kato
修治 加藤
Shigenori Inoue
重徳 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013103616A priority Critical patent/JP5619212B2/en
Publication of JP2013192448A publication Critical patent/JP2013192448A/en
Publication of JP2013192448A5 publication Critical patent/JP2013192448A5/ja
Application granted granted Critical
Publication of JP5619212B2 publication Critical patent/JP5619212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion apparatus in which effective power can be transferred between CMC converters connected to a plurality of systems, respectively, without insulating a DC/DC converter or a transformer.SOLUTION: Effective power can be supplied from one system to another system by a power conversion system characterized by comprising: a first Y-connection cascade multilevel converter (CMC) linked through a first linkage reactor to a first power system; a second CMC linked through a second linkage reactor to a second power system; a first Y-connection reactor connected to the first power system; and a second Y-connection reactor linked to the second system, in which a neutral point of the first CMC and a neutral point of the second CMC are connected, a neutral point of the first Y-connection reactor and a neutral point of the second Y-connection reactor are connected, and the neutral points of the first and second CMCs and the neutral points of the first and second Y-connection reactors are made into DC link.

Description

本発明は、電力系統と連系する電力変換装置に関する。   The present invention relates to a power conversion device interconnected with a power system.

〔非特許文献1〕は、オン・オフ制御が可能なスイッチング素子(Insulated-gate bipolar transistor:IGBTなど)を使用し、該スイッチング素子の耐圧を超える高電圧を出力できる電力変換装置の一方式として、カスケード・モジュラー・マルチレベル変換器(CMC)を提案している。   [Non-Patent Document 1] uses a switching element (Insulated-gate bipolar transistor: IGBT, etc.) capable of on / off control, and is a method of a power converter that can output a high voltage exceeding the withstand voltage of the switching element. Has proposed a cascaded modular multi-level converter (CMC).

CMCは、フルブリッジ回路や双方向チョッパ回路を単位セルとして、その入出力端子をカスケードに接続した変換器である。CMCは、単位セルのPWM制御用搬送波の位相を単位セル毎にずらすことにより、CMCの出力する変換器の高調波を抑制できるという特徴を持つ。前記CMCは無効電力出力装置や有効電力貯蔵装置として使用できることが知られている。   The CMC is a converter in which a full bridge circuit or a bidirectional chopper circuit is used as a unit cell and its input / output terminals are connected in cascade. The CMC is characterized in that the harmonics of the converter output by the CMC can be suppressed by shifting the phase of the PWM control carrier wave of the unit cell for each unit cell. It is known that the CMC can be used as a reactive power output device or an active power storage device.

電気学会論文誌 D部門127巻8号781ページ〜788ページIEEJ Transactions D, Vol. 127, No. 8, pages 781-788 電気学会論文誌 D部門126巻3号211ページ〜217ページIEEJ Transactions D Division 126, No. 3, pages 211-217

しかし、CMCは、HVDCやBTBのように複数のCMC間で有効電力融通することができなかった。〔非特許文献2〕では、CMCを用いたシステムで有効電力を融通できるように、異なる系統に連系したCMCの単位セル同士を、トランスで絶縁したDC/DCコンバータで接続して、有効電力を融通する電力変換システムが開示されている。   However, the CMC cannot exchange active power among a plurality of CMCs like HVDC and BTB. In [Non-Patent Document 2], CMC unit cells connected to different systems are connected by a DC / DC converter insulated by a transformer so that active power can be accommodated in a system using CMC. Is disclosed.

しかし、〔非特許文献2〕で開示された電力変換システムでは、DC/DCコンバータが必要となってしまう。さらに、該DC/DCコンバータは、各セルの電位が異なるので、トランスによる絶縁が必須となってしまい、システムが大型化してしまう。   However, the power conversion system disclosed in [Non-Patent Document 2] requires a DC / DC converter. Furthermore, since the DC / DC converter has different cell potentials, insulation by a transformer is essential, and the system becomes large.

そこで、本発明の目的は、DC/DCコンバータやその他のトランスで絶縁をすることなく、複数の系統にそれぞれ接続したCMC変換器間を有効電力を融通できるトランスレスのCMC変換器システムを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a transformerless CMC converter system capable of accommodating active power between CMC converters connected to a plurality of systems without being insulated by a DC / DC converter or other transformers. For the purpose.

上記課題を達成するために、本発明の電力変換装置は、第1の電力系統に第1の連系リアクトルを介して連系した第1のマルチレベル変換器と、第2の電力系統に第2の連系リアクトルを介して連系した第2のマルチレベル変換器と、第1の電力系統に連系した第1のY結線リアクトルと、第2の電力系統に連系した第2のY結線リアクトルと、前記第1のマルチレベル変換器の中性点と前記第2のマルチレベル変換器の中性点を接続し、また、前記第1のY結線リアクトルの中性点と前記第2のY結線リアクトルの中性点を接続し、前記第1,第2のマルチレベル変換器の中性点と、前記第1,第2のY結線リアクトルの中性点を直流リンクする構成を備えたことを特徴とするものである。   In order to achieve the above object, a power conversion device of the present invention includes a first multi-level converter connected to a first power system via a first connection reactor, and a second power system. A second multi-level converter linked via two linked reactors, a first Y-connection reactor linked to the first power grid, and a second Y linked to the second power grid A connection reactor, a neutral point of the first multi-level converter and a neutral point of the second multi-level converter are connected; and a neutral point of the first Y-connection reactor and the second point A neutral point of the Y connection reactor is connected, and the neutral point of the first and second multi-level converters and the neutral point of the first and second Y connection reactors are DC-linked. It is characterized by that.

また、上記課題を達成するために、本発明の電力変換装置は、第1の電力系統に第1の連系リアクトルを介して連系した第1のマルチレベル変換器と、第2の電力系統に第2の連系リアクトルを介して連系した第2のマルチレベル変換器と、第1の電力系統に連系した第1のY結線リアクトルと、第2の電力系統に連系した第2のY結線リアクトルと、前記第1のマルチレベル変換器の中性点と前記第2のY結線リアクトルの中性点を接続し、また、前記第1のY結線リアクトルの中性点と前記第2のマルチレベル変換器の中性点を接続する構成を備えたことを特徴とするものである。   Moreover, in order to achieve the said subject, the power converter device of this invention is connected to the 1st electric power system via the 1st interconnection reactor, The 1st multi-level converter, The 2nd electric power system A second multi-level converter linked to the second power reactor, a first Y-connection reactor linked to the first power system, and a second power level linked to the second power system. A Y-connection reactor, a neutral point of the first multi-level converter and a neutral point of the second Y-connection reactor, and a neutral point of the first Y-connection reactor and the second The present invention is characterized in that a configuration for connecting neutral points of two multi-level converters is provided.

更に、本発明の電力変換装置は、前記マルチレベル変換器の単位セルが双方向チョッパ回路で構成されていることを特徴とするものである。   Furthermore, the power conversion device of the present invention is characterized in that the unit cell of the multilevel converter is constituted by a bidirectional chopper circuit.

更に、本発明の電力変換装置は、前記マルチレベル変換器の単位セルがフルブリッジ回路で構成されていることを特徴とするものである。   Furthermore, the power conversion device of the present invention is characterized in that the unit cell of the multilevel converter is configured by a full bridge circuit.

本発明によれば、有効電力を融通する電力変換装置において、DC/DCコンバータやトランスが不要になるので、システムの小形・軽量化を実現できる。   According to the present invention, since a DC / DC converter and a transformer are not required in a power conversion device that accommodates active power, the system can be reduced in size and weight.

本発明の第1,2の実施形態を示す回路図。The circuit diagram which shows the 1st, 2nd embodiment of this invention. 本発明の第2,4の実施形態の一部を示す回路図。The circuit diagram which shows a part of 2nd, 4th embodiment of this invention. 本発明の第1,3の実施形態の一部を示す回路図。The circuit diagram which shows a part of 1st, 3rd embodiment of this invention. 本発明の第2,4の実施形態を示す回路図。The circuit diagram which shows the 2nd, 4th embodiment of this invention.

〔実施例1〕
本発明を実施する第1の形態について説明する。
[Example 1]
A first embodiment for carrying out the present invention will be described.

本発明の実施例1では、〔非特許文献2〕で必要であったDC/DCコンバータを不要にできるという効果が得られる。   In the first embodiment of the present invention, there is an effect that the DC / DC converter required in [Non-Patent Document 2] can be eliminated.

図1は、本発明の第1の実施形態を表した回路図である。まず、図1を用いて、本発明の電力変換システム101の構成を説明する。   FIG. 1 is a circuit diagram showing a first embodiment of the present invention. First, the structure of the power conversion system 101 of this invention is demonstrated using FIG.

本発明の電力変換システムは2つの三相連系リアクトル201a,201bと2つの三相Y結線リアクトル202a,202bを有する。該三相連系リアクトル201a,201bはそれぞれCMC105a,105bと接続される。一方、Y結線リアクトル202aとY結線リアクトル202bは中性点同士が接続点300で接続された構成となる。また、CMC105aとCMC105bの各中性点は接続点301で接続される。   The power conversion system of the present invention has two three-phase interconnected reactors 201a and 201b and two three-phase Y-connection reactors 202a and 202b. The three-phase connected reactors 201a and 201b are connected to CMCs 105a and 105b, respectively. On the other hand, the Y-connection reactor 202a and the Y-connection reactor 202b are configured such that the neutral points are connected at the connection point 300. Further, the neutral points of the CMC 105 a and the CMC 105 b are connected at the connection point 301.

該CMC105a,105bは、双方向チョッパ回路120C(図3参照)やフルブリッジ回路120F(図4参照)を単位セル120として、その入出力端子をカスケードに接続した変換器である。系統100a,100bに連系する該CMC105a,105bはそれぞれ3つのCMCレッグがY結線に接続された構成を有する。各CMCレッグ103aU〜103bWは、それぞれ単位セル120がカスケードに接続された構成である。   The CMCs 105a and 105b are converters in which a bidirectional chopper circuit 120C (see FIG. 3) and a full bridge circuit 120F (see FIG. 4) are used as unit cells 120 and their input / output terminals are connected in cascade. Each of the CMCs 105a and 105b connected to the systems 100a and 100b has a configuration in which three CMC legs are connected to the Y connection. Each of the CMC legs 103aU to 103bW has a configuration in which the unit cells 120 are connected in cascade.

本実施例では、該単位セルが双方向チョッパ120Cであるとの前提で図3を用いて該単位セル120の回路構成を説明する。   In the present embodiment, the circuit configuration of the unit cell 120 will be described with reference to FIG. 3 on the assumption that the unit cell is a bidirectional chopper 120C.

該双方向チョッパ回路120Cは、IGBT並列体402PとIGBT並列体402Nで構成されるIGBTレッグ411と、該IGBTレッグ411に接続された直流コンデンサ406から構成される。該IGBT並列体402Nのアノードとカソードはそれぞれ単位セル120の入出力端子400Pと入出力端子400Nとして機能する。   The bidirectional chopper circuit 120C includes an IGBT leg 411 composed of an IGBT parallel body 402P and an IGBT parallel body 402N, and a DC capacitor 406 connected to the IGBT leg 411. The anode and cathode of the IGBT parallel body 402N function as the input / output terminal 400P and the input / output terminal 400N of the unit cell 120, respectively.

そして、単位セル120の入出力端子400P,400NはCMCレッグの入出力端子500P(500aUP〜500bWP),500N(500aUN〜500bWN)としても機能する、各CMCレッグの両端に配置された単位セル120の入出力端子400Pと400Nを除き、複数で使用される各単位セル120の入出力端子400Nは他の単位セル120の入出力端子400P、各単位セルの入出力端子400Pは他の単位セル120の入出力端子400Nにカスケードに接続される。   The input / output terminals 400P and 400N of the unit cell 120 also function as the input / output terminals 500P (500aUP to 500bWP) and 500N (500aUN to 500bWN) of the CMC legs, and the unit cells 120 arranged at both ends of each CMC leg. Except for the input / output terminals 400P and 400N, the input / output terminal 400N of each unit cell 120 used in plurality is the input / output terminal 400P of the other unit cell 120, and the input / output terminal 400P of each unit cell is that of the other unit cell 120. The input / output terminal 400N is connected in cascade.

なお、CMC105aを構成する各CMCレッグ113(113aU〜113aW)の高圧側の入出力端子500P(500aUP〜500aWP)はそれぞれ三相連系リアクトル201aの各端子と電気的に接続される。同様に、CMC105bを構成する各CMCレッグ113(113bU〜113bW)の高圧側の各入出力端子500P(500bUP〜500bWP)はそれぞれ三相連系リアクトル201bの各端子と電気的に接続される。各CMCレッグ113(113aU〜113bW)の低圧側入出力端子500N(500aUN〜500bWN)は、他のCMCレッグ113の低圧側入出力端子500N(500aUN〜500bWN)と中性点301で電気的に接続される。   The high-voltage input / output terminals 500P (500aUP to 500aWP) of the CMC legs 113 (113aU to 113aW) constituting the CMC 105a are electrically connected to the terminals of the three-phase interconnected reactor 201a, respectively. Similarly, each high-voltage input / output terminal 500P (500bUP to 500bWP) of each CMC leg 113 (113bU to 113bW) constituting the CMC 105b is electrically connected to each terminal of the three-phase interconnection reactor 201b. The low-voltage input / output terminals 500N (500aUN to 500bWN) of each CMC leg 113 (113aU to 113bW) are electrically connected to the low-voltage input / output terminals 500N (500aUN to 500bWN) of other CMC legs 113 at the neutral point 301. Is done.

次に、本発明のCMC変換器システム101の動作を説明する。   Next, the operation of the CMC converter system 101 of the present invention will be described.

まず、各電圧の定義を明確にする。中性点300を基準として中性点301との間の電圧を中性点間電圧と定義する。また、中性点300を基準として各CMCレッグ113の高圧側入出力端子500P(500aUP〜500bWP)との間の電圧をCMCレッグ出力電圧と定義する。   First, clarify the definition of each voltage. A voltage between the neutral point 301 and the neutral point 301 is defined as a neutral point voltage. Further, a voltage between the neutral point 300 and the high-voltage side input / output terminal 500P (500aUP to 500bWP) of each CMC leg 113 is defined as a CMC leg output voltage.

また、中性点300を基準にして各系統100a,100bの相電圧のことを系統相電圧と定義する。   Further, the phase voltage of each system 100a, 100b with respect to the neutral point 300 is defined as the system phase voltage.

また、中性点301基準として各CMCレッグ113(113aU〜113bW)の高圧側の入出力端子500P(500aUP〜500bWP)、の電位、すなわちCMCレッグ113の両入出力端子間500Pと500Nの間の電圧をCMCレッグ電圧と定義する。   Further, as a neutral point 301 reference, the potential of the input / output terminal 500P (500aUP to 500bWP) on the high voltage side of each CMC leg 113 (113aU to 113bW), that is, between the input / output terminals 500P and 500N of the CMC leg 113. The voltage is defined as the CMC leg voltage.

CMC変換器システム101は、系統100との間で電力を授受する時に、CMC変換器システム101と系統100の間で電流が通流する。   When the CMC converter system 101 exchanges power with the system 100, a current flows between the CMC converter system 101 and the system 100.

CMC変換器システム101から系統100aに流れる各相出力電流は式(1)の関係がある。式(1)は任意の相の出力電流と電圧の関係を示している。   Each phase output current flowing from the CMC converter system 101 to the system 100a has the relationship of the formula (1). Equation (1) shows the relationship between the output current and voltage of an arbitrary phase.

出力電流=(CMCレッグ出力電圧−系統相電圧)/系統連系リアクトル201aの インピーダンス ・・・・(1)     Output current = (CMC leg output voltage−system phase voltage) / impedance of system interconnection reactor 201a (1)

式(1)において、系統連系リアクトル201aのインピーダンスは通常固定値とみなせるので、出力電流を制御するには、系統相電圧を検出して、それを元にCMCレッグ出力電圧を制御すればよい。各相のCMCレッグ出力電圧は、式(2)の関係がある。   In Formula (1), since the impedance of the grid interconnection reactor 201a can be normally regarded as a fixed value, in order to control the output current, it is only necessary to detect the system phase voltage and control the CMC leg output voltage based on it. . The CMC leg output voltage of each phase has the relationship of Formula (2).

CMCレッグ出力電圧=中性点間電圧+CMCレッグ電圧 ・・・・(2)     CMC leg output voltage = neutral point voltage + CMC leg voltage (2)

式(2)の各項のうち、中性点間電圧の絶対値は、連系リアクトル201aと201bのインピーダンス、Y結線リアクトル201a,201bのインピーダンスがそれぞれ等しければ、CMC105a,105bの各レッグ(113aU,113aV,113aW,113bU,113bV,113bW)のCMCレッグ電圧の平均値に等しい。また、各CMCレッグ電圧は、各CMCレッグ113を構成する単位セル120の出力電圧の総和であり、各単位セル120の出力電圧により制御できる。各単位セル120の出力電圧は電圧指令と三角波を比較してゲートパルスを生成するいわゆるPWM制御により制御して、単位セル120の入出力端子400Pと400Nの間には前記電圧指令値電圧相当のパルス電圧を出力できる。   Among the terms of equation (2), the absolute value of the voltage between the neutral points can be calculated by using the legs of the CMCs 105a and 105b (113aU) if the impedances of the interconnection reactors 201a and 201b and the Y-connection reactors 201a and 201b are equal. , 113aV, 113aW, 113bU, 113bV, 113bW) equal to the average value of the CMC leg voltages. Each CMC leg voltage is the sum of the output voltages of the unit cells 120 constituting each CMC leg 113 and can be controlled by the output voltage of each unit cell 120. The output voltage of each unit cell 120 is controlled by so-called PWM control that compares the voltage command with a triangular wave to generate a gate pulse, and the input / output terminals 400P and 400N of the unit cell 120 correspond to the voltage command value voltage. Can output pulse voltage.

したがって、式(1),式(2)から出力電流を下記のように制御できる。   Therefore, the output current can be controlled as follows from the equations (1) and (2).

各系統相電圧を検出して、各CMCレッグ電圧の総和が大略一定になるように調整しつつ、対象とするCMCレッグ113のCMCレッグ電圧を調整することにより、CMCレッグ113のCMCレッグ出力電圧を制御して、任意の電流を系統100に出力できる。(たとえばCMCレッグ113aUの出力電圧を制御して任意のU相電流を系統100aに出力できる)。   The CMC leg output voltage of the CMC leg 113 is detected by adjusting the CMC leg voltage of the target CMC leg 113 while detecting each system phase voltage and adjusting the total sum of the CMC leg voltages to be substantially constant. Can be controlled to output an arbitrary current to the system 100. (For example, an arbitrary U-phase current can be output to the system 100a by controlling the output voltage of the CMC leg 113aU).

なお、各系統相電圧と中性点間電圧を検出して、対象とするCMCレッグ113のCMCレッグ電圧を調整することによりCMCレッグ113のCMCレッグ出力電圧を制御しても、任意の電流を系統100aに出力できる(たとえばCMCレッグの出力電圧を制御して任意のU相電流を出力できる)。このように、本発明の電力変換装置すなわちCMC変換器システム101は、任意の電流を出力できるので、トランスレスで系統100aと系統100b間で有効電力を融通することが実現できる。   Even if the CMC leg output voltage of the CMC leg 113 is controlled by detecting each system phase voltage and the voltage between the neutral points and adjusting the CMC leg voltage of the target CMC leg 113, an arbitrary current is generated. It can be output to the system 100a (for example, an arbitrary U-phase current can be output by controlling the output voltage of the CMC leg). Thus, since the power converter of the present invention, that is, the CMC converter system 101 can output an arbitrary current, it is possible to realize the interchange of active power between the system 100a and the system 100b without a transformer.

〔実施例2〕
本発明の第2の実施例のCMC変換器システム101の構成は、第1の実施例と同様に図1で表すことができる。第1の実施例では、各単位セルが双方向チョッパ回路120Cで構成されていたのに対し、第2の実施例では、各単位セルがフルブリッジ回路120Fで構成されている点のみが異なる。
[Example 2]
The configuration of the CMC converter system 101 of the second embodiment of the present invention can be represented in FIG. 1 as in the first embodiment. In the first embodiment, each unit cell is composed of the bidirectional chopper circuit 120C, whereas the second embodiment is different only in that each unit cell is composed of the full bridge circuit 120F.

図4に本発明の第2の実施例の単位セル120を構成するフルブリッジ回路120Fを示す。該フルブリッジ回路120FはIGBTレッグ411(411L,411R)を2並列にして、直流コンデンサ406と接続した構成である。各IGBTレッグ411は、第1の実施例と同様にIGBT並列体402(402P,402N)を直列に接続した構成である。IGBT並列体402PとIGBT並列体402Nの接続部に入出力端子400(400L,400R)を設け、各単位セルの入出力端子400(400L,400R)同士がカスケード接続される。   FIG. 4 shows a full bridge circuit 120F constituting the unit cell 120 according to the second embodiment of the present invention. The full bridge circuit 120F has a configuration in which two IGBT legs 411 (411L, 411R) are connected in parallel and connected to a DC capacitor 406. Each IGBT leg 411 has a configuration in which IGBT parallel bodies 402 (402P, 402N) are connected in series as in the first embodiment. An input / output terminal 400 (400L, 400R) is provided at a connection portion between the IGBT parallel body 402P and the IGBT parallel body 402N, and the input / output terminals 400 (400L, 400R) of each unit cell are cascade-connected.

次に本実施例のCMC変換器システム101の動作について説明する−。本実施例は各IGBTレッグ411が正負の電圧を出力できることを除けば、第1の実施例と基本的に同等であるので、単位セル120の動作のみを説明する。   Next, the operation of the CMC converter system 101 of this embodiment will be described-. Since this embodiment is basically the same as the first embodiment except that each IGBT leg 411 can output positive and negative voltages, only the operation of the unit cell 120 will be described.

単位セル120を構成する各フルブリッジ回路120FのIGBTレッグ411は、第1の実施例と同様に、いわゆるPWM制御により制御する。フルブリッジを構成するIGBTレッグ411LとIGBTレッグ411Rはそれぞれ、正負反転した電圧指令値を与えてPWM変調する。フルブリッジ回路120Fの端子には前記電圧指令値の差電圧相当のパルス電圧が出力される。単セルの出力電圧はIGBTレッグ411LとIGBTレッグ411Rの差電圧であるので、第1の実施例では単位セルは零もしくは正電圧しか出力できなかったのに対して、正負両極性の電圧を出力できるので、本実施例のCMCを用いた電力変換装置101は、正負両極性の中性点間電圧を出力できるというメリットがある。中性点300と301の間で短絡事故が生じた場合に、中性点間電圧を零にして事故の拡大を防ぐことができる。   The IGBT leg 411 of each full bridge circuit 120F constituting the unit cell 120 is controlled by so-called PWM control as in the first embodiment. Each of the IGBT leg 411L and the IGBT leg 411R constituting the full bridge performs PWM modulation by giving a voltage command value that is inverted between positive and negative. A pulse voltage corresponding to the voltage difference between the voltage command values is output to the terminal of the full bridge circuit 120F. Since the output voltage of the single cell is the difference voltage between the IGBT leg 411L and the IGBT leg 411R, in the first embodiment, the unit cell can output only zero or positive voltage, but outputs positive and negative voltage. Therefore, the power conversion device 101 using the CMC of this embodiment has an advantage of being able to output a neutral point voltage between both positive and negative polarities. When a short circuit accident occurs between the neutral points 300 and 301, the neutral point voltage can be reduced to zero to prevent the accident from expanding.

なお、実施例1でCMCレッグ113の高圧側入力端子500Pと呼んだ端子は、本実施例の場合必ずしも高圧側とは限らない。この場合500Pは連系リアクトル201とCMC105の接続点に相当する。同様に、実施例1でCMCレッグ113の低圧側入力端子500Nと呼んだ各端子は、本実施例の場合必ずしも低圧側とは限らない。500Nは中性点301と各CMC105の接続点に相当する。   Note that the terminal called the high voltage side input terminal 500P of the CMC leg 113 in the first embodiment is not necessarily the high voltage side in the present embodiment. In this case, 500P corresponds to a connection point between the interconnection reactor 201 and the CMC 105. Similarly, each terminal called the low voltage side input terminal 500N of the CMC leg 113 in the first embodiment is not necessarily the low voltage side in the present embodiment. 500 N corresponds to a connection point between the neutral point 301 and each CMC 105.

第2の実施例の単位セル120は実施例1の単位セルよりも出力電圧の自由度が高いので、実施例1と同様に、本発明の電力変換装置すなわちCMCの電力変換101は、任意の電流を出力でき、トランスレスで系統100aと系統100b間で有効電力を融通することが実現できる。   Since the unit cell 120 according to the second embodiment has a higher degree of freedom in output voltage than the unit cell according to the first embodiment, the power conversion apparatus according to the present invention, that is, the power conversion 101 of the CMC, is arbitrary as in the first embodiment. A current can be output, and it is possible to realize the interchange of active power between the system 100a and the system 100b without a transformer.

〔実施例3〕
第1の実施例では、CMC変換器システム101が接続した2つの系統(100aと100b)の零相電圧が異なると、該2つの系統の間で零相電流が通流する。しかし、第3の実施例では零相電流の通流を抑制できる。
Example 3
In the first embodiment, when the zero phase voltages of the two systems (100a and 100b) connected to the CMC converter system 101 are different, a zero phase current flows between the two systems. However, in the third embodiment, the flow of the zero-phase current can be suppressed.

まず、図2を用いて第3の実施例のCMC変換器システム101の構成を説明する。   First, the configuration of the CMC converter system 101 of the third embodiment will be described with reference to FIG.

本発明のCMC変換器システム101は、第1の実施例と同様に、2つの連系リアクトル201a,201bとY結線202a,202bを有し、該連系リアクトルを介して、系統100a,100bと接続される。該連系リアクトルのうち、連系リアクトル201a,201bはそれぞれCMC変換器105a,105bと接続される。単位チョッパセル120が双方向チョッパ120Cで構成される点も第1の実施例と同じである。   Similar to the first embodiment, the CMC converter system 101 of the present invention has two interconnected reactors 201a and 201b and Y-connections 202a and 202b, and via the interconnected reactors, the systems 100a and 100b Connected. Of the interconnected reactors, interconnected reactors 201a and 201b are connected to CMC converters 105a and 105b, respectively. The point that the unit chopper cell 120 is composed of the bidirectional chopper 120C is the same as that of the first embodiment.

一方、Y結線リアクトル202aとY結線リアクトル202bのそれぞれの中性点が、それぞれCMC変換器105bの中性点、CMC変換器105aの中性点と接続される点が第1の実施例と異なる。   On the other hand, the neutral point of each of the Y connection reactor 202a and the Y connection reactor 202b is connected to the neutral point of the CMC converter 105b and the neutral point of the CMC converter 105a, respectively, which is different from the first embodiment. .

以後、Y結線リアクトル202aとCMC105bの接続点を中性点300b、Y結線リアクトル202bの中性点とCMC変換器105aの中性点の接続点を中性点300aと呼ぶ。   Hereinafter, the connection point between the Y connection reactor 202a and the CMC 105b is referred to as a neutral point 300b, and the connection point between the neutral point of the Y connection reactor 202b and the neutral point of the CMC converter 105a is referred to as a neutral point 300a.

次に、第3の実施例のCMC変換器システム101の動作を説明する。   Next, the operation of the CMC converter system 101 of the third embodiment will be described.

第3の実施例では、中性点300aを基準とした中性点300bの電位を、中性点間電圧と定義する。また、中性点300aを基準としたCMC105aの各CMCレッグ113aU〜113aWと連系リアクトル201aの各接続点500aUP〜500aWPの各電位をCMCレッグ出力電圧Aと定義する。同様に、中性点300bを基準として、CMC105bの各CMCレッグ113bU〜113bWと連系リアクトル201bとの各接続点500bUP〜500bWPの各電位はCMCレッグ出力電圧Bと定義する。   In the third embodiment, the potential of the neutral point 300b with respect to the neutral point 300a is defined as the neutral point voltage. Further, each potential of the CMC legs 113aU to 113aW of the CMC 105a with respect to the neutral point 300a and the connection points 500aUP to 500aWP of the interconnection reactor 201a is defined as a CMC leg output voltage A. Similarly, each potential at the connection points 500bUP to 500bWP between the CMC legs 113bU to 113bW of the CMC 105b and the interconnection reactor 201b is defined as a CMC leg output voltage B with the neutral point 300b as a reference.

また、各CMCレッグ113(113aU〜113bW)の両端に発生する電圧をCMCレッグ電圧と定義する。そして、第3の実施例では、CMCレッグ出力電圧とCMCレッグ電圧は等しい。   Further, a voltage generated at both ends of each CMC leg 113 (113aU to 113bW) is defined as a CMC leg voltage. In the third embodiment, the CMC leg output voltage is equal to the CMC leg voltage.

また、中性点300Aを基準としたCMC変換システム101と系統100aとの各接続点の各相電位のことを系統相電圧Aと呼ぶ。同様に、中性点300Bを基準とした、CMC変換システム101と系統100bとの各接続点の各相電位のことを系統相電圧Bと呼ぶ。   Further, each phase potential at each connection point between the CMC conversion system 101 and the system 100a with the neutral point 300A as a reference is referred to as a system phase voltage A. Similarly, each phase potential at each connection point between the CMC conversion system 101 and the system 100b with the neutral point 300B as a reference is referred to as a system phase voltage B.

CMC変換器システム101aから系統100aに流れる相電流はその相の各電圧との間に式(3−1a)の関係がある。   The phase current flowing from the CMC converter system 101a to the system 100a has a relationship of the expression (3-1a) with each phase voltage.

相電流=(CMCレッグ出力電圧A−系統相電圧A)/系統連系リアクトル201a のインピーダンス ・・・・(3−1a)     Phase current = (CMC leg output voltage A−system phase voltage A) / impedance of system interconnection reactor 201a (3-1a)

同様に、系統100bとCMC変換器システム101bとの間の相電流は式(3−1b)の関係がある。   Similarly, the phase current between the system 100b and the CMC converter system 101b has a relationship of Expression (3-1b).

相電流=(CMCレッグ出力電圧B−系統相電圧B)/系統連系リアクトル201b のインピーダンス ・・・・(3−1b)     Phase current = (CMC leg output voltage B−system phase voltage B) / impedance of system interconnection reactor 201b (3-1b)

式(1)において、系統連系リアクトル201aのインピーダンスは通常固定値とみなせるので、出力電流を制御するには、系統相電圧を検出して、それを元にCMCレッグ出力電圧を制御すればよい。   In Formula (1), since the impedance of the grid interconnection reactor 201a can be normally regarded as a fixed value, in order to control the output current, it is only necessary to detect the system phase voltage and control the CMC leg output voltage based on it. .

但し、中性点300aと系統100b、中性点300bと系統100a間で零相電流が通流しないように、中性点間電圧を制御することが好ましい。零相電流の通流を防ぐには、CMC変換器105aの各CMCレッグ(113aU,113aV,113aW)のCMCレッグ電圧の平均値が系統100aと系統100bの零相電圧の差電圧、CMC変換器105bの各CMCレッグ(113bU,113bV,113bW)のCMCレッグ電圧の平均値が系統100bと系統100aの零相電圧の差電圧と等しくなればよい。   However, it is preferable to control the voltage between the neutral points so that no zero-phase current flows between the neutral point 300a and the system 100b and between the neutral point 300b and the system 100a. In order to prevent the flow of the zero-phase current, the average value of the CMC leg voltage of each CMC leg (113aU, 113aV, 113aW) of the CMC converter 105a is the difference voltage between the zero-phase voltages of the system 100a and the system 100b, the CMC converter The average value of the CMC leg voltage of each CMC leg (113bU, 113bV, 113bW) of 105b may be equal to the difference voltage between the zero-phase voltages of the system 100b and the system 100a.

したがって、CMCレッグ電圧の平均値を制御して、零相電流を抑制しつつ、任意の相のCMCレッグ電圧を個別に制御すればCMCの出力電流を制御できる。   Therefore, if the average value of the CMC leg voltage is controlled to suppress the zero-phase current and the CMC leg voltage of any phase is individually controlled, the output current of the CMC can be controlled.

本発明の電力変換装置すなわちCMC変換器システム101は、任意の電流を出力できるので、系統100間で有効電力を融通することが実現できる。   Since the power conversion device, that is, the CMC converter system 101 of the present invention can output an arbitrary current, it is possible to realize the interchange of active power between the systems 100.

〔実施例4〕
第4の実施例は第3の実施例の各単位セル120がフルブリッジ回路120Fで構成されたことを特徴とする。
Example 4
The fourth embodiment is characterized in that each unit cell 120 of the third embodiment is constituted by a full bridge circuit 120F.

第3の実施例では、各単位セル120がフルブリッジ回路120Fで構成されていたのに対し、第4の実施例では、各単位セルが双方向チョッパ回路120Cで構成されている点のみが異なる。   In the third embodiment, each unit cell 120 is configured by a full bridge circuit 120F, whereas the fourth embodiment is different only in that each unit cell is configured by a bidirectional chopper circuit 120C. .

第4の実施例のCMC回路105(105aと105b)の構成は第2の実施例のCMC回路105の構成と同じである。   The configuration of the CMC circuit 105 (105a and 105b) of the fourth embodiment is the same as that of the CMC circuit 105 of the second embodiment.

第3の実施例では、単位セル120の出力電圧が零もしくは正電圧しか出力できないのに対し、第4の実施例のCMC変換器システムでは、正負両極性の電圧を出力できるので、本発明の電力変換装置であるCMC変換器システム101の中性点間電圧として、正負の電圧を出力できる効果が得られる。   In the third embodiment, the output voltage of the unit cell 120 can be zero or only a positive voltage can be output. On the other hand, the CMC converter system of the fourth embodiment can output both positive and negative voltages. As a voltage between the neutral points of the CMC converter system 101 that is a power converter, an effect of outputting positive and negative voltages can be obtained.

本発明は、無効電力補償装置(STATCOM)やBack−to−Backシステム(周波数変換装置など),直流送電システム(HVDC),モータドライブなどに利用可能である。   The present invention can be used for a reactive power compensator (STATCOM), a back-to-back system (frequency converter, etc.), a direct current power transmission system (HVDC), a motor drive, and the like.

100a,100b 三相電力系統
101 CMC変換器システム
105a,105b CMC
113aU,113aV,113aW,113bU,113bV,113bW CMCレッグ
120 単位セル
201a,201b 連系リアクトル
202a,202b Y結線リアクトル
300,300a,300b,301 中性点
400L,400R,400P,400N 単位セル入出力端子
402P ,402N IGBT並列体
406 直流コンデンサ
411,411L,411R IGBTレッグ
500aUP,500aVP,500aWP,500bUP,500bVP,500bWP,500aUN,500aVN,500aWN,500bUN,500bVN,500bWN CMCレッグ入出力端子
100a, 100b Three-phase power system 101 CMC converter system 105a, 105b CMC
113aU, 113aV, 113aW, 113bU, 113bV, 113bW CMC leg 120 Unit cell 201a, 201b Linked reactor 202a, 202b Y-connection reactor 300, 300a, 300b, 301 Neutral point 400L, 400R, 400P, 400N Unit cell input / output terminal 402P, 402N IGBT parallel body 406 DC capacitor 411, 411L, 411R IGBT leg 500aUP, 500aVP, 500aWP, 500bUP, 500bVP, 500bWP, 500aUN, 500aVN, 500aWN, 500bUN, 500bVN, 500bWN CMC leg input / output terminal

Claims (6)

第1の電力系統に第1の連系リアクトルを介して連系した第1のマルチレベル変換器と、
第2の電力系統に第2の連系リアクトルを介して連系した第2のマルチレベル変換器と、
第1の電力系統に連系した第1のY結線リアクトルと、
第2の電力系統に連系した第2のY結線リアクトルと、
前記第1のマルチレベル変換器の中性点と前記第2のマルチレベル変換器の中性点を接続し、また、
前記第1のY結線リアクトルの中性点と前記第2のY結線リアクトルの中性点を接続し、
前記第1,第2のマルチレベル変換器の中性点と、前記第1,第2のY結線リアクトルの中性点を直流リンクする構成を備えたことを特徴とする電力変換装置。
A first multi-level converter connected to the first power system via a first connection reactor;
A second multi-level converter connected to the second power system via a second connection reactor;
A first Y-connection reactor connected to the first power system;
A second Y-connection reactor connected to the second power system;
Connecting a neutral point of the first multi-level converter and a neutral point of the second multi-level converter;
Connecting a neutral point of the first Y-connection reactor and a neutral point of the second Y-connection reactor;
A power conversion apparatus comprising: a DC link between a neutral point of the first and second multilevel converters and a neutral point of the first and second Y-connection reactors.
請求項1の電力変換装置において、
前記マルチレベル変換器の単位セルが双方向チョッパ回路で構成されていることを特徴とした電力変換装置。
In the power converter device of Claim 1,
A power conversion device, wherein a unit cell of the multi-level converter is formed of a bidirectional chopper circuit.
請求項1の電力変換装置において、
前記マルチレベル変換器の単位セルがフルブリッジ回路で構成されていることを特徴とした電力変換装置。
In the power converter device of Claim 1,
A power conversion device, wherein a unit cell of the multilevel converter is constituted by a full bridge circuit.
第1の電力系統に第1の連系リアクトルを介して連系した第1のマルチレベル変換器と、
第2の電力系統に第2の連系リアクトルを介して連系した第2のマルチレベル変換器と、
第1の電力系統に連系した第1のY結線リアクトルと、
第2の電力系統に連系した第2のY結線リアクトルと、
前記第1のマルチレベル変換器の中性点と前記第2のY結線リアクトルの中性点を接続し、また、
前記第1のY結線リアクトルの中性点と前記第2のマルチレベル変換器の中性点を接続する構成を備えたことを特徴とする電力変換装置。
A first multi-level converter connected to the first power system via a first connection reactor;
A second multi-level converter connected to the second power system via a second connection reactor;
A first Y-connection reactor connected to the first power system;
A second Y-connection reactor connected to the second power system;
Connecting a neutral point of the first multi-level converter and a neutral point of the second Y-connection reactor,
A power conversion device comprising a configuration for connecting a neutral point of the first Y-connection reactor and a neutral point of the second multi-level converter.
請求項4の電力変換装置において、
前記マルチレベル変換器の単位セルが双方向チョッパ回路で構成されていることを特徴とした電力変換装置。
In the power converter of Claim 4,
A power conversion device, wherein a unit cell of the multi-level converter is formed of a bidirectional chopper circuit.
請求項5の電力変換装置において、
前記マルチレベル変換器の単位セルがフルブリッジ回路で構成されていることを特徴とした電力変換装置。
In the power converter device of Claim 5,
A power conversion device, wherein a unit cell of the multilevel converter is constituted by a full bridge circuit.
JP2013103616A 2013-05-16 2013-05-16 Power converter Active JP5619212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103616A JP5619212B2 (en) 2013-05-16 2013-05-16 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103616A JP5619212B2 (en) 2013-05-16 2013-05-16 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009169685A Division JP5277096B2 (en) 2009-07-21 2009-07-21 Power converter

Publications (3)

Publication Number Publication Date
JP2013192448A true JP2013192448A (en) 2013-09-26
JP2013192448A5 JP2013192448A5 (en) 2014-01-09
JP5619212B2 JP5619212B2 (en) 2014-11-05

Family

ID=49392145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103616A Active JP5619212B2 (en) 2013-05-16 2013-05-16 Power converter

Country Status (1)

Country Link
JP (1) JP5619212B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271281A (en) * 1991-02-25 1992-09-28 Sansha Electric Mfg Co Ltd Power supply
JPH07236226A (en) * 1994-02-23 1995-09-05 Yaskawa Electric Corp Ground protector
JP2008301640A (en) * 2007-06-01 2008-12-11 Meidensha Corp Direct high-voltage inverter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271281A (en) * 1991-02-25 1992-09-28 Sansha Electric Mfg Co Ltd Power supply
JPH07236226A (en) * 1994-02-23 1995-09-05 Yaskawa Electric Corp Ground protector
JP2008301640A (en) * 2007-06-01 2008-12-11 Meidensha Corp Direct high-voltage inverter device

Also Published As

Publication number Publication date
JP5619212B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
US10447173B2 (en) Single-phase five-level active clamping converter unit and converter
US9564827B2 (en) Power conversion device
US9484835B2 (en) Modified voltage source converter structure
JP6377310B1 (en) Power converter
US9461557B2 (en) Bipolar double voltage cell and multilevel converter with such a cell
JP6415539B2 (en) Power converter
US9344010B2 (en) Power electronic converter
US9479076B2 (en) Converter cell with reduced power losses, high voltage multilevel converter and associated method
JP2011024392A (en) Power conversion equipment
US10075092B2 (en) Neutral point power converter with first and second chopper cell groups
US10177684B2 (en) Converter for an AC system
CN105900328B (en) Power conversion device
WO2017046910A1 (en) Power conversion device
Saeidabadi et al. New improved three‐phase hybrid multilevel inverter with reduced number of components
JP5675152B2 (en) Power converter
Perez et al. Modular multilevel cascaded converter based on current source H-bridges cells
WO2014111595A1 (en) A multilevel converter with hybrid full-bridge cells
Bordignon et al. Modular multilevel converter in HVDC systems under fault conditions
Adam et al. Hybrid converter topologies for dc transmission systems
JP5277096B2 (en) Power converter
CN108604797B (en) Multilevel power converter and method for controlling multilevel power converter
CN111133668A (en) Inverter system
JP5619212B2 (en) Power converter
EP2725696A1 (en) Power conversion device and device for controlling same
JP5517911B2 (en) Power conversion system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R151 Written notification of patent or utility model registration

Ref document number: 5619212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151